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Abstract

Point cloud is a critical 3D representation with many
emerging applications. Because of the point sparsity and
irregularity, high-quality rendering of point clouds is chal-
lenging and often requires complex computations to recover
the continuous surface representation. On the other hand,
to avoid visual discomfort, the motion-to-photon latency
has to be very short, under 10 ms. Existing rendering
solutions lack in either quality or speed. To tackle these
challenges, we present a framework that unlocks interac-
tive, free-viewing and high-fidelity point cloud rendering.
We train a generic neural network to estimate 3D ellipti-
cal Gaussians from arbitrary point clouds and use differen-
tiable surface splatting to render smooth texture and surface
normal for arbitrary views. Our approach does not require
per-scene optimization, and enable real-time rendering of
dynamic point cloud. Experimental results demonstrate the
proposed solution enjoys superior visual quality and speed,
as well as generalizability to different scene content and ro-
bustness to compression artifacts.

1. Introduction
Point cloud is a versatile 3D representation that can be di-
rectly acquired by various sensors such as LiDAR, multi-
view, or RGB-D cameras without heavy processing, thus
enabling real-time capturing and streaming. It is also
more flexible than polygonal mesh when representing non-

manifold geometry. These benefits have led to growing de-
ployment of point cloud for applications such as culture
heritage, autonomous driving, immersive visual communi-
cations, and VR/AR. Its importance is also evidenced by
the MPEG point cloud compression standardization activi-
ties since 2014 [6, 19]. However, rendering a point cloud
given a user’s viewpoint is uniquely challenging: Unlike
meshes, the point representation does not provide explicit
surface information, making the rendering suffer from point
sparsity, geometric irregularity, and sensor noise [10]. On
the other hand, to avoid visual discomfort, experimental
studies have demonstrated that the motion-to-photon (MTP)
latency should not exceed 10 ms [12, 17]. These chal-
lenges and demands have become the main roadblocks of
the aforementioned point-cloud-enabled applications, espe-
cially for scenarios where a dynamic point cloud needs to
be captured, streamed, and rendered in real time.

Various solutions have been presented to render point
clouds as images from arbitrary viewpoints, including point
splatting [4, 20, 35] and ray tracing [5]. However, exist-
ing methods either require heavy computation (e.g., [5]),
far exceeding the MTP threshold (see Table 1), or gener-
ate blurred images that miss details [14] or have holes [20]
(see Figure 5). An alternative solution is cloud-based ren-
dering using a powerful server in the cloud [13, 26]. This,
however, requires the total latency including the round-trip
transmission between the user and the server, rendering at
the server, and (de)compression of the rendered view, to
be completed within the MTP threshold, necessitating ex-
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tremely low-latency communication links. Even when the
server is positioned close to the network edge, the typical
delay in today’s access networks is still prohibitively large
to meet the MTP requirement.

We develop a point cloud rendering framework that en-
ables high visual quality, six degrees of freedom (6-DoF)
viewing, and satisfies the MTP requirement with consumer-
grade computers at the user end. Our solution does not re-
quire per-scene neural network training nor heavy surface
reconstruction computation. Our method leverages the 3D
surface representation using 3D elliptical Gaussians and the
corresponding differentiable 3D splatting renderer [15]. We
train a light-weight 3D sparse convolutional neural network
called Point-to-Ellipsoid (P2ENet) to transfer each point in
the colored point cloud into an ellipsoid. The ellipsoids are
then splatted to render a frame at the most current view-
point. The differentiable renderer enables us to train the
P2ENet to optimize the rendering quality. The 3D Gaussian
representation enables high-quality rendering. The P2ENet
also derives a normal vector with each Gaussian, enables the
generation of a normal map beyond a rendered image, and,
therefore, unlocks practical applications such as relighting
and meshing.

We evaluate our method with both high- and low-density
point clouds, as well as a variety of scenes of both dynamic
human in actions and outdoor objects. Experimental results
show that our method can render high-quality and hole-less
images faster than 100 FPS after an initial delay of less than
30 ms. It is also robust to point cloud capturing and com-
pression noise. Given the affordability of RGB-D capturing
devices, we hope the research enables the high quality real-
time streaming and rendering of live captured 3D scenes
from remote studios, and interactive VR/AR applications
among multiple remote participants. To this aim, we will
release our code to the public upon acceptance. In sum-
mary, we make the following main contributions:
• a generalizable neural network P2ENet that transforms

point clouds to 3D Gaussian representations without per-
scene training;

• an end-to-end framework for low-latency and high-
fidelity point cloud rendering;

• the representation enabled high-quality normal maps for
practical applications such as meshing and relighting;

2. Related Work

2.1. Point Cloud Rasterization

Rasterization is a common and efficient method for render-
ing. However, since points do not naturally have spatial
dimensions, they are converted to oriented disk [20] or 3D
Gaussians [35], which are then rasterized to pixels. Gen-
erally, with screen-space alpha blending by the projected
Gaussian kernels, the surface splatting methods [3, 32, 36]

render smoother surface geometries and visually pleasing
texture when the points are dense (i.e. the surface is ade-
quately sampled). Although the initially proposed 3D Gaus-
sian representation in [35] is general and can represent an
arbitrary tilted ellipsoid through a non-diagonal covariance
matrix, earlier methods considered only isotropic Gaussians
(i.e. a diagonal covariance matrix with equal diagonal ele-
ments). The variance of the isotropc Gaussian kernel was
either set to a global constant and determined by global
point density, or spatially varying depending on the local
covariance of point coordinates. To ensure that points in the
front surface are correctly occluding points in the back sur-
face, a pixel-level visibility check is usually required [32].
The later work in [7] proposed an approach to estimate el-
liptical parameters from a point cloud and further demon-
strated that this kind of method can be used for real-time
rendering of point clouds. However, due to the diversity
in point clouds and existence of capturing and quantization
noise, it is hard to determine the optimal variance or ellipti-
cal parameters, leading to either holes in the rendered image
or blurry texture. This motivates our idea of using a neural
network to estimate the optimal elliptical parameters and
the displacement for each point by analyzing the local and
global structure of the colored point cloud.

2.2. Learning-based Renderer

Neural networks are capable of learning complex map-
ping from inputs to outputs. With a differentiable ren-
derer [2, 18, 29], neural networks can be end-to-end trained
with supervision on the rendered images. Recent works
leveraging a differentiable version of the 3D Gaussian splat-
ting renderer have demonstrated capability of inverse ren-
dering, geometry editing [29], and novel-view synthesis
from multi-view images [2, 15, 23]. Pursuing a different
direction, [5] presents a point cloud renderer based on a dif-
ferentiable ray tracer. By introducing a transformer to esti-
mate the intersection between a camera ray and a local set
of points within a cylinder of the ray, the method achieves
state-of-the-art rendering quality and enables relighting by
simultaneously predicting the surface normal at the inter-
section point. However, the ray-tracing process, which in-
volves inference of a complex transformer when shading
every pixel, is too slow for real-time rendering.

Our work is inspired by 3D Gaussian Splatting
(3DGS) [15] which demonstrates that 3D Gaussians can
be used to represent smooth surface through per-scene opti-
mization. However, our research is fundamentally orthogo-
nal to the application scenarios of 3DGS and Neural Point-
Based Graphics (NBPG) [2], which focus on novel view
synthesis from multiview images and rely on these images
as inputs to generate the point cloud. In contrast, our work is
concerned with applications when only pre-captured point
cloud data are available and need to be streamed and ren-
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Figure 1. Rendering by estimating elliptical parameters from point
cloud using sparse 3D convolutional neural network.

dered in real time. Furthermore, 3DGS requires per scene
optimization for each individual frame. Therefore, 3DGS
cannot support our target application. In comparison, once
trained, our model can be used for real-time rendering of
various point cloud datasets with not only humans but also
natural scenes.

2.3. Alternative Image-Based 3D Representation

Beyond explicit representation, such as point cloud or mesh,
a 3D environment can also be represented in the image
space, such as panoramas, light fields, or unstructured
multi-view images. Transforming those data to a given
viewpoint requires a view synthesis approach by tackling
dis-occlusion and relighting challenges. Example solutions
include multi-layer image inpainting [16, 24], or neural ra-
diance fields [15, 18]. As an orthogonal scope of work, we
focus on rendering the 3D point cloud data with high quality
and speed.

3. Method
3.1. Adaptive Surface Splatting Using Elliptical

Gaussians

We are given color points sampled from the visible sur-
face in a 3D scene. Each point consists of a 3D coordi-
nate p = (x, y, z) and an RGB color c = (r, g, b). The
collection of the points form a frame of 3D point cloud
P = {(pi, ci)|i = 1, · · · , N}, and multiple frames form
a point cloud video that captures a dynamic scene. These
point clouds are usually captured by RGB-D cameras, Li-
DAR, or reconstructed from multi-view images, and are
usually preprocessed to remove noise and outliers.

Given the point cloud, our goal is to render the 3D scene
into 2D images from arbitrary views. We mainly address
two technical problems. First, points are originally with-
out spatial dimensions. To render smooth textured surface
from different views out of points, we need to convert zero-
dimensional points into 3D primitives with spatial volumes.
Second, since the point clouds may be unevenly spaced and
contain quantization noise introduced in compression, we
need to adjust the coordinates of the primitives accordingly.

Generally, we require the generated primitives to, 1) ap-
proximate the surface; 2) avoid visibility leakage; 3) pro-
duce smooth texture.

Previous work shows that 3D elliptical Gaussians have
the capability to represent a scene and render smooth tex-
ture with hole-free surface [15]. Inspired by this, we
propose to estimate an ellipsoid (a 3D Gaussian with an
arbitrary covariance matrix) from each point, serving as
the rendering primitive. For each input point ((p, c)) in
the original point cloud P , we estimate a Gaussian cen-
ter offset δ = (δx, δy, δz) and a covariance matrix Σ ∈
R3×3, in effect transforming the point into a 3D Gaus-
sian G(p + δ,Σ). Specifically, as in [15] the covariance
matrix is parameterized as Σ = RTSTSR, where R is
a rotation matrix and S = diag(σx, σy, σz) is a diago-
nal matrix. This parameterization guarantees Σ to be pos-
itive semi-definite. The rotation matrix R is calculated
from a quaternion q = (qw, qx, qy, qz), which is also es-
timated by the neural network. The neural network also
estimates an opacity value o for each point. Combined
with the original color of the point, the final 3D primi-
tive is < G(p + δ,Σ), o, c >, consisting of 11 parameters:
δx, δy, δz, σx, σy, σz, qw, qx, qy, qz, o to be estimated by the
neural network.

We render the 3D Gaussians by splatting them onto the
screen space and then rasterize. In practice, we set a thresh-
old of three times the standard deviation of the Gaussian to
determine the boundaries of the splats. In the rasterization,
one pixel may be covered by multiple splats. Following
[15], We use alpha blending to combine the colors of the
splats. Let x be the screen-space coordinate of a pixel and
U = < G(pk + δk,Σk), ok, ck > |k = 1, · · · ,K be the set
of splats that cover the pixel, sorted by the depth (i.e. the
z coordinate after transforming pk + δk into the camera
space). The rendered color at x is

C =

K∑
k=1

Tkαkck,with Tk =

k−1∏
j=1

(1− αj), (1)

where ck is the original color of the k-th point. We ob-
tain the opacity αk of the k-th splat by projecting the 3D
Gaussian onto the screen space and evaluate the Gaussian
density at the projected point, weighted by the estimated
opacity value ok,

αk = ok · e−
1
2d

T
k Σ−1

k(s)
dk , (2)

where Σk(s) denote the screen space covariance matrix and
dk is the distance between the pixel point and the Gaussian
center in the screen space. It has been shown in [34] that,
given the viewing transformation W with camera rotation
T and translation t,

W =

[
T t
0 1

]
, (3)
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Σk(s) can be approximated as,

Σk(s) = JTΣkT
TJT ,with J =

[ fx
z , 0,−xfx

z2

0,
fy
z ,−yfy

z2

]
, (4)

where fx and fy are the focal lengths of the camera, and
x, y, z are the camera-space coordinate of the projected
point.

To enable re-lighting of the rendered images, we also
estimate the surface normal of each point nk. The surface
normal is estimated by the same neural network as three
additional output channels for each point. In the scenario
that requires re-lighting, we first render the surface normal
to 2D pixels by subsituting ck in Eq. (1) with nk, and then
use the rendered surface normal to calculate the shading.
We then conduct late shading with a pixel shader.

3.2. Neural Elliptical Parameter Estimation

Unlike the work in [15] which estimates the elliptical pa-
rameters from multi-view images using a per-scene opti-
mized neural network, we employ a feed-forward 3D sparse
convolutional neural network to estimate the elliptical pa-
rameters and surface normal from a given point cloud. The
neural network is based on Minkowski Engine [8], which al-
lows efficient 3D voxelized convolutions on sparse data like
point clouds. However, the input point clouds may not be
originally voxelized. Hence, we need to voxelize the point
clouds before feeding them into the neural network. We de-
sign a voxelization method that is adaptive to the density
of the point cloud and at the same time preserves the infor-
mation. We first determine a scaling factor such that after
scaling, the point cloud has an average density of 1 point per
voxel. We then voxelize the scaled point cloud with a voxel
size of 1. Since there will be coordinates offset after the
voxelization, we also calculate the coordinate residuals, and
make it as part of the input feature to the neural network.
This ensures that the geometric information is kept. Finally
each point we feed into the neural network has the attributes
{p = (x, y, z), c = (r, g, b), and r = (δx, δy, δz)}, namely
the absolute coordinates, the color, and the coordinate resid-
uals, respectively.

Approximating the underlying surface represented by
the point cloud requires local and global information of the
point cloud. To learn the global and local features of the
point cloud, we use a UNet-like architecture with 3D con-
volutions, where the downsampling in the encoder allows
the neural network to extract global features from points
that are far away from the center point. The network archi-
tecture is shown in Fig. 2. We use the Minkowski Engine
pooling method to downsample the sparse voxel grid. It
simply takes every 2 × 2 × 2 voxels and aggregate to one
voxel. The new voxel conceptually lies in the center of the
original 2× 2× 2 voxels and has the mean feature of those

voxels. If some of these voxels are not occupied, only non-
empty voxels will take part in the average calculation. In
our architecture, there are 3 downsampling layers in the en-
coder, effectively enlarging the voxel size by a factor of 83.

The upsampling in the decoder is done by transposed
convolution. In an upsampling layer, each non-empty voxel
in the input will generate 2 × 2 × 2 voxels in the output
by transposed 3D convolution. Because the corresponding
voxel grid in the encoder may not be fully occupied, we
prune the output voxel grid with the ground truth occupancy
of the corresponding voxel grid in the encoder. This guar-
antees the same geometry of two sparse voxel grid coming
from the transposed convolution and the skip connection
from the encoder. Symmetrically, the decoder also has 3
layers, with the last layer having the same set of points as
the original point cloud. Finally, for each occupied point in
the final layer, the network predicts the set of 3D Gaussian
parameters < G(p + δ,Σ), o, c,n > from the features of
that point in the decoder using a shared MLP.

One of the advantage of using sparse 3D convolution to
process voxelized point cloud is that it allows efficient han-
dling of large point clouds with millions of point on GPU.
Alternatives like DGCNN [25] or PointNet++ [21] involve
nearest neighbor search, which is memory and time con-
suming on large scale point clouds. In our experiments, we
are able to process high density point clouds in real-time on
a single RTX 4090 GPU.

3.3. Model Training

We train the neural network using the THuman 2.0
dataset [30]. This dataset includes meshes of 3D captured
human subjects. The human subjects are captured in real-
time using a multi-view system with three RGB-D cameras.
After that, high-quality texture meshes are reconstructed
from the capture and provided as assets.

The training of our system requires input point clouds
and the ground truth images from arbitrary viewing direc-
tions. We synthesize the training pairs from the meshes.
The ground truth rendered RGB images and surface nor-
mal maps are directly rasterized from the mesh with ran-
dom cameras. We obtain the input point clouds for train-
ing by mixing both the quantized and non-quantized point
clouds sampled from the mesh. We normalize the vertices
of the training meshes to be within a bounding box of size
2 × 2 × 2 centered at the origin (0, 0, 0). We then use the
Poisson Disk [31] algorithm to sample 800K points from
each mesh. To obtain the quantized point clouds, we apply
a scaling factor of 512 to the points within the 2 × 2 × 2
bounding box, and round the scaled coordinates into 10 bit
integers. The quantized point clouds are scaled back to be
aligned with the non-quantized ones, together forming the
training inputs.

To simulate real-world scenarios where the point cloud
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Figure 2. The UNet-like architecture with 3D convolutions. The network takes a point cloud as input and predicts the elliptical parameters
and surface normal for each point.

may have sparser areas due to capturing limitation or lossy
compression, we randomly downsample the point cloud for
data augmentation during training. For quantized point co-
ordinate x, we get the downsampled version x̂ by x̂ =
⌊αx⌉/α,= α ∈ [0.25, 1]. For non-quantized point clouds
with N points, we randomly choose βN points out of the
original point set, where β ∈ [0.125, 1].

We randomly place virtual cameras around the scene and
calculate the following loss function between the ground
truth rasterized RGB images I and normal maps n gener-
ated from the mesh data, with the differential spaltting re-
sults Î and n̂, as,

L = w1||I − Î||1 + w2Ln,

Ln = ||n× n̂||2 + w3 min {||n− n̂||2, ||n+ n̂||2} .
(5)

In experiments, we use w1 = 1, w2 = 10, and w3 = 0.1.

4. Evaluation
4.1. Experimental Settings

Dataset To evaluate our methods on various contents and
different point cloud qualities, we conduct the experiments
with the following datasets:
• THuman 2.0 [30]. The THuman 2.0 dataset contains

textured meshes of human subjects, captured and recon-
structed in real-time by three RGBD camaras. We train
on the training split in this dataset with 250 meshes, and
evaluate on the testing split with 8 unseen subjects.

• 8iVFB [9]. This is the standard testing dataset for MPEG
point cloud compression standardization. It contains
high-quality dynamic voxelized point cloud videos of hu-
man in action, with each point cloud frame containing
700K to 900K points.

• BlendedMVS [28]. This dataset provides textured
meshes of outdoor scenes, captured and reconstructed
from a multi-view system. We use this dataset to evaluate
the generalizability of our method to various content.

• CWIPC [22]. This dataset provides real-time captured
raw point cloud from a multi-camera setting, specifically
for social XR applications. Each frame contains 1̃M
points. Since the production of the point cloud does not

include surface construction, the point clouds have dis-
continuous surface and inaccurate point coordinates. We
evaluate on this dataset to show the capability of method
to be used for live streaming.

Baselines for Comparison The main benefit of our
method is to jointly provide speed and fidelity. We compare
with the following methods in terms of quality and latency.
Considering the total latency from the point cloud to final
images into account, we categorize these methods into two
groups. The first group includes offline methods targeting
at high fidelity without considering speed.
• Per-scene Optimized Surface Splatting [15]. This

method builds a collection of 3D Gaussians from mul-
tiview images and then rasterize the Gaussians to render
arbitrary views. Note that this method requires per-scene
optimization with known multi-view images. We gener-
ate these multi-view supervision images by rendering 144
images from the mesh with a virtual camera following a
spiral trajectory. Because of the per-scene optimization
requirement, it cannot be applied for real-time rendering.
We recognize that this method is developed for 3D scene
reconstruction from multi-view images and then novel-
view generation, rather then for rendering a point cloud.
We use it as a benchmark for the best possible quality we
may obtain by building 3D Gaussians from a point cloud.

• Pointersect [5]. A state-of-the-art point cloud render-
ing method utilizing a transformer to calculate ray-point-
cloud intersection for ray tracing. Despite the good qual-
ity, ray tracing is slow and hence cannot be used for real-
time rendering.

• Poisson surface reconstruction [14]. Rendering a point
cloud by first reconstructing a water-tight triangle mesh
and then rasterize.

The second group includes real-time methods that can ren-
der within the MTP constraint:
• OpenGL. Each point is converted to a 1 pixel wide square

in the screen space and rasterized to pixels. We use the
packaged implementation provided in Open3D [33].

• Surface splatting using the same isotropic Gaussian
representing each point. We use the same splatting ren-
derer as our proposed method but we use a diagonal co-
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variance matrix with isotropic variance for all three axes,
determined globally using average point density.
For datasets that have mesh representations, we mea-

sure the fidelity of the rendered images from the point
cloud compared to the ground truth obtained from the orig-
inal scene mesh, using quality metrics PSNR and MS-
SSIM [27]. In addition to the original point cloud, we
also evaluate these methods in the scenario where the point
clouds are lossily compressed for streaming. We use the
standard G-PCC [11] to compress the point clouds at differ-
ent bit-rate. For other datasets without meshes, we present
visual comparisons for selected point clouds.

4.2. Fidelity, Latency, and Robustness to Compres-
sion Artifacts

We first evaluate the method’s capability of rendering high-
quality point clouds sampled from a smooth surface. From
the testing split of the THuman 2.0 dataset, we create two
categories of point cloud for each mesh: 1) High-quality
non-quantized point cloud sampled from the mesh surface
using Poisson Disk [31]. We sample 800K points from
each individual mesh asset; 2) Compact point cloud uni-
formly sampled from the mesh, with 280K points on av-
erage, with coordinates quantized to a 10-bit depth. (see
more details in Sec. 3.3). Quantization and down-sampling
of points are common tools used for compression of point
cloud data codec [11], necessary for efficient point cloud
data storage and delivery.

We render point clouds from 12 different viewing angles,
forming a circle trajectory surrounding the subject. We re-
port the PSNR and MS-SSIM between the rendered views
and the ground truth views rasterized from the meshes. For
this evaluation, we render images with a 512× 512 resolu-
tion.

Usually a point cloud rendering method consists of a
two-stage procedure: 1) constructing primitives from the
point cloud (preprocess), and 2) render from a camera view
by rasterization. In real-time video streaming applications,
it is important for the method to finish preprocessing faster
than the content frame rate, in addition to have a rendering
time that is within the MTP threshold. Hence we also com-
pare these two latencies among different methods. The la-
tencies are measured on a computer with an Intel i7-9700K
CPU and an NVIDIA RTX 4090 GPU.

As shown in Table 1, our method demonstrates higher
rendering quality than all compared methods, with more
than 4dB improvement in PSNR than real-time baselines
(“Global parameters” and “OpenGL”), for both “high-
quality” and “compact” data. Our method is also substan-
tially more robust to quantization noise and reduced point
density, compared to all other methods. Whereas the PSNR
only reduced from 34.1 dB for the unquantized 800K data
to 33.8 dB for the quantized 280K data, some of the base-

2 4 6 8 10 12 14

Bit-rate (Mbps)

18

20

22

24

26

28

30

32

34

PS
N

R
 (d

B)

Ours
Global Parameter
Surfel
Pointersect
OpenGL

Figure 3. Average PSNR of rendered views from THuman 2.0
compact point clouds compressed to different bit-rates by G-PCC.

line methods suffer a reduction of 2 to 3 dB. We attribute the
robustness of our method to training of the neural network
using both unquantized and quantized data at randomized
point densities. The model can generate accurate Gaussian
parameters even when the point cloud is compressed.

We visualize the rendering results for a sample compact
point cloud in Figure 5. As shown, despite the high ren-
dering latency, Poisson mesh reconstruction still has notice-
able blurring artifacts, and Pointersect produces noisy edges
due to inaccurate intersection calculation. Among the real-
time methods, OpenGL fails to reproduce hole-less surface
and leads to visible holes and gaps. 3D Gaussians with
global parameters produce inaccurate geometry and noisy
edges. Our method generally produces better visual qual-
ity than both offline and real-time methods. Please refer
to the supplementary material for results with high-quality
non-quantized point clouds.

Our method also enjoys very fast rendering speed once
the Gaussian parameters are inferenced using the P2ENet,
comparable to the real-time baselines, shorter than the MTP
threshold. The preprocessing time (for inferencing the
Gaussian parameters) is under 30 ms, which should be ac-
ceptable for most applications. Therefore, our rendering
method enables the streaming and free viewing of a 30 fps
point cloud video after an initial delay of 30 ms (considering
only the preprocessing delay). Given the rendering time of
under 1 ms, the proposed method enables a display frame
rate of more than 100 fps. Since the rendering resolution
is irrelevant to the preprocessing, our method is capable of
rendering at even higher resolution at high frame-rate, e.g.
1K×1K at 1.1 ms and 2K×2K at 2.0 ms, per frame. Note
that such parallel inference-rendering framework is com-
patible with most consumer grade computers with an in-
tegrated GPU on the CPU chip and a discrete GPU in the
graphics card. The discrete GPU can be used for inference,
while the integrated GPU can be used for rendering.

To more thoroughly evaluate the robustness of the ren-
dering methods to compression, we use the standard point
cloud codec G-PCC [1] to further compress the “Com-
pact” versions of the point clouds at different bit-rates, and
use different renderers to render the decoded point clouds.
Note that G-PCC compresses each frame independently
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Table 1. Average PSNR (dB) and MS-SSIM scores of rendered views from original point clouds in the THuman 2.0 testing set. We also
report preprocessing (P) and rendering (rasterization or ray-tracing) (R) latencies.

Method Compact (280K, quantized) High-quality (800K, non-quantized)
PSNR ↑ MS-SSIM ↑ Latency (P) ↓ Latency (R) ↓ PSNR MS-SSIM Latency (P) ↓ Latency (R) ↓

Pointersect 30.8 0.9926 <1 ms 1 s 33.7 0.9954 < 1ms 1 s
Poisson 28.5 0.9739 19 s 2 ms 28.7 0.9748 40s 2 ms

Global Parameter 28.6 0.9863 <1 ms (190 ms)1 < 1 ms 30.3 0.9924 <1 ms (570 ms)1 < 1ms
OpenGL 29.2 0.9903 2 ms (190 ms)1 2 ms2 29.2 0.9903 3 ms (570 ms)1 3 ms2

Ours 33.8 0.9952 27 ms <1 ms 34.1 0.9954 70 ms 1 ms

Per-Scene 3D GS 34.5 0.9946 > 5 min < 1 ms 34.2 0.9942 > 7min < 1 ms

Ours (23.8 dB, 0.9153) OpenGL (15.0 dB, 0.7083) Global Param. (21.4 dB, 0.8622) Pointersect (24.0 dB, 0.9293) Ground Truth Mesh

Figure 4. Comparison of rendering results of a point cloud (1.7M points) in the BlendedMVS dataset. Quality metrics are shown in
format (PSNR, MS-SSIM) and calculated from the rasterization results of the ground truth mesh. The insets visualize local details with 3×
zooming.

and achieves different rates by rescaling and quantizing the
point coordinates (which has the effect of reducing the point
density) plus additional color quantization. As shown in
Figure 3, our method consistently achieves higher render-
ing quality at different bit-rate levels. The robustness of
our rendering method to compression, in addition to its fast
speed, makes it more suitable for streaming applications.

4.3. Generalizability

Although our model is trained on the THuman dataset with
only high-quality 3D human scans, it generalize to differ-
ent types of point clouds including outdoor scenes in the
BlendedMVS dataset and noisy point clouds in the CWIPC
dataset. We show rendering results with the BlendedMVS
dataset in Figure 4. Please refer to the supplementary mate-
rial for results with the CWIPC dataset. Despite the discrep-
ancy in contents and capturing quality between the tested
point clouds and training samples, our model still pro-
duces comparable quality among the best rendering meth-
ods. However, since our training data do not simulate mis-
alignment capturing artifacts and severe noise, it has limita-

1The method does not directly provide surface normal. In the bracket
is the time for point cloud normal estimation by Open3D on CPU.

2Implemented on CPU by Open3D.

tions in handling these quality degradations. We therefore
leave it for an aspect of future work.

5. Limitations and Future Work

Our pre-trained 3D sparse CNN (Section 3.2) allows us to
estimate the elliptical Gaussian attributes from point clouds,
without the per-scene training in current view synthesis
methods [15, 18]. It also ensures consistent real-time speed.
However, different scene content types also exhibit varied
image quality metrics. For example, the human-body-based
point clouds show elevated quality than natural scenes and
we observe that our method tends to produce over smoothed
images when the point clouds are sparse. Our model also
needs to be further finetuned for scenes with a particular
irregularity in point density caused by specific capturing
setup for better robustness. On the other hand, since our
method is optimized to produce high quality renders from
each frame of the point cloud video, and does not specifi-
cally optimize for temporal consistency, the temporal jitter-
ing caused by point cloud capturing can be still observed in
the rendered video.

In the future, we will invest data augmentation ap-
proaches that balances various scene types and noise levels.
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Figure 5. Rendering results in the compact setting of a point cloud in the Thuman 2.0 Dataset. The first row shows the rendered RGB
views. The second row shows the surface normal. The insets visualize local details with 4× zooming.

Poisson Pointersect OpenGL Global Parameters Ours

Figure 6. Rendering results from noisy raw point clouds in the CWIPC dataset. The insets are with 2× and 3× zooming, respectively.

We also plan to include temporal coherence constraints in
model training, and further make the neural network gener-
ate denser 3D Gaussians for areas of complex texture, to im-
prove render quality in both spatial and temporal domains.

6. Conclusion
In this paper, we present an end-to-end and learning-based
framework that addresses the challenging dilemma be-
tween speed and quality in point cloud rendering. To this
end, we leveraged a differentiable, splatting-in-the-loop ap-

proach that can generate fine-grained geometric and tex-
tural details through a learnt 3D sparse neural network.
Extensive comparisons with a broad spectrum of datasets
and alternative solutions demonstrated the effectiveness of
the method. We hope the research to contribute a new
building block for enabling the flexible point cloud as a
promising medium toward high-fidelity interactive com-
puter graphics, VR/AR, and immersive visual communica-
tions, while passing the required MTP for user-centric ap-
plications.
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