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Abstract

In cloud-based gaming and virtual reality (G&VR), scene
content is rendered in a cloud server and streamed as low-
latency encoded video to the client device. In this con-
text, distributed rendering aims to offload parts of the ren-
dering to the client. An adaptive approach is proposed,
which dynamically assigns assets to client-side vs. server-
side rendering according to varying rendering time and bi-
trate targets. This is achieved by streaming perceptually-
optimized scene control weights to the client, which are
compressed with a composable autoencoder in conjunc-
tion with select video segments. This creates an adaptive
render-video (REVI) streaming framework, which allows
for substantial tradeoffs between client rendering time and
the bitrate required to stream visually-lossless video from
the server to the client. In order to estimate and control
the client rendering time and the required bitrate of each
subset of each scene, a random-forest based regressor is
proposed, in conjunction with the use of AIMD (additive-
increase/multiplicative-decrease) to ensure predetermined
average bitrate or render-time targets are met. Experiments
are presented based on typical sets of G&VR scenes ren-
dered in Blender and HEVC low-latency encoding. A key
result is that, when the client is providing for 50% of the
rendering time needed to render the whole scene, up to 60%
average bitrate saving is achieved versus streaming the en-
tire scene to the client as video.

1. Introduction
Gaming and Virtual reality (G&VR) frameworks are
increasingly-popular forms of entertainment and social ac-
tivity. At the moment, G&VR typically takes place either
via client-side rendering [10], or via server-based render-
ing, where the game or VR scene is fully-rendered on the
server and the client device receives video [28]. The latter
approach emerged more than ten years ago in order to cater

*Equal contribution. Listing order of the two authors is random.

for thin clients that do not support the appropriate CPU or
GPU hardware [28]. However, within the last few years,
many commodity laptops, smartphones, and G&VR plat-
forms have emerged with powerful graphics, central and
neural processing-unit (GPU, CPU and NPU) hardware and
ample storage to retain complex game assets [35]. Con-
sequently, approaches that distribute the rendering effort
between client and server are increasingly being explored
[6, 12, 21, 22, 26, 27, 30].

Render-video (REVI) based streaming is proposed as
a novel distributed rendering solution. REVI is initiated
with the offline distribution of gaming or VR assets be-
tween server and client. The server streams both video (of
assets rendered on the server) and compressed scene con-
trol weights (of assets to be rendered on the client) as well
as auxiliary information required for shadows and illumi-
nation. The client renders the assets corresponding to the
control weights and then composes the output frame. At
regular time intervals, the server: (i) sends a manifest file
that describes the current assets in the camera view and
their estimated rendering time and bitrate costs; (ii) controls
(and synchronizes) the state of the entire REVI streaming
process, with requests for video streams and scene control
weights made by the client based on the provided manifest.
This entails the following contributions.
• Assuming that the client device has storage to a-priori

receive the offline assets of all G&VR scenes of inter-
est, a perceptually-optimized compaction of scene con-
trol weights is proposed. To this end, a composable au-
toencoder is introduced: unlike a standard autoencoder,
it does not only offer optimized compaction for a given
target dimension d, but also for any smaller dimension,
similar to principal component analysis (PCA) [34]. Un-
like PCA, the composable autoencoder is sensitive to non-
linear dependencies and hence offers better compaction.
It is used for: (i) compaction with no impact on percep-
tual quality of the rendered frames at the client side and
(ii) inherent rate/accuracy scalability, i.e., increased qual-
ity with increased number of retained dimensions.

• Since local rendering of the entire scene cannot be guar-
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Figure 1. Bitrate vs. normalized client rendering times for an ex-
ample scene with a total of 9 characters and background. Bitrate
and rendering time are an average across all frames of a video
clip. The number next to each data point specifies the number of
characters rendered on the client, where 9+bg = full client-based
rendering and 0 = full server-based rendering. Different camera
paths are represented with different colors (blue=still camera, or-
ange=rotating camera).

anteed, it is proposed to carry out offline estimation of
the encoding bitrate and the rendering time of all scene
assets. This allows for the derivation of rendering time
vs. bitrate estimates, which can be used during real-time
REVI streaming.

• Based on these estimates, dynamic bitrate-based or
render-time based adaptation is proposed based on the use
of AIMD (additive-increase/multiplicative decrease). The
server can then deliver each component as compact scene
control weights, or as video. This allows for significant
benefits in bitrate by transferring some of the rendering
time to the client device in an optimized manner, while
keeping the state synchronization entirely at the server
side. Fig. 1 showcases the obtained bitrate-vs.-render
time tradeoffs. The plot shows that splitting the render-
ing effort between client and cloud allows for significant
tradeoffs between bitrate and client rendering time (num-
bers 1 through 9).

• It is shown that the client can adapt its estimates based
on adaptive resource estimation, which leads to increased
compliance to rendering time or bitrate constraints.

• Experiments based on: (i) Blender assets that are rep-
resentative of G&VR scenes and (ii) HEVC [32] low-
latency encoding, show how the estimated client render-
ing time versus bitrate is approximated by the proposed
estimates. When allowing for 50% of the rendering GPU
time to take place on the client, bitrate savings of up to
60% are achieved.

2. Related Work
Multiserver rendering or server/edge computing: Ap-
proaches for multiserver rendering assume there are mul-
tiple machines that are capable to render parts of the game
and decide which parts to do on which hardware [15, 37].
It is assumed that bitrate is not a constraint and each server
can send high-volume visual representations to others, in
order to be stitched together for delivery to the client.

Rate-quality optimization in video encoding: At the
other extreme, optimization of G&VR encoding assumes
that rendering is performed entirely on a remote server
and the client only receives a video stream of the rendered
scene. The client is only tasked with decoding the video
stream and transmitting player input commands back to the
server. Recent work on game encoding optimization typi-
cally aims to modify the video encoding process only rather
than optimizing rendering [1, 11, 13, 20]. These approaches
promote handcrafted or learnable region-of-interest (ROI)
based encoding. More recently, Le et al. propose Game-
Codec [17], the first end-to-end neural video codec de-
signed for cloud gaming, which leverages camera pose and
depth information in order to generate compressed frames.
Such approaches require substantially-higher compute cost
than HEVC [32], which is a high-performance video coding
standard used for cloud gaming.

Render-vs-quality and bitrate/quality optimization:
In all approaches of this category, the device under con-
sideration is either carrying out rendering, or receives en-
coded video, and the essence of all proposals is to intro-
duce optimizations within each of the two cases for ren-
dering time or bitrate/quality. For example, tradeoffs be-
tween rendering detail and rendering time have been used
in games for decades. Recent approaches explore specula-
tive rendering or ROI/field of view rendering [29] in order
to reduce rendering effort for areas not expected to be at-
tended to by the viewer. On the other hand, traditional adap-
tive bitrate (ABR) ladders and bitrate optimizations in en-
coders [4, 33] have been developed significantly since their
original introduction. Overall, none of the approaches here
attempt render-video streaming or attempt adaptive bitrate
optimization under render time constraints as considered by
this paper.

Distributed rendering: Stengel et al. [30] compute
global illumination on the server and serve light probes
dynamically to the client, which then composes the final
frame. The authors encode the environment maps as tex-
tures, but neural representations have been explored, too
[27]. Shading Atlas Streaming performs shading on the
server and then streams a texture atlas with baked in light-
ing as a video along with geometry information [21]. Quad-
stream streams quadrilateral proxies that allow for efficient
rerendering for nearby viewpoints, with applications in VR
[12]. Adaptive residual streaming runs a low-res version
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Figure 2. Schematic of the proposed REVI streaming framework.

of a game on the client and a high-res version on the server
[6]. The difference between low-res and high-res versions is
streamed to the client. The main conceptual difference be-
tween these approaches and the proposed approach is that
the former partition the rendering pipeline globally, dis-
tributing some tasks to the client (e.g., direct lighting) and
some to the server (e.g., global illumination). In contrast, in
the proposed approach the assets themselves are distributed
between client and server, such that each side renders a sub-
set of assets. This allows for a dynamic allocation of render-
ing time on server and client in real-time based on rendering
time and bitrate targets.

3. System Model

The overall schematic of the REVI framework is shown in
Fig. 2. The server runs the Game/VR Engine including both
the game logic and a renderer. It also includes the REVI
server that provides a manifest describing options for assets
to be included in the video stream or to be sent in the form
of control weights. The client also runs a renderer, but it
does not run the game logic. Instead, it is remote-controlled
by the server via the streamed control weights. The client
can subscribe to the server manifest and, per game scene,
request different configurations for the game assets.

Direct and indirect illumination is realized within
Blender’s real-time rendering engine EEVEE [9]. For
accurate shadow casting between assets, topologies (e.g.,
meshes) are loaded into GPU memory on both server and
client sides, but Physically Based Rendering (PBR) textures
[24] are only loaded on the side that actually renders the as-
set. For global illumination effects, light probes are synced
between server and client. This avoids the high computa-
tional requirements of full path tracing [16, 23], which are
unsuitable for many VR and consumer-level client devices.
Initial results are shown in the Supplemental Materials.

A widely used representation for 3D assets in computer
games and animations is a mesh with corresponding tex-

ture maps. A mesh is formalized as a set of v vertices
V = {(xi, yi, zi) ∈ R3 | i = 1, ..., v} and a corresponding
topology defining the edges connecting the vertices. The
background is considered as an asset with the largest dis-
tance (e.g., a large textured box encompassing the visible
area). In addition to meshes, particle-based systems [25]
are used for modelling transient (e.g., explosion) or dynam-
ically changing assets (e.g., fire, water). Although the for-
malism developed in the next sections focuses on mesh-
based assets, these alternate assets are typically also con-
trolled by a set of parameters (e.g., position of each parti-
cle). Hence, the utilized formalism can be extended to these
cases.

4. Compact Scene Control Weights

Scene control weights involve per-frame parameters such as
character motions and positions of dynamic light sources.
Two techniques used specifically for animating meshes are
blendshapes and rigging. Blendshapes are frequently em-
ployed in facial animation [18]. A target expression f ∈
R3v with v degrees of freedom in each of the three dimen-
sions can be formulated as a linear combination of blend-
shapes. An alternative to blendshapes that links the ani-
mation to physical constraints is rigging. It involves the
creation of a virtual skeleton wherein the model’s geome-
try is bound to a hierarchical structure of bones and joints
[3]. Bones are related to mesh vertices via another set
of weights that describes the influence each bone has on
each vertex. For notational simplicity, the blendshape or rig
control weights are collected in a vector w ∈ Rn, where
n = 3v in the case of blendshapes and n < v in a control
rig [3].

To animate an asset on the client device, the blendshapes
or control rig needs to be transferred only once, but w needs
to be streamed for every frame. This incurs an ongoing bi-
trate cost, which must be minimized for efficient delivery.
Autoencoders [2] achieve dimensionality reduction by map-
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ping vectors to a lower dimension d < n. To enable real-
time adaptive streaming, dynamic control of the value of d
is required. However, autoencoders are always trained for a
single target dimensionality and need to be re-trained when
d changes. Principal Components Analysis (PCA) [34] pro-
vides a single decomposition for all values of d but is lim-
ited to linear relationships.

The non-linear compression of autoencoders is com-
bined with the composability of PCA by defining a com-
posable autoencoder. Let md ∈ Rdmax be a binary mask of
the form md = [1, ..., 1, 0, ..., 0] where dmax is the size of
the bottleneck layer and the subscript indicates the index of
the last ”1” (e.g., m2 = [1, 1, 0, 0, ...]). The encoder is a
function of two arguments, fenc(w,md) = y ∗md = yenc,
where y is the full activation in the bottleneck layer, yenc
is the masked activation, and * represents point-wise mul-
tiplication. Crucially, the effective dimension of yenc is
d < dmax, providing the desired compression. The decoder
fdec(yenc) = ŵ performs zero padding and then outputs the
reconstructed input. Encoder and decoder are implemented
as multi-layer perceptrons with a single hidden layer with
ReLU activations and trained using L2 loss. During infer-
ence, the desired value for d can be set on the fly. During
training, to make sure that the model learns a composable
function, d is randomly selected in each training iteration.
This forces the model to concentrate as much information
as possible in the first dimensions. For more details see the
Supplemental Materials.

Fig. 3a shows the MSE on test data as a function of the
number of components, for a control rig dataset comprising
n = 455 parameters. The standard autoencoder performs
best for d = 80 (the dimensionality it has been trained
on) but its performance collapses quickly for all d < 80.
PCA outperforms the autoencoder for d < 80 with the
sharpest slope for the first 10 components. The composable
autoencoder shares the composability with PCA but yields
better performance due to sensitivity to non-linear depen-
dencies. Therefore, by setting its maximum dimensional-
ity high enough, it can be used for the dynamic adjustment
of the autoencoder-based compaction with accuracy that
significantly surpasses that of PCA. Using this approach,
perceptually-optimized blendshape/rig control weights can
now be derived by solving the constrained rate optimization
problem

minimize d

subject to VMAF(render(f )) ≥ q
(1)

where: minimizing d corresponds to minimizing the bitrate,
VMAF is a perceptually-tuned quality score [19] for the
rendered asset f , and q is a perceptual quality threshold
(typically q = 95) in order to allow for visually-lossless
representation according to VMAF [19]. This optimization

is performed on a separate dataset to avoid overfitting. To
solve this optimization problem, a logarithmic search for
d is proposed. Fig. 3b shows the rate-perceptual quality
tradeoff for an example asset.

Figure 3. (a) Composable autoencoder results for a control rig for
an example asset of a humanoid character with 455 dimensions
and dmax = 80. 19 different motion sequences are used for training
and 2 held out sequences for testing (lower MSE is better). (b)
Perceptual optimization. Number of components is plotted against
VMAF for an exemplary asset from the Multiface dataset [38] with
n=21918 vertex coordinates (higher VMAF is better). The dashed
line indicates the VMAF=95 threshold (attained for about d=600),
which corresponds to a compression factor of 36x.

5. REVI Server: Scene Asset Selection
The linchpin of an efficient render-video streaming system
is an accurate control of transmission bitrate and render-
ing time. Two scenarios are considered: one whereby the
client rendering time is bounded and bitrate is minimized,
and, vice versa, the scenario whereby bitrate is limited and
client rendering time is minimized. In both scenarios, the
following two options exist for each asset:
• Render the asset on the server and stream it as a video

(along with other rendered assets).
• Stream the asset’s encoded control weights and render it

on the client device.
To formalize this problem, let A be the space of all as-

sets and Aview,t ⊂ A the assets contained in the camera
view at time t. The space is assumed to include information
about the asset, its location, rotation, as well as camera pa-
rameters. Since these features can change over time, each
asset is time dependent and will be denoted as at ∈ A.
The goal is to partition Aview into assets rendered on the
server Aserver and assets rendered on the client Aclient. Let
bvid : A → R return the estimated future bitrate for a given
asset if it were rendered alone on a neutral background
and streamed as a video. More concretely, bvid(at) =
bitrate(at+1, at+2, ..., at+N | at, at−1, ..., at−M+1), that is,
the future bitrate for asset a for the next N frames when
conditioned on the past M frames. Analogously, benc :
A → R returns the bitrate for an asset if its encoded control
weights are streamed to the client. Let c : A → R be the
function that returns the rendering time it takes to render the
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asset on the client device after receiving the control weights.
The main objective function can now be formalized as

minimize bvid(Aserver,t) + benc(Aclient,t)

subject to c(Aclient,t) ≤ Θt

(2)

where bvid(Aserver,t) is shorthand notation for∑
at∈Aserver,t

bvid(at), and analogously for benc and c.
In other words, the aim is to minimize the total bitrate
consisting of the video bitrate incurred by assets rendered
on the server plus the encoded bitrate for streaming assets
to the client device, subject to the constraint that the client
has a limited and potentially time-varying computation
budget amounting to Θt.

The constrained minimization of (2) involves a discrete
combinatorial optimization problem. It consists of parti-
tioning the setAview into two subsetsAserver andAclient. The
optimization search space is finite, but with 2|Aview| possible
partitions it grows exponentially with the number of assets.
However, it is significantly reduced by taking into account
a practical necessity: To avoid occlusion effects, it must be
guaranteed that asset rendering must take place from fur-
thest to closest to the view camera, otherwise occlusion ef-
fects would need to be considered1. This ordering reduces
the search space to |Aview|. An example is depicted in Fig.
4a.

Algorithm 1 presents a water-filling algorithm that solves
the optimization problem in (2). Assets are sorted in as-
cending order according to their distance to the camera. If
the expected rendering time of the first asset does not ex-
ceed threshold θt, it is added to Aclient and removed from
Aserver. The process proceeds in the same fashion with the
next closest asset until total client rendering time exceeds
the threshold. The algorithm requires that total bitrate de-
creases monotonically as assets get removed from Aserver,
i.e., benc(a) < bvid(a). If the requirement is met, the opti-
mality of the solution is guaranteed. Violations of the opti-
mality requirements are explored in the Supplemental Ma-
terials.

Evaluation of bvid and c requires estimation of the future
bitrates and render times. As a consequence of using esti-
mators, bitrate and rendering time estimates will not be ex-
act. Consistent underestimations of c can prohibit the client
device from finishing all computations in time, leading to
jitter or frame drops. To address this challenge, a relaxation
of the constraint in (2) is proposed. An additional series
of adaptive thresholds θt is introduced in order to deal with
systematic biases in the estimators. For instance, if c sys-
tematically underestimates the rendering time, this is com-

1Note that the background assets can also be rendered on the client
(again from furthest to closest to the view camera) as long as the server
streams a segmentation mask for the foreground assets along with their
rendered video.

Algorithm 1 REVI water-filling algorithm

Require: ∀a ∈ Aview : benc(a) < bvid(a)
Aserver ← Aview
Aclient ← ∅
total compute← 0
for a ∈ sorted(Aview) do ▷ sort by distance

if total compute + c(a) ≤ θt then
total compute← total compute + c(a)
Aserver ← Aserver \ {a}
Aclient ← Aclient ∪ {a}

else
break

end if
end for

pensated by enforcing θt < Θt. The optimization problem
is therefore modified to:

minimize bvid(Aserver,t) + benc(Aclient,t)

subject to c(Aclient,t) ≤ θt

Et−1,t−2,...[ c(Aclient,t) ] ≤ Θt

(3)

where it is assumed that exact rendering times for past
frames are available and the expectation is taken over
the past frames. Exact rendering times can be ob-
tained with a simple timer function on the client side.
Et−1,t−2,...[ c(Aclient,t) ] ≤ Θt assures that the rendering
time target is met in expectation, whereas using θt for the
optimization deals with estimator bias. If the estimator bias
is unknown, then the initialization is simply θ0 = Θ0. The
bitrate minimization is enforcing a tight approximation of
the rendering time bound Θt, since a decrease in bitrate will
involve an increase in rendering time at the client side (i.e.,
more assets are rendered on the client).

6. Adaptive REVI streaming
A client-server REVI streaming system is now examined. It
is assumed that G&VR assets, light probes etc. are deliv-
ered offline, e.g., shipped together with the client software
or in the form of an offline software update, or streamed
asynchronously. During online operation, Algorithm 1 runs
on the client device along with a scheduling algorithm for
θt, whereas instantiations of the estimators bvid and c run on
the server.

In terms of estimators for bvid and c, random forests (RF)
[5] and support vector machines (SVMs) with a radial ba-
sis function kernel [8] were used. Initial testing revealed
that RF provided for better performance than SVMs, and
was therefore selected for further investigation. The as-
set’s: bounding box, location, rotation, blendshape or rig-
ging weights, as well as: camera location and rotation for
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Figure 4. (a) Example illustration of the breakdown of assets between server and client using one of the scenes for the Client-Foreground
setting. First row shows the assets rendered on the client, second row the complementary assets rendered on the server. Each column
corresponds to a different choice of the number of characters rendered on the client. (b) Example views of the other scenes used in the
experiments. FPV: first-person view, TPV: third-person view.

the past 5 frames of several training scenes, were used as
features. The target values to be inferred are the mean bi-
trate (kbps) and rendering time (seconds) for the next 120
frames. The training scenes comprised the asset in front of a
neutral background at various camera locations, distances,
paths, and multiple asset animations. The animations are
exported as videos and encoded using low-latency HEVC
[32] encoders in order to estimate bitrate (see experiments
for details on encoding recipes).

To derive θt, the additive-increase / multiplicative-
decrease (AIMD) algorithm was used. AIMD is a feedback
control mechanism utilized by diverse biological systems
[31] and has achieved widespread usage in feedback con-
trol of networked systems, e.g., TCP congestion control [7]
and resource adaptation in distributed computing [36]. It is
adapted for the control of θt as follows:

θt =

{
θt−1 + α if E[ c(Aclient,t) ] < Θt

θt−1 · β if E[ c(Aclient,t) ] ≥ Θt

(4)

with the initialization θ0 = Θ0. The hyperparameters
α > 0 and 0 < β < 1 determine the magnitude of the
additive increase and multiplicative decrease, respectively.
The expectation is estimated over a window of past frames
t− 1, t− 2, ... using a moving average.

The current values for bvid and c are provided by the
server. In terms of practical implementation, taking inspi-
ration from client-driven adaptation in MPEG-DASH [14],
a manifest file is periodically sent from the server to the
client, with the period of manifest refresh depending on the

use case, e.g., per change of G&VR scene or every few
seconds, as detailed in the Supplemental Materials. The
client makes a request to the server, specifying which as-
sets should be sent as encoded weights and which should
be rendered in the cloud. These client requests are assumed
to be sent once for a given interval, e.g., once every 120
frames. At the beginning of each interval, the client cycles
through the following REVI streaming steps:

1. Receive manifest file from server.
2. Update θt using AIMD in (4).
3. Run Algorithm 1 to determine Aserver and Aclient.
4. Send request to server to render assets in Aserver and to

send assets in Aclient as encoded control weights.
5. Receive video frames for in Aserver and render assets in
Aclient locally.

6. Combine video frames with locally rendered assets and
display them on the screen.

Note that the scene control weights include updates for
other dynamic elements in the scene such as the position of
a moving light source. The runtime complexity is estimated
as follows. The update of θt involves a single addition or
multiplication. For Algorithm 1, addition and set insertion
/ removal operations cost O(1). The for loop is executed at
most A = |Aview| times leading toO(A). The evaluation of
c via a random forest with T trees and depth D and yields
O(ATD). The dominating factor is this O(ATD). Since
T and D are fixed hyperparameters, the runtime complexity
increases linearly with the number of assets and is negligi-
ble in comparison to encoding/decoding and rendering of
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the assets.

7. Experiments
To test the proposed REVI framework, several G&VR
scenes were created, consisting of a background asset and
multiple characters created by 3D artists, or head avatars
created from 3D scans of actual people. Characters were
animated using control rigs, whereas head avatars were an-
imated using blendshapes. The following settings were ex-
plored:
• Third-person view (TPV): This setting emulates a third-

person view of a scene. 3 different backgrounds were
paired with 18 different characters. The following camera
settings were used: still camera, rotating camera with at
least 90 degrees in-plane rotation, and rotation with zoom.
Assets were downloaded from Mixamo2 and Actorcore3.
An example rendering can be seen in Fig. 1.

• First-person view (FPV): This scenario was created from
the third-person views and an additional scene by placing
the camera on the head of a character. The camera thus
followed the head movements of a character.

• Metaverse/VR: This scenario emulates a conversational
setting in virtual room and communication via character
avatars. Two different sets of characters were used: full-
body talking avatars based on the Mixamo and Actorcore
assets, as well as five realistic head avatars from the Mul-
tiface dataset [38].
Fig. 4b depicts example renderings of the different

scenes (a full video is provided as Supplemental Material).
Scenes were animated and exported as 5–10 seconds clips
at 60 fps. In total, 26 different clips were created across
the three scenarios. The Python API of Blender 3.6 was
used for arranging the scenes, invoking the rendering, and
timing the rendering time per scene asset. Specifically, a
render function that involves moving cameras, animating
actors and rendering the scenario of interest (1 character
with/without background, 2 characters, etc.) was written
to facilitate the experiments; the rendering times were mea-
sured using the Python built-in timing module. All exper-
iments were executed on Ubuntu 20.04 with an Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz and an NVIDIA
RTX A6000 GPU. All video encodings were carried out
with HEVC [32] using a low-latency oriented recipe. En-
coded weights were obtained from training the compos-
able autoencoder on a separate training set and then pro-
jecting the test data onto the PCs. Weights were percep-
tually optimized to yield visually-lossless reconstruction
(VMAF>95). For each individual asset including the back-
grounds, random forest regressors were trained on data not
used in the streaming experiments in order to predict bitrate

2www.mixamo.com
3actorcore.reallusion.com

and rendering time.

7.1. Experiment 1: bitrate savings for different ren-
dering time targets

This experiment investigated bitrate savings that can be ob-
tained with REVI as compared to a full-cloud rendering
baseline. Two versions of REVI and a number of baseline
approaches were used, wherein the number of characters
was fixed:
• REVI w/RF. REVI based on rendering time predictions

from RFs.
• REVI w/o RF: REVI without rendering time predictions.

Instead, the model simply uses the rendering time statis-
tics for previous time segments.

• 2 char, 4 char, 6 char, ...: Given no other known dis-
tributed rendering approaches that allow for an adaptive
tradeoff between bitrate and client compute resources,
non-adaptive baselines are created, wherein a fixed num-
ber of assets is streamed. For instance, in 2 char, the
client always renders the closest two characters and the
remaining assets are rendered in the cloud.
Splitting the assets for rendering can involve the client

rendering the foreground assets and the server rendering the
background assets, or vice versa. Both scenarios were con-
sidered:
• Client-Foreground: clients renders foreground charac-

ters, server renders background plus background charac-
ters.

• Client-Background: reversed roles whereby the server
renders the foreground characters and streams them along
with a segmentation mask (which is encoded with the
same encoder and recipe). The client renders the back-
ground plus background characters and uses the de-
coded segmentation mask to merge its results with the
foreground-character video sent by the server.
Bitrate was minimized subject to a rendering time con-

straint as shown in (3). The experiments were run for con-
stant client rendering time targets, i.e., ∀t : Θt = Θtarget,
and repeated for different values of Θtarget between 5% and
85%. Client rendering time was quantified relative to the
server side. That is, it was given as fraction of the rendering
time the server needs to render the full scene (assuming that
client and server have identical compute capabilities). For
each of the three settings (TPV/FPV/Metaverse), 100 clips
were randomly sampled. Bitrate and total rendering time
were averaged across all clips for each target. AIMD was
run with α = 0.1 and β = 0.9.

7.2. Experiment 2: time-varying rendering time
targets

A key feature of the proposed approach is real-time adap-
tivity to current rendering time and bitrate constraints. This
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Figure 5. Bitrate savings in Experiment 1 for third-person view.
Points closest to the bottom right are optimal. The y-axis shows
the relative client rendering time, averaged across all clips. The
x-axis shows the bitrate saving obtained with the correspond-
ing method when compared to the full cloud rendering solution.
Each data point represents a different rendering time target. Left:
Client-Foreground. Right: Client-Background.

experiment investigated whether the proposed approach is
able to track moving rendering time targets. To this end, the
experiments started from the third-person view data in the
Client-Foreground scenario with the REVI w/o RF model.
As target values for Θt time-varying functional forms were
considered, namely a step function, a triangular function, a
sine, and a sawtooth function. To track the rendering time
average E[ c(Aclient,t) ] a Kalman filter was used.

8. Results
Fig. 5 shows the results of Experiment 1 for third-person
view. As expected, bitrate saving increases with client ren-
dering time, since more assets are generated locally. For
the Client-Foreground setting (left panel) REVI without RF
slightly outperforms the predictive one, i.e., REVI with RF.
This is attributed to RF prediction performance not trans-
ferring well enough to the test set and is further discussed
in the Supplemental Materials. For REVI w/o RF, up to
60% bitrate savings are obtained with up to 40% of client
rendering time usage. For the non-adaptive case, REVI out-
performs streaming 2 or 4 characters, although streaming
a fixed number of 6, 8, or 9 characters yields slightly bet-
ter bitrate savings than REVI. Importantly, REVI allows for
significantly higher bitrate savings when more client ren-
dering time is available.

The right panel of Fig. 5 depicts the bitrate saving for the
Client-Background scenario. Again, REVI w/o RF outper-
forms REVI w/RF. Crucially, it also outperforms all non-
adaptive approaches with a fixed number of characters. In
this case, 60% bitrate saving is achieved at 50% client ren-
der time, and bitrate saving can reach up to 90% if addi-
tional client render time is available. The increased savings
mainly stem from the rendering of the background on the
client without having to stream it from the server. Further
experiments on the other scene types (FPV and VR) are in-
cluded in the Supplemental Materials.

Figure 6. Time-varying rendering time targets Θt (green dashed
line) in Experiment 2. The actual rendering times obtained with
the proposed model (purple solid line) are able to track the render-
ing time targets albeit with spikes and oscillations. The spikes are
partially due to the fact that the Θt is continuous whereas the opti-
mization problem is discrete, so the proposed algorithm alternates
between overshooting and undershooting in order to meet the ren-
dering time target on average.

Fig. 6 shows the results of Experiment 2. The AIMD
algorithm successfully tracks the varying rendering time
budget over time. The tracking is found to not be entirely
smooth, but rather involves spikes and oscillations. This
is due to the fact that the optimization space is discrete
whereas the rendering time targets are continuous so the al-
gorithm tends to oscillate around the target value.

9. Conclusion

This paper introduces a render-video streaming approach
that adaptively selects which assets are rendered on the
server and which are streamed as control weights and ren-
dered locally in G&VR environments. This enables a dy-
namic and adaptive tradeoff between bitrate and client ren-
dering time at a level of granularity that was not previously
possible. This tradeoff is envisioned to be performed at
regular intervals (e.g., every 120 frames), taking the past
frames as a basis for prediction. The REVI proposal covers
how occlusions of assets and lighting effects can be handled
for typical cases of resource-efficient rendering in gaming
and VR environments. Further work can cover cases where
applications have hard constraints on rendering time and bi-
trate (instead of stochastic ones), occlusion-aware resource
prediction, and more advanced cases of global illumination
and ray tracing. Integration of the proposed approach within
the Unreal engine will also enhance the possible usage of
the framework in G&VR. Finally, there is a tradeoff in the
REVI framework between efficiency and generality of the
framework. The present work targets efficiency, but further
can attempt to generalize it for any G&VR pipeline at the
cost of some efficiency loss.
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