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Abstract

Neural radiance fields (NeRF) can produce photo real-
istic free-viewpoint images. Recently, incremental neural
video training approaches took a step towards interactive
streaming via a frame-by-frame approach naturally free of
lag. Motion detection in neural videos via a frame-by-
frame approach can provide valuable cues to enable tem-
porally stable neural videos suitable for interactive stream-
ing. In addition, motion cues can be used to guide the ray
sampling phase to model dynamic regions more efficiently.
Hence, motion detection can be a key component in telep-
resence/social networking and immersive cloud gaming ap-
plications. In this paper, we propose a novel approach
that computes static/dynamic separation masks with high
accuracy and spatial coherency across different views to-
gether with NeRF optimization process. This is enabled by
using explicit deformation network instead of implicit mo-
tions/structure layers (novel network architecture) as well
as novel specifically designed training schedule. To the best
of our knowledge, this is the first work that enables mo-
tion estimation via a frame-by-frame approach in a neural
video training. The proposed work is desirable as it does
not require buffer chunks of frames available before pro-
cessing and hence is suitable for interactive streaming sce-
narios. Experimental results shows the effectiveness of the
proposed motion detection approach in neural videos.

1. Introduction
High quality view synthesis in long duration video streams
can be a key component in telepresence, social networking,
and immersive cloud gaming applications. The idea of us-
ing spatiotemporal NeRFs [4, 7, 8, 10] for synthesizing 3D
videos has gained popularity due to their impressive photo-
realism. However, such techniques suffer from an inherent
lag as they consume videos and thus have to wait for chunks
of frames (often seconds) before processing, making them
unsuitable for interactive streaming scenarios.

Recently, incremental neural video training [19] took a
step towards interactive streaming via a frame-by-frame ap-

Figure 1. Overview of problem statement

proach naturally free of lag by showing the possibility of
training each frame in minutes while maintaining a stream-
able size. While incremental neural video training ap-
proaches present new possibilities in interactive 3D stream-
ing, there is still a lot to be explored in this domain. In
particular, incremental training approaches generally suffer
from significant temporal artifacts in rendered 3D videos,
like pixel flickering. In order to improve neural radiance
field’s temporal stability via an incremental training ap-
proach, researchers [19] rely on precomputed masks clas-
sifying static and dynamic pixels via a separate pipeline
to split modeling the background and foreground content.
Hence, having an effective approach to accurately define
static/dynamic regions within the NeRF training pipeline in
a frame-by-frame fashion is crucial and is the main focus of
this paper.

In this paper, we propose a novel approach that computes
static/dynamic separation masks with high accuracy and
spatial coherency across different views together with NeRF
optimization process. This is enabled by using explicit de-
formation network instead of implicit motions/structure lay-
ers (novel network architecture) as well as novel specifi-
cally designed training schedule. To the best of our knowl-
edge, this is the first work that enables motion estimation
via a frame-by-frame approach in a neural video training.
The proposed work is desirable as it does not require buffer
chunks of frames available before processing and hence is
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Figure 2. Overview of the proposed framework. As shown, our approach can estimate static/dynamic masks simultaneously within the
NeRF training pipeline.

suitable for interactive streaming scenarios.
Experimental results show the effectiveness of the pro-

posed motion detection approach in neural videos while
reaching per-frame PSNR score similar to its baseline NeRF
based approaches that require two NeRF networks, mod-
elling static and dynamic content [19]. We show the ap-
plicability of the proposed work in enabling temporally sta-
ble neural videos suitable for interactive streaming. Further,
our experiments indicate that such masks enable us to better
model dynamic regions with the same number of iterations
by guiding the ray sampling phase to slightly favor dynamic
regions more.

2. Related Work

Traditional image based rendering techniques use pixel in-
formation from input images to synthesize views [1, 15, 16].
Recently, neural representations have shown high quality
novel view synthesis [2, 10, 20, 24]. Specifically, Neu-
ral Radiance Fields (NeRF) [10] achieve an unprecedented
level of fidelity by encoding continuous scene radiance
fields within multi-layer perceptrons (MLPs).

One of the main challenges of applying static NeRF in-
dependently for long video streams is its slow training. To
make NeRF applicable to dynamic scenes, researchers have
explored various techniques [3, 4, 5, 8, 9, 12, 13, 14, 17,
18, 21]. In particular, [12, 13] use a deformation network
for reconstructing non-rigid scenes via a learned deforma-
tion field mapping from coordinates in each input image
into a canonical template coordinate space. [9] integrates
classical image based rendering ideas into a volumetric ren-
dering framework, rather than encoding 3D color and den-
sity directly in the weights of an MLP as in recent dynamic
NeRF methods. Other methods represent scenes as time-

varying NeRFs [4, 5, 8, 18, 21]. For instance, [8] uses
neural scene flow fields that can capture fast and complex
3D scene motion for in-the-wild videos. However, all these
approaches require buffer chunks of frames (often seconds)
available before processing which are unsuitable for inter-
active streaming scenarios.

More recently, [19] introduces incremental neural video
(INV) which allows interactive streaming via a frame-by-
frame approach naturally free of lag. For each incoming
new frame, INV improves on the knowledge from prior
frames and thus reduces redundant learning. However, their
approach suffers from flickering artifacts across frames. To
help with temporal stabilization of the background, [19]
relies on a set of static/dynamic separation masks pre-
computed using multi-frame optical flow map estimation
techniques. To reach reasonable static/dynamic separation
masks for each view, optical flow maps are computed be-
tween each frame and a set of prior frames independently.
Such an approach results in inaccurate and inconsistent
masks across views.

It is worth noting that while there is a wealth of published
literature on optical flow estimation techniques [6, 22, 23],
such approaches typically involve a separate pipeline and
generally estimate a motion map between a single stereo
pair via feature matching, hence they lack the ability to con-
sider multiple views at once. In contrast, the proposed work
introduces an approach to motion detection simultaneously
within NeRF training pipeline (on a frame-by-frame basis)
allowing for taking into account the multiview information.

3. Our Approach

Given a set of incoming video streams that are being cap-
tured from multiple viewpoints and are available only on a
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Figure 3. Illustration of a rendered image and the estimated motion map using the proposed work

frame-by-frame basis, along with their known camera pa-
rameters, our goal is to learn motion with respect to the pre-
vious time stamp along with other scene attributes simul-
taneously with incremental NeRF training. The proposed
approach requires only current timestamp frames to update
radiance field and motion information as necessary infor-
mation from previous frames is handled implicitly.

As illustrated in Figure 2, our framework enables mo-
tion detection within incremental neural video training and
hence eliminates the need for a secondary pipeline to esti-
mate motion. The details of the proposed work is as follows.

3.1. Network Architecture

As shown in Figure 2, our overall network structure con-
sists of a deformation network and the INV Network as de-
scribed in [19]. The deformation network is an MLP based
deformation network that is added in the beginning of the
INV network. For each 3D point (X,Y, Z) at its input,
the deformation network estimates a rotation and translation
with respect to the prior frame as SE(3) field like in [13].
The estimated rotation and translation is used to define a
transformation that is used in estimating a warped 3D point
(Xw, Y w, Zw) at its output. The displacement/motion map
is then defined as the normalized distance between the input
3D point and the estimated warped 3D point at the output of
the deformation network. This displacement map provides
the motion cues to define static/dynamic separation masks
that can be used as a guide to improve flickering artifacts in
the background and hence achieving temporally stable neu-
ral videos.

displacement = norm((Xw, Y w, Zw)− (X,Y, Z)) (1)

The INV network used in our pipeline is similar to the

network defined in [19] and has the task of estimating vari-
ous scene attributes such as optical density and radiance.

3.2. Training Schedule

Our goal for adding the deformation network in the begin-
ning of the INV pipeline is to separate the motion informa-
tion from other attributes of the scene and to encode the mo-
tion information solely by the deformation network. This
would allow INV to focus on learning other attributes of the
scene.

We found that the learning the motion information be-
tween the current frame and the prior frame is not possible
via an end to end training of the deformation and INV net-
works together. This is because concurrent training of the
two networks would spill the motion information into other
attributes and hence the parameters of the two models con-
tribute to learning the motion mixed with other attributes of
the scene.

To achieve our goal and prevent INV training from in-
terfering with the deformation network trying to learn the
motion, we follow a novel specifically designed training
schedule. As illustrated in Figure 4, our multi-stage training
procedure is as follows: At frame zero, we freeze the defor-
mation network and train INV to learn the scene. Later for
each incoming frame, the model has a good understanding
of what the scene looks like, so we freeze the INV network
parameters from prior frame and train the deformation net-
work to learn the motion between the previous frame and
the current frame. In the next stage, we freeze the deforma-
tion network, and train INV to account for the differences
in the current frame that can not be modeled by applying
the deformation map (learned by the deformation network)
to the scene attributes of the prior frame (such as disappear-
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ance of the flame from one frame to another). It is worth
noting that the number of iterations to spend at each stage
is found empirically.

Figure 4. Illustration of the multi-stage training process for defor-
mation+INV network

3.3. Motion Prior and Cost Function

To ensure smooth motion across frames and to avoid jitter-
ing artifacts in the rendered frames, we train motion net-
work incrementally using the estimated motion from prior
frame as an initialization for the motion parameter of the
current frame. Further, at each frame f , a deformation loss
Lossmotion(f) is added to the cost function Loss(f) pe-
nalizing large deviations from estimated motion of the prior
frame, in addition to Lossrgb(f) penalizing the differences
in rgb color values:

Loss(f) = Lossrgb(f) + αLossmotion(f) (2)

Lossrgb(f) =MSE(Iest(f), IGT (f)) (3)

Lossmotion(f) =MSE(Mest(f),Mest(f − 1)) (4)

with I representing the rgb image, M representing the mo-

tion/displacement map across frames, and f denoting the
frame index. In our experiments, α is set to 10−5.

3.4. Positional Encoding

Similar to the NeRF optimization pipeline, it is important to
define a positional encoding at the beginning of the defor-
mation network to lift the input data to higher dimensions
and to make it easier for the network to learn things. This
will allow the network to preserve details and sharp edges
in the image.

3.5. Modeling dynamic regions

In the last stage of our training phase, after the deforma-
tions are learned, we train the INV network to better model
scene attributes within dynamic regions. This allows our
end to end pipeline to accommodate for differences across
frames that can not simply be modeled by moving points

with respect to the prior frame, in other words it allows us
to handle newness within the same network. In this stage,
we take advantage of the additional motion cues learned and
use a higher sampling ratio for dynamic rays compared to
the static rays.

3.6. Application to video stabilization

Our proposed work provides the additional cues to effort-
lessly reach video consistency in static regions without in-
troducing motion blur artifacts. In particular, one can use
the average of the current frame and the prior frame within
the static regions to significantly reduce the typically seen
fluctuations in static regions and to reach improved tempo-
rally stable rendered videos.

4. Experimental Results

4.1. Dataset

In our experiments, we use a publicly available multi-
camera Plenoptic Video dataset [7] and show experimen-
tal results on flame salmon video consisting of 19 different
viewpoints along with their corresponding calibrations, and
showing a mix of static and dynamic, opaque and volumet-
ric content. For fair comparison, we adhere to the same
training and evaluation pipelines, designating 18 views for
training and one for evaluation.

4.2. Motion detection + View synthesis

Figure 3 illustrates the rendered image and the estimated
motion map using the the proposed approach. As shown,
our method achieves high quality view synthesis results
while providing highly accurate motion mask.

Table 1 shows the comparison between PSNR scores us-
ing different NeRF methods for Plenoptic Video dataset. As
shown, the proposed work maintains PSNR comparable to
other state of the art techniques that are trained per-frame
on videos while providing motion detection masks simulta-
neously. While training time associated with the proposed
work is slightly higher than its baseline INV, we believe that
deformation + INV network optimization will allow for fur-
ther reduction in training time and this is one of the direc-
tions that we are currently exploring. In addition, it is good
to note that the baseline INV network used in the proposed
work can be replaced with other NeRF related techniques
that allow for improved NeRF model training and inference
such as [11].

Figure 6 shows some qualitative comparison between
the estimated static/dynamic separation masks for dif-
ferent views via the optical flow pipeline of [23] and
[22] versus the proposed work. As shown the proposed
work can achieve more accurate and spatially consistent
static/dynamic separation masks across different views.
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Figure 5. Illustration of stable static/dynamic mask estimation over time via the proposed work.

Figure 6. Estimated static/dynamic separation masks using the proposed approach vs. the optical flow-based approaches of Unimatch [22]
and SeparableFlow [23]. Here, for [23] we show the accumulated motion over a set of nearby past frames to ensure recovering all dynamic
regions. As shown, the proposed work achieves static/dynamic separation masks that are spatially consistent across views and are more
accurately reflecting the motion of the hand/tool across frames.
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Method PSNR Trained Motion Training
Per-Frame Detection Time

NeRF [10] 24.62 X × 8min
DyNeRF [7] 29.58 × × 260min

INV [19] 29.62 X × 8min
Ours 29.83 X X 10min

Table 1. Accuracy of NeRF methods on Plenoptic Video dataset.
Please note that, for fair comparison, our method should be com-
pared with approaches that are trained per frame. As shown, the
proposed work offers PSNR comparable to other state of the art
techniques that are trained per-frame, while providing motion de-
tection mask simultaneously.

Figure 5 shows that our motion detection approach can
robustly estimate motion masks across frames.

Figure 7. Groundtruth (left) and synthesized views using the pro-
posed approach via (middle) random sampling of static and dy-
namic points versus (right) sampling points in dynamic regions at
a higher rate in the last stage of INV network training. As shown,
by using a higher rate of sampling for points in dynamic regions,
we can improve the quality of rendered views.

Figure 10 shows the importance of updating the INV
network parameters after learning the deformation across
frames to account for the differences that can not simply be
modeled by applying the motion field to the scene attributes
of the prior frame. As shown, our approach can recover the
disappearance of the flame or cases where the deformation
field can not fully model the motion.

4.3. Improved Modeling of Dynamic Regions

In the last stage of the training, we take advantage of the
additional motion cues learned and use a higher sampling
ratio for dynamic rays compared to the static rays. This al-
lows for a more accurate synthesized views within dynamic
regions as shown in Figure 7.

4.4. Applications to Video Stabilization

As we describe in section 3, our end to end framework
provides the additional motion cues necessary to stabilize
static regions in the rendered video frames on the fly. For

Figure 8. Comparison of the PSNR across frames for rendered
videos via the proposed work after video stabilization and baseline
methods of INV (without including the temporal stabilization) and
Split INV (including the temporal stabilization). As shown the
proposed work can provide video stabilization of the static regions
without degrading the PSNR score.

comparison, Figure 8 illustrates the PSNR across a subset
of the frames for the flame salmon dataset [7] via the pro-
posed work, the INV network without any video stabiliza-
tion [19], and split INV which is a proposed solution by [19]
to reach improved temporal stability. It is good to note that
split INV introduces two separate MLP pipelines for fore-
ground and background content guided by the precomputed
static/dynamic masks via a separate pipeline based on opti-
cal flow [23]. As shown, our proposed work achieves ren-
dered video with PSNR scores close to the baseline work
of [19] even after stabilization. Figure 9 shows the absolute
difference between two consecutive rendered frames for the
proposed work and the methods mentioned above. We can
see that a simple video stabilization technique guided by
our estimated static/dynamic separation masks is sufficient
to remove many of the background flickering artifacts. To-
gether, Figure 8 and Figure 9 prove the efficacy of our pro-
posed work in achieving temporally stable rendered videos.

5. Conclusion & Future Directions

In summary, this paper presents an approach to estimating
spatially coherent static/dynamic separation masks within
the incremental neural video pipeline by proposing a multi-
stage training process. In essence, we extract the displace-
ment map between frames by adding a deformation network
in the beginning of the INV pipeline following a multistage
training that avoids INV from interfering with the deforma-
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Figure 9. Comparison of the difference between two consecutive rendered frames via the proposed work and baseline methods. As shown,
the proposed work can provide improved temporal stability for static regions.

Figure 10. Illustration of the Groundtruth images (top) along with the synthesized views using the proposed work without (middle) and
with (bottom) the INV network update stage after learning the deformation across frames. To better visualize the differences a cropped
zoomed in version of the images are added as well.

tion network aiming to learn the motion information across
frames. The proposed work is favorable as it allows estimat-
ing the deformation between frames without requiring the
entire or large chuck of video to be available before process-
ing. This is particularly important for enabling interactive
streaming via a frame-by-frame approach naturally free of
lag. Accurate static/dynamic separation masks allow tem-
poral stabilization of the static background for rendered im-
ages. Further, one can improve the accuracy of synthesized
views in dynamic regions by allocating a higher sampling

rate for rays within dynamic regions. In future, we plan to
explore INV network optimization and/or bandwidth reduc-
tion by possibly updating the INV network parameters at a
slower rate (not per frame).
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