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Figure 1. Sample high-quality 4K images from the testing dataset of the AIS 2024 RTSR Challenge.

Abstract

This paper introduces a novel benchmark for efficient
image upscaling as part of the AIS 2024 Real-Time Im-
age Super-Resolution (RTSR) Challenge, which aims to up-
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scale compressed images from 540p to native 4K resolution
(4x factor) in real-time on commercial GPUs. For this, we
use a diverse test set containing diverse 4K images ranging
from digital art to gaming and photography. The images are
compressed using the modern AVIF codec, instead of JPEG.
All the proposed methods improve PSNR fidelity over Lanc-
zos interpolation, and process images under 30ms. Out of
the 160 participants, 25 teams submitted their code. This
survey considers only the most novel solutions models, mak-
ing it the most comprehensive benchmark on real-time SR of
compressed images using modern codecs.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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1. Introduction
Single image super-resolution (SR) methods generate a
high-resolution (HR) image from a single degraded low-
resolution (LR) image. This ill-posed problem was ini-
tially solved using interpolation methods. However, SR is
now commonly approached through the use of deep learn-
ing [6, 30, 45]. Image SR assumes that the LR image is
obtained through a degradation processes. This can be ex-
pressed as:

y = (x ∗ k) ↓s, (1)

where ∗ represents the convolution operation between
the LR image and the blur kernel, and ↓s is the down-
sampling operation with respective down-sampling factor
×s (e.g. ×2, ×3, ×4, ×8).

Recent advancements in hardware technologies have en-
abled the development of increasingly large and complex
neural networks dedicated to image super-resolution, which
have notably enhanced performance. Despite these gains,
the complexity of the methodologies often increases as
well [11, 30, 45]. Following the foundational efforts by Shi
et al. [37], optimizing deep neural networks for single im-
age super-resolution has become critical [21, 26, 39, 44, 52].
This focus has inspired the creation of numerous workshops
and challenges, for instance [23, 29, 49], which serve as
platforms for exchanging ideas and pushing the boundaries
of efficient and real-time super-resolution (SR). The avail-
ability of large-scale datasets has been also crucial for the
progress in image and video SR [1, 41].

2. AIS 2024 Real-Time Image SR Challenge
In conjunction with the 2024 AIS: Vision, Graphics and AI
for Streaming workshop, we introduce a new real-time 4K
super-resolution challenge.

The challenge aims to upscale a compressed LR im-
age from 540p to 4K resolution using a neural network
that complies with the following requirements: (i) improve
performance over Lanczos interpolation. (ii) Upscale the
image under 33ms. Moreover the images are compressed
using different compression factors (QP values) using the
modern AVIF codec instead of JPEG. The challenge seeks
to identify innovative and advanced solutions for real-time
super-resolution of compressed images.

2.1. Motivation

AV1 Image File Format (AVIF) is the latest royalty-free
image coding format developed based on the Alliance for
Open Media’s (AOM) AV1 video coding standard. The
compression efficiency and quality of AV1F encoded im-
ages is noticeably superior to JPEG and also HEIC, which
uses HEVC for image coding. AVIF is also supported in all
major web browsers. In the AIS 2024 Real-Time Image SR

Challenge, we want to leverage AVIF as the image coding
format to evaluate the quality improvement from SR when
combining with AVIF.

2.2. 4K SR Benchmark Dataset

Following [9], the 4K RTSR benchmark provides a unique
test set comprising ultra-high resolution images from
various sources, setting it apart from traditional super-
resolution benchmarks. Specifically, the benchmark ad-
dresses the increasing demand for upsampling computer-
generated content e.g. gaming and rendered content, in ad-
dition to photo-realistic imagery, thereby posing a different
challenge for existing SR approaches.

The testing set includes diverse content such as rendered
gaming content, digital art, as well as high-resolution photo-
realistic images of animals, city scenes, and landscapes, to-
taling 110 test samples.

All the images in the benchmark testing set are at least
4K resolution i.e. 3840× 2160 (some are bigger, even 8K).

The distribution of the 4K RTSR benchmark testset is:
14 real-world captures using a 60MP DSLR camera, 21 ren-
dered images using Unreal Engine [20], 75 diverse images
e.g. animals, paintings, digital art, nature, buildings, etc.

Compression and Downsampling We use ffmpeg to
produce the LR compressed images. We use 5 different QP
values: 31, 39, 47, 55, 63. We use lanczos interpolation to
downsample the images. Bellow we provide an example:

ffmpeg -hide_banner -y -loglevel error -i
↪→ ../1.png -vf ’scale=ceil(iw/4):ceil(
↪→ ih/4):flags=lanczos+accurate_rnd+
↪→ full_chroma_int:sws_dither=none:
↪→ param0=5’ -c:v libsvtav1 -qp 31 -
↪→ preset 5 1_4x_qp31.avif

In the context of AVIF and AV1 codecs, larger Quanti-
zation Parameter (QP) values imply more compression. Es-
sentially, the QP value dictates the level of quantization ap-
plied to the video or image data, where higher quantization
reduces the amount of data required to represent the original
input, thus leading to higher compression ratios.

The participants can use any publicly available dataset,
and produce the corresponding LR images.

2.3. Evaluation

The baseline model and evaluation scripts were made
available to the participants through GitHub (https:
//github.com/eduardzamfir/NTIRE23-RTSR).
This allowed the participants to benchmark the performance
of their models on their systems. During the final test phase,
the participating teams provided the code, models and re-
sults corresponding to the 110 test images. They did not
have access to the HR ground-truth. The organizers then
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Team Method # Params [M] PSNR-RGB [dB] PSNR-Y [dB] SSIM-RGB SSIM-Y
QP31 QP63 QP31 QP63 QP31 QP63 QP31 QP63

BasicVison (Sec. 3.1) 0.012 30.85 26.83 33.30 29.27 0.807 0.719 0.850 0.777
KREN (Sec. 3.1) 0.010 30.84 26.82 33.27 29.26 0.807 0.719 0.849 0.777

IVP (Sec. 3.1) 0.010 30.85 26.83 33.33 29.27 0.808 0.719 0.851 0.777
RVSR (Sec. 3.2) 0.033 31.52 27.01 33.88 29.43 0.820 0.725 0.859 0.781

VPEG-R (Sec. 3.4) 0.066 30.59 26.70 32.94 29.13 0.803 0.714 0.845 0.773
VPEG-S (Sec. 3.4) 0.012 31.57 26.99 33.93 29.41 0.821 0.725 0.859 0.781
ANUNet (Sec. 3.6) 0.072 31.27 26.86 33.66 29.30 0.814 0.719 0.855 0.778

RESR (Sec. 3.5) 0.040 31.16 26.87 33.50 29.28 0.813 0.720 0.853 0.777
MegastudyEdu (Sec. 3.3) 0.040 30.76 26.87 33.01 29.28 0.801 0.721 0.842 0.778

URPNet (Sec. 3.7) 0.009 30.33 26.65 32.64 29.07 0.798 0.713 0.842 0.773
CASR (Sec. 3.10) 0.020 30.64 26.71 33.11 29.17 0.806 0.715 0.848 0.774

XiaomiMM (Sec. 3.8) 0.026 31.41 26.96 33.85 29.40 0.819 0.725 0.857 0.781
Team C3 (Sec. 3.8) 0.024 31.12 26.90 33.52 29.35 0.813 0.723 0.853 0.780

USTC Huawei (Sec. 3.9) 0.045 31.18 26.90 33.52 29.32 0.814 0.722 0.854 0.779
PixelArtAI (Sec. 3.11) 0.0528 31.06 26.84 33.40 29.26 0.811 0.719 0.852 0.777

RepTCN (Sec. 3.11) 0.01 30.97 26.83 33.31 29.27 0.809 0.719 0.850 0.777

Table 1. Results of the AIS24 Real-Time SR challenge. All the proposed methods upsample the images under 30ms. The single neural
network can process compressed images with QP factors from 31 to 63. We provide PSNR and SSIM fidelity metrics in the RGB domain,
and for the Luma (Y) channel. We highlight in blue the most novel solutions.

validated and executed the submitted code to obtain the fi-
nal results, which were later conveyed to the participants
upon completion of the challenge.

2.4. Architectures and Main Ideas

Here we summarize the core ideas behind the most compet-
itive solutions. Note that most of the ideas follow [10].
• Re-parameterization enables training the network us-

ing sophisticated blocks [13], while allowing these “Rep-
Blocks” to be simplified into a standard 3×3 convolutions
during inference. This technique has become state-of-the-
art in efficient SR [10, 28].

• Pixel shuffle and unshuffle. These techniques are also
known as depth-to-space, space-to-depth, and sub-pixel
convolutions [37]. These are utilized to effectively apply
spatial upsampling and downsampling over feature maps.

• Multi-stage Training: Given the significant limitations
and shallow architecture of the neural networks, this ap-
proach enhances learning by varying learning rates and
loss functions sequentially.

• Knowledge distillation allows to transfer knowledge
from complex neural networks into more efficient ones.

2.5. Results and Conclusion

In Tab. 1 we provide the challenge benchmark. The mod-
els can upsample compressed 540p images and recover the
core estructural information according to the metrics cal-
culated over Luma (Y). We can also appreciate a notable
performance decay at high QP (compression) values.

In Sec. 3 we provide the description of the top solutions.

Considering the best methods, we can conclude that
there is certain convergence in the model designs. As previ-
ously mentioned, re-parameterization is ubiquitous. Edge-
oriented filters to extract directly high-frequencies allow to
reduce sparsity in the neural network, making effective use
of all the kernels (parameters). Upsampling the input im-
age, and enhancing it through a global residual connection
is also a common neural network architecture.

Related Challenges This challenge is one of the AIS
2024 Workshop associated challenges on: Event-based
Eye-Tracking [46], Video Quality Assessment of user-
generated content [8], Real-time compressed image super-
resolution [7], Mobile Video SR, and Depth Upscaling.

Acknowledgments This work was partially supported by
the Humboldt Foundation. We thank the AIS 2024 spon-
sors: Meta Reality Labs, Meta, Netflix, Sony Interac-
tive Entertainment (FTG), and the University of Würzburg
(Computer Vision Lab).

3. Methods and Teams
In the following sections we describe the best challenge so-
lutions. Note that the method descriptions were provided by
each team as their contribution to this survey.
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3.1. A lightweight Super-resolution Algorithm
Based on Re-Parameterization

Teams BasicVision, CMVG, IVP

Min Yan 1, Xin Liu 1, Qian Wang 1, Xiaoqian Ye 1, Zhan
Du 1, Tiansen Zhang 2

1 China Mobile Research Institute
2 Min Zu University of China

A lightweight Super-resolution Algorithm Based on
Re-Parameterization We propose an efficient super-
resolution network, which contains four convolutions and
an unshuffle block. First, the network uses a convolutional
operation for feature extraction. Then, it utilizes two re-
parameterization modules to extract edge and detailed in-
formation. The re-parameterization module increases the
number of parameters during training, but it is replaced by
a single convolution to reduce computational complexity
and memory usage during testing. The re-parameterization
module we use can extract more edge and detailed informa-
tion. Subsequently, another convolution operation is used
to increase the number of channels to 48, which facilitates
the subsequent four-fold super-resolution.

Finally, we use an unshuffle block to make the channel-
to-space transition. The whole network is shown in Fig-
ure 2, and the convolutional layers in the middle(red) are
two re-parameterization modules. The re-parameterization
module we used is shown in Figure 3.

The local frequency loss (FFL) based on Fast Fourier
Transform (FFT) [24] enables the model to dynamically pri-
oritize challenging frequency components while diminish-
ing the influence of easily synthesizable ones. This opti-
mization objective supplements current spatial losses and
effectively guards against the degradation of crucial fre-
quency details caused by inherent biases in neural networks.
We use the following FFT loss in our training:

LFFT = ∥FFT (XSR
S )− FFT (XHR

S )∥ (2)

Drawing inspiration from SPSR [33], we propose a gra-
dient loss that aids the model in accurately evaluating the
local sharpness intensity of images. We use gradient loss in
our training, which is represented as follows:

LGM = ∥GM(XSR
S )−GM(XHR

S )∥ (3)

The overall loss for training the network is defined as:

LS = α∥XSR4
S −XHR4

S ∥+ γLGM + δLFFT (4)
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Figure 2. Overall framework of BasicVision.
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Figure 4. The framework of RDEN (IVP).

Real-Time Super-Resolution with auxiliary loss The
network we used is shown in Figure 4, which contains three
reparameterized modules, and an auxiliary head with up-
scale factor 2. We use the ECB [50] model as the repa-
rameterized module which can achieve competitive perfor-
mance without computation overhead. Alongside the 4x
super-resolution task, we introduce a 2x upsampling head
for the 2x SR task. This additional task offers multiple ben-
efits: it functions as a form of simulated annealing, allowing
for potential escape from local minima; it serves as a prior,
enhancing the delineation of our primary task. The loss as-
sociated with the 2x supervision is represented as follows:

LX2 = ∥XSR2
S −XHR2

S ∥ (5)

where the XSRx2
S denotes the output from 2x upsampling

head, and XHRx2
S are corresponding 2x HR image. Note

that we cut the 2x super resolution model off in the testing

5841



Figure 5. Overall architecture of KREN proposed by CMVG

phase, and the network consists of only five convolutions
and one 4x upsampling head.

Jointly supervision knowledge distillation network for
efficient super-resolution We propose a efficient super-
resolution network named KREN based on knowledge dis-
tillation and re-parameterization, as shown in Figure 5.

The KREN model is composed of a teacher network and
student network, we use the superior SR model HAT [4]
as teacher network. The distillation training provides ad-
ditional effective supervision information for student train-
ing, and enhances the performance and generalization abil-
ity of student network. The student network is composed
of two convolution layers and two re-parameterization [51]
blocks ECB. The ECB block with complex structure is used
in training phase, while it can be merged into a 3*3 con-
volution layer for speeding up inference speed during the
inference phase. The re-parameterization strategy can ef-
fectively improve the feature diversity and boost the fea-
ture extraction ability of SR model. In addition, we propose
a jointly supervision loss that consists the focal frequency
loss(FFL) [25], gradient map loss (GM) [34] , distillation
loss and L1 loss. We extract features from the 1st and 3rd
blocks of the teacher model, and features from each ECB
block to calculate the distillation loss. The constraints on
gradients and frequency domain helps super-resolved high
quality images.We also propose a multi-stage progressive
training strategy to gradually improves the reconstruction
quality. The number of feature maps in student network is
set to 14.

Implementation details We train our model on
DIV2K[1], Flickr2K[41] and GTA[36] datasets, and

Methods Time[ms] Params[M] FLOPs[G] Acts[M] GPU Mem[M]

IMDN[21] 23.508 0.894 58.430 154.141 707.767
RFDN[31] 18.569 0.433 27.046 112.034 791.928
RLFN[26] 12.019 0.317 19.674 80.045 470.753
DIP[48] 10.049 0.243 14.886 72.9672 497.287

Table 1. The lightweight metrics study by Teams BasicVision,
CMVG, IVP. The ”Time” denotes the average inference time. The
“Params” is the total number of parameters. The “FLOPs” and
“Acts” are calculated on 256x256 images. The “GPU Mem” rep-
resents the GPU memory during the inference. The best results are
marked in red colors

utilize multi-stage training based on Pytorch on NVIDIA
V100. The patch size in each training stage is selected
from [256,384,512,640]. The mini-batch size is set to
64, and MSE, GM loss[33], and FFT loss[24] are used as
target loss functions. Each stage except for the first stage is
fine-tuned based on the result of the previous stage, training
for 500 epochs utilizing the Adam algorithm, beginning
with a learning rate of 5 × 10−4 and gradually decreasing
to 5× 10−5following the cosine scheduler.

For the distillation approach (KREN) the training details
are described as follows:

Stage1. Training teacher network.The teacher network is
trained from scratch with teacher loss.
Stage2. Training student network. Firstly, we fix the
teacher network and pre-train a 2x network to initialize stu-
dent network. Then we use the jointly supervision loss to
train student network. The initial learning rate is set to 5e-
4 and halved at every 50 epochs and the total number of
epochs is 500. The batch size and patch size are set to 64
and 256 separately.
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Stage3. Fine-tune student network.
(1) The student model is initialized from Stage2 and trained
with the same settings as Stage2, especially the loss func-
tion is only MSE loss.
(2) The student model is initialized from the previous step
and fine-tuned by MSE loss further, it is worth that the patch
size is set to 512. Other parameter settings are not changed.

3.2. RVSR: Towards Real-Time Super-Resolution
with Re-parameterization and ViT architec-
ture

Team XJTU-AIR

Zhiyuan Li, Hao Wei, Chenyang Ge

Institute of Artificial Intelligence and Robotics, Xi’an
Jiaotong University

We propose a real-time image super-resolution method
called RVSR, which is inspired by previous work [15, 43].
Our method leverages the efficient architectural designs of
lightweight ViTs and the re-parameterization technique to
achieve superior performance in real-time super-resolution
tasks. RVSR first applies a 3×3 convolution to convert the
channel of feature map to the target size (16). Then, RVSR
employs 8 stacked RepViT [43] blocks to perform deep fea-
ture extraction. As shown in Fig. 6 (a), the RepViT blocks
integrate the efficient architectural designs of lightweight
ViTs. Inspired by [15], RVSR employs the RepConv mod-
ule to improve the SR performance while maintaining low
complexity, as shown in Fig. 6 (b).

We conducted an end-to-end training of the RVSR model
for 5000 epochs, employing a batch size of 32 and optimiz-
ing by minimizing the MSE loss with the Adam optimizer.
For inference, we re-parameterized the model using stan-
dard 3x3 convolutions, as illustrated in Fig. 6 (b).

Implementation details The method is implemented in
PyTorch. For optimization, we utilize the Adam optimizer
with β1 = 0.99 and β2 = 0.999. The learning rate is set to
5 × 10−4 for the first 1000 epochs, after which it linearly
decays until reaching 1× 10−6.

We trained RVSR on DIV2K dataset (800 images),
Flickr2K dataset (2650 images) and LSDIR dataset (first
1000 images). For generating low-resolution images, we
employed Lanczos downsampling and AVIF compression,
with compression factors ranging from QP 31 to 63. Dur-
ing training, we used random cropping, rotations, and flips
augmentations. Besides, the images are normalized to
the range [-1, 1]. The experiments were conducted on a
Nvidia GeForce RTX 3090 GPU, with the input size set to
960×540. MACs: 15.62 (G), 1883 MACs per pixel, run-
time: 12.54 ms (FP32) and 7.36 ms (FP16).
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(a) Detailed architecture of RVSR by Team XJTU-AIR.
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Figure 6. Overview of the proposed RVSR by Team XJTU-AIR.

3.3. Enhancing RTSR with ETDS and Edge-
oriented Convolutional Blocks.

Team MegastudyEdu Vision AI

Jae-Hyeon Lee, Ui-Jin Choi

MegastudyEdu Vision AI

We introduce a method that leverages the Efficient Trans-
formation and Dual Stream Network (ETDS) [3] conjugated
with a Feature-Enhanced Module and an Edge-oriented
Convolution Block (ECB) [50].

Our model is based on the Efficient Transformation
and Dual Stream Network (ETDS) [3], incorporating a
Feature-Enhanced Module inspired by Structure-Preserving
Super Resolution with Gradient Guidance (SPSR)[33] and
an Edge-oriented Convolution Block (ECB) proposed in
ECBSR[50]. This design utilizes the equivalent transforma-
tion to convert time-consuming operators into time-friendly
operations, alongside a dual stream network structure to re-
duce redundant parameters.

The architecture of ETDS[3] comprises Dual Stream net-
work to alleviate redundant parameters, as follows:[

Kb Kr2b

Kb2r Kr

]
(1)

Where, Kb (backbone branch) extracts high-frequency
information, while Kr (residual branch) processes low-
frequency information. In our approach, ECB block is ap-
plied to Kb to enhance efficiency, and Kr2b and Kr con-
sist of 3x3 convolutions. Inspired by SPSR[33], we add
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Figure 7. Overview of ETDS Network, conjugated with a Feature-Enhanced Module and an ECB Block – Team MegastudyEdu.

to restore information from images degraded by compres-
sion and downsampling algorithms. We extract gradient
information from the input Low-Resolution (LR) images
and then enhance the input feature map through a Feature-
Enhanced Module. During inference, the Feature-Enhanced
Module operates according to

z =

[
W1 ⊗ x+ b1
W2 ⊗ y + b2

]
=

[
W1 O
O W2

]
⊗
[
x
y

]
+

[
b1
b2

]
(2)

transforming into a concatenate-convolution structure,
with Kb re-parameterized as a 3x3 convolution. Ultimately,
all parameters are restructured through equivalent trans-
formation, forming the comprehensive architecture of our
model.
To confirm that our solution demonstrates superior perfor-
mance over previous methods, we conducted a comparison
between ETDS and our model. At AIS2024 CVPR, dur-
ing the Validation phase for Real-Time Compressed Im-
age Super-Resolution, it was observed that ETDS scored
22.844, whereas our proposed model scored 22.912, indi-
cating an improvement in performance.

Our method is trained on DIV2K[1] and Flickr2K
datasets, with images processed using AVIF compression
with Quality Factor (QF) coefficients ranging from 31 to 63,
and scaled by a factor of 4 via Lanczos interpolation. Dur-
ing training we use data augmentation techniques:random
cropping to 64x64, random flipping, and random rotation.

ETDS [3] architecture is adapted with ECB [50] to en-
hance edge detail recovery in high-frequency gradients,
while the Feature-Enhanced Module, aids in restoring in-
formation lost through compression and downsampling.

Model PSNR # Params. (M) FLOPs (G) Runtime (ms)

ETDS [3] 22.844 0.0394 20.342 5.561
Our model 22.912 0.0401 20.677 5.941

Table 3. Ablation study by Team MegastudyEdu.

Implementation details
• Framework: PyTorch 2.1.1, PyTorch Lightning
• Optimizer and Learning Rate: We employed Adam op-

timizer with parameters β1 = 0.9 and β2 = 0.999. The
training spanned 100 epochs with an initial learning rate
set to 0.0001, halved at the 50th epoch.

• GPU: NVIDIA A100 (80GB)
• Training Time: The model trained for 24 hours.
• Training Strategies: We trained the model using all

AVIF images generated within the quality factor range
of 31 to 63. This entailed training on a total of 110,400
images comprising 800 from DIV2K and 2,650 from
Flickr2K, each at 32 quality factors.

• Efficiency Optimization Strategies:
– Dual Stream Network Architecture: Utilizing ETDS

[3] reduces redundant parameters by separating the
processing of high-frequency and low-frequency infor-
mation. This branch enables more efficient learning
and reduces computational overhead.

– Feature-Enhanced Module with Gradient Guid-
ance: We incorporated a Feature-Enhanced Module to
leverage gradient information from low-resolution in-
puts. This approach effectively restores high-frequency
details lost during compression and downsampling, en-
hancing model performance without significantly in-
creasing computational demand.
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Figure 8. An overview of the proposed VPEG-R model.
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Figure 10. An overview of the proposed SAFMN++ model.

3.4. An efficient and fast network for super-
resolution using convolution

Teams VPEG

Jiangtao Lv, Long Sun, Jinshan Pan, Jiangxin Dong,
Jinhui Tang

Nanjing University of Science and technology

SAFMN++: Improved Feature Modulation Network for
Real-Time Compressed Image Super-Resolution We
introduce SAFMN++, an enhanced version of SAFMN [40]
for solving real-time compressed image SR. This solution is
mainly concentrates on improving the effectiveness of the
spatially-adaptive feature modulation (SAFM) [40] layer.
Different from the original SAFM, as shown in Fig 10, the
improved SAFM (SAFM++) is able to extract both local
and non-local features. In SAFM++, a 3×3 convolution is
first utilized to extract local features and a single scale fea-
ture modulation is then applied to a portion of the extracted
features for non-local feature interaction.

After this process, these two sets of features are aggre-
gated by channel concatenation and fed into a 1×1 convo-
lution for feature fusion.

The proposed SAFMN++ is trained by minimizing a
combination of the uncertainty-based MSE loss [16, 18] and
FFT-based L1 loss [5] with Adam optimizer for a total of
500,000 iterations. We train the proposed SAFMN++ on the
DIV2K [1] dataset. The cropped LR image size is 640×640
and the mini-batch size is set to 64. We set the initial learn-

Method Params [M] FLOPs [G] Runtime [ms] Val. PSNR

VPEG-S 0.0662 34.1587 11.5839 23.29
VPEG-R 0.0122 1.556 2.2531 22.77

Table 4. SAFMN++: efficiency results. “FLOPs” and “Runtime”
are tested on an LR image of size 540×960 with an NVIDIA
RTX3060.

ing rate to 3 × 10−3 and the minimum one to 1 × 10−7,
which is updated by the Cosine Annealing scheme [32].

Table 4 presents the efficiency study of SAFMN++.

A Simple Residual ConvNet with Structural Re-
parameterization for Real-Time Super-Resolution The
solution VPEG-R is shown in Fig. 8. The proposed method
reduces the spatial resolution by a Pixel Unshuffle opera-
tion and uses a convolutional layer to transform the input
LR image into the feature space, then performs performs
feature extraction using 3 reparameterizable residual blocks
(RepRBs), and finally reconstructs the final output by a Pix-
elShuffle [38] convolution.

We use DIV2K [1] as the training data. In order to accel-
erate the IO speed during training, we crop the 2K resolu-
tion HR images to 640×640 sub-images, and the mini-batch
size is set to 64.

Implementation details We use PyTorch and a NVIDIA
GeForce RTX 3090 GPU. The training process takes about
44 hours for SAFMN++, and The two days for VPEG-R.
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The training mode of proposed network

The inference mode of proposed network

Figure 11. Illustration of proposed RESR (Team FZUQXT).

3.5. RESR: Reparameterized and Edge-oriented
Network for Real- Time Image Super-
Resolution

Team FZUQXT

Xintao Qiu 1, Yuanbo Zhou 1, Kongxian Wu 1, Xinwei
Dai 1, Hui Tang 1, Wei Deng 2,
Qingquan Gao 1, Tong Tong 1

1 Fuzhou University
2 Imperial Vision Technology

We propose a real-time image super-resolution based on
re-parameterization and edge extraction. We use pixel un-
shuffle to reduce the image resolution and increase the chan-
nel dimension. This design reduces the computational cost
of the network while keeping the amount of information
constant. Meanwhile, we propose a reparameterized im-
age edge extraction block that extracts features in parallel
through multiple paths in the training phase, including 3×3
and 1×1 convolution for channel expansion and compres-
sion, as well as sobel and laplacian filters for acquiring in-
formation about image edges and textures.

In the inference stage, multiple operations can be com-
bined into a 3×3 convolution. The performance of 3×3 con-
volution is improved without introducing any extra cost.

Efficiency metrics Considering the challenge input im-
age, the model has 7.0171 GMACs, 14.0341 GFLOPs and
the runtime is 1.64ms (using FP16).

Implementation details The datasets we used include the
DIV2K training set (800 images) and the Flicker2K train-
ing set (2650 images). To increase the speed of IO, we

Figure 12. The architecture of RepConv block (Team FZUQXT).

split the original HR (high resolution) and LR (low res-
olution) images into multiple corresponding 600×600 and
150×150 patches. We randomly flipped these patches by
flipping them horizontally, vertically and rotating them by
90-degrees to augment the data.

We use PyTorch and a RTX 3090 GPU (24GB). The
models are optimized using Adam with Cosine Warmup.
The total duration of the training process is ≈ 48hrs.

In the first training stage, we train our model from
scratch. The LR patches cropped from LR images with
128x128 image size and 64 mini-batch. The Adam opti-
mizer uses a 0.0005 learning rate. The cosine warm-up
scheduler sets a 0.1 percentage warmup ratio. The total
number of epochs in this stage is set to 800.

In the second stage, we initialize the model with the
weights trained in the previous stage. In this step, the initial
learning rate is set as 0.0001. The cosine warm-up sched-
uler is set with a 0.1 percentage warm-up ratio. The total
number of epochs is set to 200 epochs.
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Figure 13. The framework of the proposed Anchor-based Nested
UnshuffleNet for Real-time Super-Resolution (ANUNet).

3.6. Anchor-based Nested UnshuffleNet for Real-
time Super-Resolution (ANUNet)

Team LeRTSR

Menghan Zhou, Yiqiang Yan

Lenovo Research

We propose Anchor-based Nested UnshuffleNet for
Real-time Super-Resolution (ANUNet). As shown in
Fig. 13, the pixel-unshuffle technique [22] is used to reduce
the resolution of the image and increase the channel dimen-
sion. This design allows for a reduction in the computa-
tional overhead of the network while preserving the con-
stant volume of information. After an ECB [51] + GeLU
module, the main module is composed of a sequence of
Nested Re-parameterization Block (NRB) + GeLU activa-
tion, which serves to extract and refine features in a progres-
sive manner. Then, an ECB layer is adopted to transfer fea-
tures, followed by an upsampling layer for recovering the
resolution to LR. While an anchor-based residual learning
is applied to directly repeat the RGB channels 16 times in
LR space to generate anchors. Finally, a pixel shuffle layer
is is used to reconstruct the final HR output.

Different from [15] and [51], we design a nested struc-
ture, named Nested Re-parameterization Block (NRB).
Fig. 14 illustrates the proposed NRB. In the training stage,
the NRB employs a nested structure, the outer structure is
the ERB RepBlock in the Enhanced Residual Block (ERB)
first proposed by [15], the inner structure is an enhanced
Edge-oriented Convolution Block (eECB), which includes
multiple branches, and can be merged into one normal con-
volution layer in the inference stage. Performance remains
unaffected after re-parameterization in this design.

Efficiency metrics The model has 0.0729M parameters.
Considering the challenge input image (960x540), the
model has 9.4058 GFLOPs, and an average runtime of
3.86ms on NVIDIA 2080Ti.

Implementation details We use DIV2K [1] and Flickr2K
for training. To generate the compressed LR images, we
use AVIF to process the above datasets with the random QP

ranges between 31 and 63. Besides, standard augmenta-
tions that include all variations of flipping and rotations are
also used to improve performance. Additionally, the num-
ber of feature channels is set to 28, and the scale of pixel
unshuffle and pixel shuffle in the sub-branch is set to 2. Af-
ter the training (and during inference) we re-parameterize
the model into a network structure with regular 3x3 convo-
lutions.

The model is conducted using the PyTorch framework
with one NVIDIA A100 40G GPU. Specifically, the train-
ing is divided into three stages:

1. Initially, the model is trained from scratch with
480×480 patches randomly cropped from high resolution
(HR) images with a mini-batch size of 64. We apply a com-
bination of Charbonnier loss [27] and FFT-based frequency
loss [5] function for reconstruction. The network is trained
for 1000k iterations using the Adam optimizer, with a learn-
ing rate 1 × 10−3 decreasing to 1 × 10−6 through the cosine
scheduler.

2. In the second stage, the model is initialized with the
pre-trained weights from the first stage on the same train-
ing data as stage 1. Inspired by [6], the auxiliary loss and
high-frequency loss are added to our training. Instead of
the downsampling bicubic operator used in [6], Lanczos
is applied to maintain consistency with the downsampling
method in AVIF. The network parameters are optimized for
1000k iterations with the MultiStepLR scheduler, where the
initial learning rate is set to 5 × 104 and halved at 200k,
400k, 800k-iteration.

3. The model is fine-tuned using the L2 loss and FFT
loss. The other settings are the same as in stage 2. The
network is trained for 1000k iterations in this stage.

During the inference, we reparameterize the ECB and
NRB modules model into several standard 3x3 convolu-
tions. (see Fig. 14).

3.7. Unshuffle, Re-parameterization, and Pointwise
Network (URPNet)

Team 402Lab

Hyeon-Cheol Moon 1,2 Tae-Hyun Jeong 1, Yoonmo
Yang 1, Jae-Gon Kim 2, Jinwoo Jeong 1, Sungjei Kim 1

1 Korea Electronics Technology Institute (KETI)
2 Korea Aerospace University (KAU)

We propose an Unshuffle, Re-parameterization, and
Pointwise Network (URPNet) that can achieve higher ac-
curacy at a faster speed compared to previous real-time SR
models for 4K images. We applied a pixel unshuffle to the
input image to reduce the resolution, and applied the 1x1
pointwise convolution to only the last layer, instead of ap-
plying a re-parameterized convolution (RepConv) to all ex-
isting convolutions.
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Figure 14. Detail network of the proposed Nested Re-parameterization Block (NRB), Team LeRTSR.

Figure 15. Proposed URPNet structure.

Figure 16. Proposed distillation loss on the fine-tuning stage of
URPNet, Team 402Lab.

We also applied curriculum learning [2] to efficiently
learn lightweight models. Since the larger the Quantiza-
tion Parameter (QP), the larger the compression artifacts,
the worse the performance will be if the lightweight model
is trained on high QP data from the beginning. Therefore,
we divided the training data into easy (QP 31), medium (QP
39, QP 47), and hard (QP 55, QP 63) sets according to the
training difficulty.

Additionally, we applied knowledge distillation (KD)
during the fine-tuning stage to achieve higher PSNR than
using conventional training. To apply KD, the teacher
model is trained from the scratch on a high-resolution
dataset. We train with the L2 loss of the output images of
each network between teacher and student [19, 35].

Efficiency metrics Considering the challenge input, the
model has 0.15K MACs per pixel (4K), a total number of
1.2483 GFlops, and a runtime of 0.62ms in RTX 3090 GPUs

Implementation details
• Framework: PyTorch 1.13 version
• Optimizer and Learning Rate: Adam optimizer with a

cosine warm-up.
Initial learning rate: 5e-4 (scratch), 1e-4 (fine-tuning)

• GPU: single RTX3090/24GB, 3.2GB (training memory)
• Datasets:

1. DIV2K : We use the DIV2K training dataset (800
images) for scratch training step.

2. FTCombined : We use a combined dataset for fine-
tuning stage, which includes the DIV2K train set
(full 800), Flickr train set (2650 full), DIV8K (first
200 samples), and LSDIR (first 1000). Before the
training phase, the training data is pre-processed by
center cropping it to a resolution of 2040 x 1080.
To generate low-resolution images, we degrade the
center cropped images with Lanczos downsampling
and AVIF compression. For both training stages, we
used random cropping, rotation 90, horizontal flip
and vertical flip augmentation.
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• Training Time: 24 hours with single RTX 3090GPUs
• Training Strategies:

1. Scratch train step: In the first step, our model was
trained from scratch. The LR patches were cropped
from LR images with 8 mini-batch 96x96 sizes. The
Adam optimizer was used with a 0.0005 learning
rate during scratch training. The cosine warm-up
scheduler was used. The total number of epochs was
set to 500. We use l1 loss.

2. Fine-tuning step: In the second step, the model was
initialized with the weights trained in the first step.
To improve the accuracy, we used l2 and the dis-
tillation loss. Fine-tuning with l2 and distillation
loss improves the peak signal-to-noise ratio (PSNR)
value by 0.02 ∼ 0.03 dB. In this step, the initial
learning rate was set as 0.0001, and the Adam op-
timizer was used along with a cosine warm-up. The
total epoch was set to 50 epochs.

3.8. Real Time Swift Parameter-free Attention Net-
work for 4x Image Super-Resolution

Teams XiaomiMM C3

Bingnan Han, Hongyuan Yu, Zhuoyuan Wu, Cheng Wan,
Yuqing Liu, Haodong Yu, Jizhe Li, Zhijuan Huang, Yuan
Huang, Yajun Zou, Xianyu Guan, Qi Jia, Heng Zhang,

Xuanwu Yin, Kunlong Zuo
1 Multimedia Department, Xiaomi Inc.

2 Georgia Institute of Technology
3 Dalian university of technology

Real Time Swift Parameter-free Attention Network for
4x Image Super-Resolution We propose a convolutional
neural network combining swift parameter-free attention
block (SPAB) for image SR, the suggested model has very
few parameters and fast processing speed for 4x image su-
per resolution.

As shown in Fig. 17, SPAN consists of 2 consecutive
SPABs and each SPAB block extracts progressively higher-
level features sequentially through three convolutional lay-
ers with C ′-channeled H ′×W ′-sized kernels (In our model,
we choose H ′ = W ′ = 3.). The extracted features Hi

are then added with a residual connection from the input
of SPAB, forming the pre-attention feature map Ui for that
block. The features extracted by the convolutional layers
are passed through an activation function σa(·) that is sym-
metric about the origin to obtain the attention map Vi. The
feature map and attention map are element-wise multiplied
to produce the final output Oi = Ui ⊙ Vi of the SPAB
block, where ⊙ denotes element-wise multiplication. We
use W

(j)
i ∈ RC′×H′×W ′

to represent the kernel of the j-th

convolutional layer of the i-th SPAB block and σ to rep-
resent the activation function following the convolutional
layer. Then the SPAB block can be expressed as:

Oi = F
(i)
Wi

(Oi−1) = Ui ⊙ Vi,

Ui = Oi−1 ⊕Hi, Vi = σa(Hi),

Hi = F
(i)
c,Wi

(Oi−1),

= W
(3)
i ⊗ σ(W

(2)
i ⊗ σ(W

(1)
i ⊗Oi−1)),

(6)

where ⊕ and ⊗ represent the element-wise sum between
extracted features and residual connections, and the con-
volution operation, respectively. F

(i)
Wi

and F
(i)
c,Wi

are the
function representing the i-th SPAB and the function rep-
resenting the 3 convolution layers of i-th SPAB with pa-
rameters Wi = (W

(1)
i ,W

(2)
i ,W

(3)
i ), respectively. O0 =

σ(W0 ⊗ ILR) is a C ′-channeled H ×W feature map from
the C-channeled H ×W -sized low-resolution input image
ILR undergone a convolutional layer with 3×3 sized kernel
W0. This convolutional layer ensures that each SPAB has
the same number of channels as input. The whole SPAN
neural network can be described as

IHR = F (ILR) = PixelShuffle[Wf2 ⊗O)],

O = Concat(O0, O1, O5,Wf1 ⊗O6),
(7)

where O is a 4C ′-channeled H × W -sized feature map
with multiple hierarchical features obtaining by concatenat-
ing O0 with the outputs of the first, fifth, and the convolved
output of the sixth SPAB blocks by C ′-channeled 3 × 3-
sized kernel Wf1. O is processed through a 3 × 3 convo-
lutional layer to create an r2C channel feature map of size
H×W . Then, this feature map goes through a pixel shuffle
module to generate a high-resolution image of C channels
and dimensions rH × rW , where r represents the super-
resolution factor. The idea of computing attention maps di-
rectly without parameters from feature extracted by convo-
lutional layers, led to two design considerations for our neu-
ral network: the choice of activation function for comput-
ing the attention map and the use of residual connections,
more details about activation function and SPAB module
are in [42].

The model has 0.026 parameters, and 1.689 GFLOPs
considering the input 540p image.

C3 network for 4x image super-resolution A three-
layer convolutional neural network for image SR, the sug-
gested model has very few parameters and fast processing
speed for 4x image super resolution. This model has 12.39
GFLOPs and 0.024 M parameters. The model is shown in
Fig. 18.
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Figure 17. Network architecture of SPANR proposed by Team XiaomiMM.

Figure 18. Network architecture of C3.

Implementation details Both models use HAT-L[4] 4x
pre-trained network for knowledge distillation.
• Framework: Pytorch
• Optimizer and Learning Rate: We implement the net-

work with PyTorch (BasicSR framework). The optimizer
is Adam with learning rate as 10−4.

• GPU: RTX A100
• Datasets: We randomly collect the videos from the Inter-

net, and randomly compress them with different QP.
• Training Time: We initially utilize L1 loss along with

Grad loss for the first step training with 500000 iterations,
then for the second step training, we use MSE loss com-
bined with Grad loss with 250000 iterations.

3.9. Efficient Real-Time Image Super-Resolution
Via Decouple Convolution

Team USTC Noah Terminal Vision

Long Peng 1, Jiaming Guo 2, Xin Di 1, Bohao Liao 1,
Zhibo Du 1, Peize Xia 1, Renjing Pei 2, Yang Wang 1, Yang

Cao 1, Zhengjun Zha 1

1 University of Science and Technology of China
2 Huawei Noah’s Ark Lab

To enhance the network’s perception of gradients and
contrast, we have refined the existing vanilla convolution
unit by performing feature decoupling within local regions.
We innovatively introduce gradient (sub) operators and ag-
gregation (add) operators to convolution to capture detail
and contrast relevant properties. Specifically, we have intro-
duced differential operations into the convolutional process
to preemptively capture horizontal, vertical, and central-
surrounding directions. Furthermore, we have incorporated
an aggregation (add) operation into the convolution to boost
the network’s sensitivity to statistical features. The method
is shown in Fig. 19.

We initially applied the DecoupleConv (with kernel=4
and stride=2) to reduce the spatial resolution while si-
multaneously increasing the number of channels. Subse-
quently, we employed four decoupled convolutions with
reparameterization, which we designed for feature learn-
ing. We then utilized pixel shuffle on the features to up-
scale the image resolution to its original low resolution (LR)
size. Following this, a single decoupled convolu- tion with
reparameterization was used for feature map- ping. Finally,
another pixel shuffle operation was applied to achieve a 4x
super-resolution result.
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Figure 19. Diagram of the framework proposed by Team USTC Noah. The method utilizes a single DecoupleConv (DConv) with a kernel
size of 4 and a stride of 2 to form the feature mapping layer. Concurrently, we construct the feature learning layer using three DConvs,
each with a kernel size of 3 and a stride of 1. The resolution of the features is altered through the application of Pixel shuffle.

Method [17] Div2K Val AIS2024 Val Inference Time (ms)

LRSRN [17] 27.26 23.1 4.4890
Proposed method 26.69 22.80 0.5678

Table 5. Ablation study of team Z6.

Efficiency. The model has 1.0 GMACs (1.085 GFLOPs)
and a runtime of 2.3703 ms for the input image and 4x SR.

Implementation details We utilized solely the DIV2K
dataset and applied the official compression methods to
compress the images at various levels, specifically at 31,
39, 47, 55, and 63 compression levels, amounting to a total
of five different degrees of compression.

Training: We utilized the Adam optimizer with an ini-
tial learning rate of 5e-4, performing a total of 1e7 itera-
tions. We employed the stepDecayLR learning rate strat-
egy, which involves a decay every 2e6 iterations with a de-
cay factor of 2. On each card, we set the batch size to 32,
resulting in a cumulative batch size of 32*8 across all cards.
The training was conducted over approximately 7 days, dis-
tributed across 8 V100 GPUs.

Inference: Prior to inference, it is necessary to perform
an equivalent transformation of the parameters.

3.10. CASR: Efficient Cascade Network Structure
with Channel Aligned method for 4K Real-
Time Single Image Super-Resolution

Team Z6

Kihwan Yoon1, Ganzorig Gankhuyag2

1 The University of Seoul
2 Korea Electronics Technology Institute (KETI)

We initially reviewed the key factors essential for de-
veloping a network structure. Subsequently, we suggest
a Cascade Upsampling network structure with Channel
Alignment approach for image enhancement, which en-
hances performance and notably decreases processing time.
Lastly, we designed an effective network and integrated
reparameterization blocks and knowledge distillation meth-
ods to enhance performance without increasing the model’s
size [47].

We compared our proposed method with LRSRN [17]
which proposed work on the NTIRE 2023 real-time super-
resolution challenge [10] in Tab. 5. The score value is cal-
culated from the script of [10]. Our proposed method over-
whelms the previous method and we achieve 0.5678 ms in-
ference time at RTX3090.
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(a) Training mode of the proposed network.

(b) Inference mode of the proposed network.

Figure 20. CASR network structure proposed by team Z6.

Implementation details We used two different types of
dataset: DIV2K and combined datasets.

• DIV2K: Well-known open dataset. DIV2K training data
set used in the scratch training step.

• Combined: The DIV2K training dataset is utilized dur-
ing the initial training phase from scratch. In contrast, a
composite dataset is used for the subsequent second stage.
This combined dataset comprises the full DIV2K train-
ing set (800 images), the initial 1000 images from the
Flickr training set, 121 samples from the GTA training se-
quences 00 to 19, the first 1000 images from the LSDIR
dataset. To generate low resolution, we degrade the ran-
dom cropped images with avif compression with various
compression factors. For both training stages, we used
random cropping, rotation 90, horizontal flip, and vertical
flip augmentation.

We trained our model in three steps:
(1) Scratch train step: In the first step, our model was

trained from scratch. The LR patches were cropped from
LR images with eight mini-batch 98 x 98 sizes. Adam opti-
mizer was used with a learning rate of 0.0005 during scratch
training. The total number of epochs was set to 800. We use

the l1 loss.

(ii) Second step: In the second step, the model was ini-
tialized with the weights trained in the first step. The dis-
tillation method used at this stage. The teacher model was
trained with the combined dataset. The detailed illustrated
example is shown in Fig. 20b. Fine tuning with loss l2
improves the PSNR by 0.01 ∼ 0.02 dB. Also, we turn off
the bias term of the reparametrization block at this stage.
In this step, the initial learning rate was set to 0.00005 and
the Adam optimizer was used along with a cosine warm-up.
The total epoch was set at 800 epochs.

(iii) Third step: In the third stage, the model was ini-
tialized using the weights trained in the previous step. In
addition, the distillation technique was applied in this phase
as well. The training hyper-parameters were kept identical
to those in the second step. At this point, the bias term of
the reparametrization block was deactivated, leading to a
decrease in inference time by 0.2 ms. Although there was
a slight reduction of 0.02 dB in the precision of the PSNR
value, the overall score improved.

We refer the reader to the CASR [47] paper for more
details.
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Method PSNR

RepTCN 22.99
Lanczos interpolation 22.70

Table 6. PSNR comparison between RepTCN (Team CameraAI)
and Lanczos interpolation on the challene validation set.

Figure 21. Overview of RepTCN by Team CameraAI.

3.11. Small Baselines

Team CameraAI

Tianle Liu, Huaian Chen, Yi Jin

University of Science and Technology of China

The team proposes RepTCN, a network comprising only
three convolutional layers, achieving superior performance
over Lanczos interpolation while maintaining exceptional
efficiency (see Tab. 6). To further enhance efficacy, we in-
troduced re-parameterization techniques, replacing the mid-
dle convolutional layer with a RepBlock [14] during the
training phase. Additionally, we devised a three-stage train-
ing strategy to fully exploit the model’s potential.

Figure 21 illustrates our proposed RepTCN. It consists
of three convolutional layers, each without bias. A ReLU
activation function is applied between every two convolu-
tional layers. During the training phase, we replace the mid-
dle convolution with a RepBlock[12]. During inference, we
reparameterize the RepBlock into a convolutional layer.

Implementation details Our training framework uses Py-
torch for training on the RTX3090. We gathered the
first 600 images from DIV2K, the first 600 images from
Flicker2K, and the first 800 images from GTAV. Subse-
quently, we cropped these images to 512× 512 to form our
dataset.

During the training phase, the input from the dataset will
be randomly cropped into patches, and these patches will
undergo random horizontal flips and rotations. The model
training can be divided into three stages. In the first stage,
we set the batch size to 32 and the patch size to 32. L1
loss are used as target loss functions. We replaced the mid-
dle convolutional layer with a RepBlock[12] and trained for
1000k iterations using the Adam optimizer, with a learning

Figure 22. Simple network proposed by PixelArtAI.

rate of 1 × 10−3 decreasing to 1 × 10−7 through the co-
sine scheduler. In the second stage, we set the batch size
to 16 and the patch size to 128. MSE loss are used as tar-
get loss functions. We reparameterized the RepBlock into
a convolutional layer and trained for 500k iterations using
the Adam, with a learning rate of 5 × 10−4 decreasing to
5×10−7 through the cosine scheduler. In the third stage, we
removed the bias from each convolutional layer and trained
for 2000k iterations using the Adam, with a learning rate of
5× 10−4 decreasing to 5× 10−7 through the cosine sched-
uler. The other Settings are the same as in the previous step.

Team PixelArtAI

Dongyang Zhang

MangoTV

The team proposes a lightweight and extremely low-
time-consuming network is built through re-parameters.
Based on the ECB module [50], we designed a lightweight
and low-time-consuming network for the competition. The
network design points are as follows:

First downsample by a factor of 2 using a convolution
with a stride of 2. Downsampling breaks down compression
and also improves network inference speed. Then stack two
ECB modules and a 8x upsampled pixel shuffle module to
return a three-channel image – see Fig. 22.

Efficiency Metrics Considering an input 540p and x4 SR,
the model has 1.8798 KMACs and a runtime of 1.0367 ms.

Implementation details The training data is degraded
by FFmpeg with random QP. The input image size is
120x120x3, amd the batch size is 96. We use Adam opti-
mizer with the initial learning rate set to 0.001. The training
is divided into two stages: First, the learning rate is 0.001
and the loss is L1. This stage is trained for 60k iterations.
Second, only the PSNR Loss is calculated, and the initial
learning rate set to 0.0002, and is halved by 20k iterations.
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