
Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with
Submanifold Sparse CNN

Baoheng Zhang* Yizhao Gao* Jingyuan Li Hayden Kwok-Hay So
The University of Hong Kong

{bhzhang, yzgao, jyli, hso}@eee.hku.hk

Abstract

Eye-tracking technology is integral to numerous con-
sumer electronics applications, particularly in the realm of
virtual and augmented reality (VR/AR). These applications
demand solutions that excel in three crucial aspects: low-
latency, low-power consumption, and precision. Yet, achiev-
ing optimal performance across all these fronts presents
a formidable challenge, necessitating a balance between
sophisticated algorithms and efficient backend hardware
implementations. In this study, we tackle this challenge
through a synergistic software/hardware co-design of the
system with an event camera. Leveraging the inherent spar-
sity of event-based input data, we integrate a novel sparse
FPGA dataflow accelerator customized for submanifold
sparse convolution neural networks (SCNN). The SCNN
implemented on the accelerator can efficiently extract the
embedding feature vector from each representation of event
slices by only processing the non-zero activations. Subse-
quently, these vectors undergo further processing by a gated
recurrent unit (GRU) and a fully connected layer on the host
CPU to generate the eye centers. Deployment and evalua-
tion of our system reveal outstanding performance metrics.
On the Event-based Eye-Tracking-AIS2024 dataset, our sys-
tem achieves 81% p5 accuracy, 99.5% p10 accuracy, and
3.71 Mean Euclidean Distance with 0.7 ms latency while
only consuming 2.29 mJ per inference. Notably, our solu-
tion opens up opportunities for future eye-tracking systems.
Code is available at https://github.com/CASR-
HKU/ESDA/tree/eye_tracking.

1. Introduction
Eye tracking, the monitoring and analysis of eye movement
and focus, provides valuable insights into visual attention,
cognitive processes, and human-machine interaction. With
applications ranging from psychology to marketing, eye
tracking enables a deeper understanding of human behavior.

*Equal contribution

For example, eye tracking plays a pivotal role in enhancing
immersion and interaction in augmented and virtual reality
(AR/VR) [11, 14]. Also, it enables researchers to investigate
visual perception, study information processing, optimize
user interfaces, and enhance the design of human-computer
interactions [20, 22].

A standard eye-tracking system is typically housed within
embedded and wearable devices, necessitating comprehen-
sive consideration of overall system performance, encom-
passing factors such as latency, power consumption, and
precision. Ensuring low latency guarantees real-time respon-
siveness and fluid interaction, thereby elevating the user
experience. Low power consumption stands as a cornerstone
for portable and wearable devices, facilitating prolonged
usage periods without the need for frequent recharging. Pre-
cision remains paramount for capturing and analyzing eye
movements accurately, enabling accurate gaze tracking for
diverse applications.

However, achieving optimal performance in all three as-
pects poses a significant challenge. For instance, in past
methodologies employing a frame-based camera in conjunc-
tion with a dense Deep Neural Networks (DNN) model, the
system may incur noticeable latency and power consumption
despite achieving satisfactory accuracy with the latency of
25 ms [31].

To this end, leveraging an event-based camera emerges as
a promising solution. Unlike traditional cameras that capture
images at fixed time intervals, event cameras detect light
intensity changes on a per-pixel basis. This inherently sparse
output significantly diminishes the data rate and potential
backend processing demands. Moreover, the asynchronous
nature of event cameras enables high temporal resolution,
which offers a compelling pathway toward achieving low
latency and precise eye movement tracking. Nevertheless,
to fully exploit the sparsity and the high speed of event
cameras, especially in deep learning models, exhibits great
challenges. Off-the-shelf hardware platforms, such as GPU
and CPU, usually fail to deliver satisfying performances in
event processing.

In this work, we provide an efficient Sparse Event-based

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5771

https://github.com/CASR-HKU/ESDA/tree/eye_tracking
https://github.com/CASR-HKU/ESDA/tree/eye_tracking

Eye-tracking system called SEE by using hardware-software
co-design that centralizes the idea of leveraging spatial spar-
sity. Our system adopts the submanifold sparse convolution
neural network (SCNN) to efficiently extract feature vectors
from the voxel grid representation of events. The SCNN
model is deployed on an FPGA dataflow accelerator that
can efficiently operate on sparse activations. The extracted
features from the SCNN backbone are then fed into a com-
bination of a GRU+FC module (implemented on the host
CPU) to generate the normalized location of the eye center.

Our system is implemented end-to-end on an embedded
FPGA SoC and extensively evaluated on the Event-based
Eye-Tracking-AIS2024 dataset [1, 6, 36]. Notably, our ap-
proach can achieve more than 98% p10 accuracy with 0.7 ms
- 0.94 ms inference latency. In comparison with an embedded
GPU, our system achieves up to 15.4× and 77.1× speedup
compared to standard and submanifold sparse convolution
implementations, respectively.

2. Related Work

2.1. Eye tracking

Eye tracking is a technology that involves monitoring and
measuring the movement and focus of a person’s eyes. It
is used to understand and analyze human visual attention,
gaze behavior, and eye movements. The process typically
involves capturing and analyzing data related to the position,
motion, and duration of eye fixations and saccades (rapid
eye movements).

Traditional eye-tracking algorithms focus on using image
processing methods to extract the center of the eye pupil.
For example, [35] uses Harr-like features, K-means, and
RANSAC-based ellipse fitting to recognize the pupil. [13]
follows a three-step process, using contour segmentation to
extract the pupil center. However, these methods are hard
to deploy in real scenarios. As pointed out in [23], most of
them are developed in controlled environments, and they
always fail in some extreme environments, like changing
view angles and illuminations.

With the development of deep learning, convolution neu-
ral networks (CNN) gradually become the most dominant
method in solving computer vision tasks. CNN-based deep
learning methods also become the mainstream to solve eye-
tracking tasks, achieving much better performance than the
traditional methods. For example, PupilNet [12] follows a
coarse-to-fine mechanism, using a coarse CNN to obtain sub-
regions and a fine CNN to generate the final response. [8]
proposed a cascaded pipeline, using SSD [27] to detect the
face, CycleGAN [39] to remove the glasses, and FCN [28]
to estimate the eye center location.

Despite the notable advancements in accuracy, the ef-
ficiency of the algorithm remains a significant challenge.
On one hand, the limited frame rate of traditional cam-

eras hampers the system’s capability to capture images at
a high frequency. On the other hand, the proposed models
demonstrate excessive complexity and high computational
demands [7, 8, 17, 37], making them difficult to deploy
in a real-time system. While some other studies have fo-
cused on improving eye-tracking efficiency [21, 24, 31], the
latency still exceeds 10 ms. Event-based eye-tracking has
recently gained attention as an emerging direction due to its
advantages of low latency and low power consumption. How-
ever, despite the low latency offered by these approaches,
recent works in the field primarily rely on traditional meth-
ods [4, 33], which often exhibit reduced accuracy.

2.2. Acceleration of Event-based DNN Models

As the era of deep learning, event vision has achieved re-
markable progress in image classification [29, 34], object
detection [16, 19], optical flow estimation [25, 30], etc. De-
spite the high-speed nature of the event sensor, many deep-
learning-based event-based solutions are still suffering from
the heavy computation. For instance, [29] proposed using
a Transformer model for image classification with over 10
ms latency, while some other Convolutional Neural Network
(CNN) based solutions [19] can only achieve 7 ms inference
using server-level GPUs like V100.

Typically, the deep-learning-based solutions first convert
the event streams into 2D images [26] or 3D voxels [5]
and use dense models on GPU, losing the spatial sparsity
of event streams. To address this challenge from a bottom-
up approach, some previous works design special hardware
accelerators to explore the sparsity [3, 15] in the model.
NullHop [3] introduced an architecture that employs a bi-
nary bitmap to depict sparse activation on a per-layer basis,
thereby avoiding unnecessary computations for zero val-
ues. ESDA [15] proposes an all-on-chip sparse dataflow
architecture on FPGA for low-latency and energy-efficient
processing of event-based DNN models.

In this work, we build an efficient solution for eye-
tracking problems by extending the ESDA framework with
additional support of recurrent modules. Through the inte-
gration of software-hardware optimization techniques, our
model achieves satisfactory accuracy and high hardware
efficiency, with an overall latency less than 1 millisecond.

3. Method
3.1. Overall Architecture

To address the eye-tracking problem efficiently, we propose
SEE, a hardware-software co-optimization solution. On the
software side, our model comprises a SCNN-based back-
bone for feature extraction, a GRU layer for temporal feature
fusion, and a fully connected (FC) layer for eye center re-
gression. Our hardware is heterogeneous, as the FPGA pro-
grammable fabric is used for SCNN acceleration and Arm

5772

Time

Y

X

Sparse
Representation

SCNN

Feature Embedding

GRU GRU GRU GRU

GRU Hidden State

SCNN SCNN SCNN

FC FC FC FC
[x, y] [x, y] [x, y] [x, y]Eye centers

Events

FPGA SCNN
Accelerator (Int8)

CPU SIMD
Engine (Float)

Figure 1. Software architecture: For an event stream, we partition it into multiple consecutive clips. These clips are then transformed into
sparse voxel representations. Subsequently, an SCNN is used to generate feature embeddings, which will be then fed into a Gated Recurrent
Unit (GRU) module. The GRU module generates the hidden state, and a Fully Connected (FC) layer regresses the eye centers.

Cortex-A series for GRU and FC layers. This heterogeneous
architecture allows us to fully exploit the strengths of dif-
ferent hardware devices and deliver an overall low-latency
performance. In addition, we also employ hardware-software
co-optimization to search for compact models with better
tradeoffs between accuracy and hardware latency.

3.2. Software design

3.2.1 Model Architecture

SEE follows the standard voxel grid representations as the
input. As depicted in Figure 1, the event clips in a fixed-time
interval usually are spatially sparse, which means most of the
pixels are zero. These sparse inputs are fed into the SCNN
backbone to extract global features. Subsequently, these fea-
tures undergo further processing through a GRU layer, which
captures the temporal information between event frames. The
hidden features are then fed into the FC layer, yielding the
normalized coordinates of the eye center location, ranging
from 0 to 1. The actual eye location pixel coordinates can
be obtained directly by multiplying these normalized coordi-
nates with the height and width of the input size.

3.2.2 Submanifold Sparse Convolution

Convolutional layer (standard convolution) has been widely
used in all kinds of deep learning architecture. However,
the standard convolution algorithm suffers from a dilation
effect when taking the spatially sparse input. Here, the spatial
sparsity means some pixels in the input image or activations

(a) Standard Convolution with kernel size 3*3

Weights

A

A
B

C

D

E

(b) Submanifold Sparse Convolution with kernel size 3*3

N

k0

M = A*k3 + B*k7 + C*k5

M
M=0

k1 k2
k3 k4 k5
k6 k7 k8

A

A
B

C

D

E

M

N = D*k3 + E*k7

Weights N

k0 k1 k2
k3 k4 k5
k6 k7 k8

N = D*k3 + E*k7

Figure 2. Standard and submanifold sparse convolution. For stan-
dard convolution, all the pixels in an image are processed by the
kernels equally, leading to the dilation of spatial intensity. On the
other hand, submanifold sparse convolution ensures that the output
non-zero pixels locations to be identical as the input.

are completely zero for all the channels. As depicted in
Figure 2a, the dilation effect causes the output feature map
to be much denser than the input.

To address this issue and preserve spatial sparsity, we

5773

incorporate submanifold sparse convolution [9] originally
developed for point cloud networks. As illustrated in Fig-
ure 2b, submanifold sparse convolution only outputs non-
zeros on identical input non-zero locations. On a valid output
location like N, the computation is exactly the same as that
of standard convolution. In this way, the sparsity is preserved
while meaningful information is propagated.

By leveraging submanifold sparse convolution, we not
only mitigate the dilation effect but also enhance the effi-
ciency of inference by reducing unnecessary computations
on irrelevant areas.

3.2.3 Quantization

Integer operations are more efficient and require fewer
hardware resources for FPGA implementation. To deploy
resource-efficient integer arithmetic on FPGA, we adopt
HAWQv3 [38] to fine-tune our model, which allows integer-
only inference. Specifically, the models tuned by HAWQv3
only require integer multiplication, addition, and shift to
be used in the whole computational graph. In our experi-
ments, we first train the model using the float32 data type as
standard practice and perform fine-tuning by applying int8
quantization on both input X and weights W of the SCNN
backbone. The quantization scheme can be expressed as:

Y = SyŶ = W ×X = SwŴ × SxX̂

Ŷ =
SwSx

Sy
(Ŵ × X̂) =

Ŝ

2n
(Ŵ × X̂)

(1)

where tensors withˆare in integer format. In this dyadic
quantization scheme, the division of scaling factor SwSx

Sy

is replaced by an additional level of quantization with in-
teger multiplication and shift operations (similar to a fixed
point format). This allows simple hardware arithmetic to be
deployed on the accelerator.

3.3. Hardware design

3.3.1 Overall Architecture

The hardware diagram is shown in Figure 3, which is built
upon a Xilinx Zynq UltraScale+ MPSoC device. The pro-
posed hardware system primarily consists of two compo-
nents: the sparse dataflow SCNN accelerator and the Arm
Cortex-A53 processor host. The event-based input is initially
fed into the SCNN accelerator to propagate through the
submanifold sparse convolutional neural network backbone.
Subsequently, the GRU and fully connected layers processes
are executed by the host CPU with the Arm NEON SIMD
(Single Instruction, Multiple Data) engine.

3.3.2 FPGA SCNN Accelerator

The FPGA SCNN accelerator adopts a dynamic sparse
dataflow architecture introduced in [15]. This dataflow accel-

erator maps all the layers spatially on-chip and pipelines the
computation of sparse activations for different modules. The
dataflow modules share a unified token-feature streaming
interface. A token [.x, .y, .end] marks the current non-zero
pixel coordinates. In a nutshell, the design of a dataflow
module should comply with three principles: (1) it has the
logic to resolve the next non-zero pixel coordinates; (2) it
has the logic to compute the corresponding features at the
next non-zero pixel; (3) the streaming order of non-zeros
should follow the left-to-right, top-to-bottom manner. In this
way, different model components, such as conv 1x1, conv
3x3, and pooling layers, can be implemented and cascaded
in the dataflow manner, allowing sparse token-features to
propagate throughout layers.

Figure 3 shows an example diagram of a submanifold
sparse conv 3x3 layer. It’s composed of a Sparse Line Buffer
(SLB) and a compute engine. Since the submanifold sparse
convolution has identical input and output non-zero locations,
the tokens can be simply buffered and reused by using a
token FIFO. The head and tail tokens are used to control
the read and write operations of the buffer. In addition, a
kernel offset stream is used to exploit the sparsity within
each 3x3 kernel. For example, only the offsets 2, 4, and 6
in the snapshot contain non-zero pixels. The kernel offsets
subsequently serve as the index of the weight buffer in the
later compute engine.

This sparse dataflow scheme allows the non-zero infor-
mation/features to be streamed and passed through different
modules in the accelerator in an efficient pipeline. As dis-
cussed above, weight and activation are quantized into 8-bit
integers to allow integer arithmetic units to be deployed
while reducing memory consumption. Weights are stored in
on-chip BRAM statically to reduce the off-chip communi-
cation in our design. However, one potential disadvantage
of this approach is that model size can be limited by the
on-chip buffer size. Fortunately, we have incorporated a co-
optimization framework to trade off between model size and
performance, which will be discussed in later sections.

3.3.3 CPU SIMD Implementation of GRU+FC

The main reason for deploying the GRU layer on the CPU is
because its complex sigmoid activation functions are diffi-
cult to quantize and deploy on FPGA. Fortunately, the Arm
SIMD engine has built-in floating point arithmetic units that
are capable of handling the remaining GRU and FC layer
within a reasonable time.

The GRU and FC layers are implemented using the
Eigen [18] C++ library. The computations involving vec-
tor operations are realized using several Arm NEON SIMD
instructions. The compiled dynamic link library is packaged
into Python and integrated with the host PYNQ (Python
productivity for Zynq) platform [2].

5774

Processing System

ARM Cortex – A53

Arm v8-A
Architecture

Arm NEON SIMD
(GRU+FC Layers)

L2-Cache

I/D-Cache

Xilinx ZCU102 Zynq MPSoC

FPD-DMADDR4

Programable Logic

Sp
ar

se
 C

on
v

Bl
oc

k
1

G
lo

ba
l P

oo
lin

gBitmap

Feature

Token
Stream

Feature
Stream

Token
Stream

Feature
Stream

Input

Embedding

Sparse Conv Block 2

C
on

v
1x

1

D
W

 C
on

v
3x

3

C
on

v
1x

1

Sp
ar

se
 C

on
v

Bl
oc

k
N

To
ke

ni
ze

r

AXI Interconnect

input
feature

input
token

feature
buffer

token reg token
stream

feature
stream

[.x, .y, .end]

static weight

headtail
Control

token FIFO

[tail.x, tail.y%3]

validready

window
center at

head token
6 4 2

feature buffer
2

4
6

token reg output
token
output
feature

kernel
offset

static
weight … …

[.x, .y, .end]

kernel 0

kernel 8

kernel 1

token
stream

feature
stream

Conv 1x1 Sparse Line Buffer (SLB) DW Conv 3x3

SL
B

Figure 3. Heterogeneous Hardware architecture. The proposed hardware system primarily consists of the Arm Cortex-A53 acting as a
processing system and the SCNN accelerator implemented on programable logic. The input to the SCNN accelerator is the sparse features
and a binary bitmap to record the non-zero pixel locations. The GRU and fully connected layers are executed in the processing system with
Arm NEON SIMD (Single Instruction, Multiple Data) engine.

By combining the FPGA’s parallel computing capability
with the Arm Cortex-A series processor’s efficient process-
ing of SIMD operations, the proposed system optimizes the
utilization of computational resources on Xilinx MPSoC
platforms and maximizes both performance and efficiency
for real-time eye-tracking applications.

3.4. Software-hardware Co-optimization

Our system requires the entire backbone to fit the on-chip
buffer. To achieve this objective, we have developed a
software-hardware co-searching framework that aims to gen-
erate a compact network by considering both network com-
plexity and hardware resource allocation, which is illustrated
in Figure 4. In this framework, we utilize MobileNetV2[32]
as a supernet and sample a large number of subnets. The
searching space can be divided into four aspects: 1) the num-
ber of inverted bottleneck blocks, 2) the channel size of each
block, 3) the ratio of expansion for each block, 4) the hidden
feature size of the GRU layer.

In the next stage, we select the candidate network archi-
tectures using a hardware simulator AGNA[10]. Given a
model definition, the simulator uses a Geometric Program-
ming method to estimate the latency based on the hardware
constraints. Finally, the models with both lower estimated
latency and feasible parameter sizes will be trained. In this
pool of trained models, we select the ones lie within the
pareto-frontier of accuracy and latency trade-offs.

Hardware
Simulator

Top-k sorting
with latency

Latency-accuracy
Pareto Frontier

accuracy

Model
Sampler

Training

Model pool

Selected models

Figure 4. Network searching pipeline: We sample networks from
a search pool and use a hardware simulator to select low-latency
ones. After training these networks, we create a latency-accuracy
Pareto frontier to show the trade-off between accuracy and latency.

4. Experiments

4.1. Implementation Details

We conducted an efficiency verification of our design using
a recently released dataset, the Event-based Eye-Tracking-
AIS2024 dataset. The dataset comprises a total of 13 sub-
jects, with each subject having 2-6 recording sessions. The
subjects were instructed to perform activities belonging to
5 different classes, including random, saccades, read text,
smooth pursuit, and blinks. We use the default split of the
training and validation set.

The evaluation metrics are ”Mean Euclidean Distance”
(Dist.) and ”pk accuracy”. Dist. is the average distance be-

5775

Table 1. Accuracy between standard convolution and submanifold
sparse convolution.

p5 accuracy (%) p10 accuracy (%)
Standard Sparse Standard Sparse

MobileNetV2 87.42 87.63 99.39 99.46
SEE-B 84.87 85.21 99.13 98.86

tween ground truth and predicted locations, while ”pk ac-
curacy” denotes the accuracy within a tolerance of k pixels.
Specifically, if the Euclidean distance between the ground
truth and predicted locations is smaller than k pixels, the
sample is considered correct and vice versa. We utilize k = 5
and k = 10 to measure the prediction accuracy.

In terms of the hardware system, We implemented our
hardware design with Vitis HLS 2020.2 and Vivado 2020.2.
Then the proposed heterogeneous system is implemented
and evaluated on a ZCU102 board with a Xilinx Zynq Ultra-
Scale+ MPSoC Device.

In the subsequent sections, we refer to the models trained
as the ”SEE-series” models, denoting from SEE-A to SEE-D
with different performance tradeoffs. MobileNetV2 (width
multiplier = 0.5) is utilized as the baseline for comparison.

4.2. Standard vs. Submanifold Sparse Convolution

To demonstrate the model capability of submanifold sparse
convolution, we carried out experiments to compare its per-
formance with standard convolution. We use 2 different mod-
els including MobileNetV2 baseline and the SEE-B for the
experiments, which are trained with standard and submani-
fold sparse convolution respectively. The results in Table 1
demonstrate that the p5 and p10 accuracy between the stan-
dard and submanifold implementations exhibit similarity.
Specifically, the submanifold sparse convolution consistently
achieves a comparable result in both p5 and p10 accuracy.
However, this advantage comes with a notable increase in
activation sparsity.

4.3. Latency and Accuracy

To demonstrate the effectiveness of our design, we follow
our optimization flow in Figure 4 to generate 20+ different
models. The accuracy and latency results are plotted in Fig-
ure 5, while the subgraph (a) and (b) show the latency with
p5 and p10 accuracy respectively.

When evaluating with p10 accuracy, we observe that the
MobileNetV2 and the SEE-series networks achieve compa-
rable high accuracies, mostly exceeding 98%. While consid-
ering the p5 accuracy and the mean Euclidean distance, the
baseline MobileNetV2 slightly outperforms the SEE-series
models. This difference could be attributed to the higher
number of network parameters since a larger model size
generally provides more capacity to capture richer features.

In terms of efficiency, our selected SEE-series model

significantly outperforms MobileNetV2 by a large margin.
MobileNetV2 achieves a latency of 1.4 ms, which is more
efficient than the previous work. However, our SEE-series
model can even achieve a latency of less than 1 ms. Specifi-
cally, our SEE-D model achieves a comparable accuracy with
MobileNetV2, with around 2× speedup (0.7 ms vs. 1.45 ms).
Our SEE-C model (0.6 ms) achieves around 2.5× speedup
over MobileNetV2 with only 1% p10 accuracy drops. This
highlights the capability of our SEE-framework to push more
optimal latency accuracy trade-offs than baseline.

4.4. Hardware Implementation Details

We also conduct further evaluations for our hardware im-
plementation. We record the hardware-related parameters
during the experiments, including resource utilization, power,
and efficiency. The results are presented in Table 2. Notably,
the SEE-series models consistently achieve low latency, with
all inference times falling within the 1ms range. Additionally,
our models consume lower power and demonstrate superior
energy efficiency, as indicated by the reduced mJ per infer-
ence metric. These findings demonstrate the effectiveness
of our approach in achieving low latency and low power
consumption specifically for eye-tracking tasks.

Our system provides a wide spectrum of performance
tradeoffs. The SEE-A model obtains the highest p10 ac-
curacy with more power, and the SEE-C model achieves
the best overall latency and efficiency at the cost of slight
degradation in accuracy. On the contrary, the SEE-B and
the SEE-D models strike a more balanced tradeoff between
accuracy and efficiency.

4.5. Compare with Embedded GPUs

Finally, we conducted evaluations of our design using the
NVIDIA Jetson Xavier NX, a widely-used embedded GPU.
Similar to ESDA, we assessed both the dense DNN imple-
mentation using PyTorch and the submanifold sparse DNN
implementation utilizing the MinkowskiEngine library. We
calculated the average latency (batch=1) of the entire test set
for the three settings, while the latency of standard imple-
mentation is defined as the baseline.

The results are shown in Figure 6. Our SEE implemen-
tation achieves a notable speedup ranging from 11.47× to
13.89× compared with the standard one. While compared to
the submanifold GPU implementation, the speedup can reach
57.4×, 66.1×, 72.6×, 68.9×, and 66.2×. The remarkable
speedups highlight the significant efficiency improvement
achieved by the co-designed hardware accelerator compared
to both the standard and submanifold GPU implementations.
The GPU implementation of submanifold sparse convolu-
tion typically exhibits slower performance than the standard
dense baseline. This is primarily due to the significant over-
head of sparse coordinate bookkeeping, particularly notice-
able during batch 1 inference.

5776

Table 2. Hardware Implementation Details.

Accuracy (%) Latency (ms) Utilization
p5 p10

Dist.
(Pixel)

#
Param. SCNN GRU&FC Total

Power
(W)

Efficiency
(mJ/inf.) DSP BRAM FF LUT

MobileNetV2 87.36 99.53 3.15 797K 0.73 0.72 1.45 4.36 3.23 2123 1685 213K 214K
SEE-A 80.83 99.60 3.77 465K 0.49 0.15 0.64 4.05 1.99 2003 1287 114K 166K
SEE-B 83.32 99.53 3.39 372K 0.79 0.15 0.94 4.17 3.28 2067 1547 117K 170K
SEE-C 75.92 98.39 4.05 180K 0.49 0.11 0.60 3.86 1.88 1880 1001 94K 135K
SEE-D 81.37 99.53 3.71 178K 0.59 0.11 0.70 3.86 2.29 1606 1092 90K 130K

0.6 0.8 1.0 1.2 1.4
60

70

80

90

100

p5
 a

cc
 (

%
)

SEE-A
SEE-B
SEE-C

SEE-D
MobileNetV2
Others

(a)

0.6 0.8 1.0 1.2 1.4
96

97

98

99

100

p1
0

ac
c

(%
)

SEE-A
SEE-B
SEE-C

SEE-D
MobileNetV2
Others

(b)

0.6 0.8 1.0 1.2 1.4
Latency (ms)

2.5

3.0

3.5

4.0

4.5

M
ea

n
Eu

cl
id

ea
n

D
is

ta
nc

es
 (

Pi
xe

l)

SEE-A
SEE-B
SEE-C

SEE-D
MobileNetV2
Others

(c)

Figure 5. Accuracy vs Latency for sampled models. (a) p5 Accuracy
vs. Latency. (b) p10 Accuracy vs. Latency. (c) Mean Euclidean
Distances vs. Latency

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g1

0(
Sp

ee
du

p)
MobileNetV2

1.00×

0.20×

11.47×

SEE-A

1.00×

0.21×

13.89×

SEE-B

1.00×

0.16×

11.61×

SEE-C

1.00×

0.20×

13.78×

SEE-D

1.00×

0.20×

13.24×

Jetson (Standard) Jetson (Submanifold) SEE

Figure 6. Latency speedup of SEE over an Nvidia Jetson GPU.
We measure the latency (batch size = 1) for the standard and sub-
manifold implementation using NVIDIA Jetson Xavier NX under
MobileNetV2 and SEE-series network and calculate the speedup.

5. Conclusion and Future Work

We present an efficient event-based eye-tracking solution
called SEE through software/hardware co-design. SEE mod-
els utilize an SCNN backbond for feature extraction, fol-
lowed by a GRU+FC component for temporal fusion and eye
center localization. SEE system leverages the heterogeneous
hardware resource of an embedded FPGA SoC platform and
accelerates the SCNN using a novel sparse dataflow accel-
erator. Furthermore, a hardware-software co-optimization
framework is developed to obtain compact models optimal
accuracy and latency tradeoffs. The results demonstrate im-
pressive system performance, with a latency 0.6 ms to 0.94
ms for each prediction with around 99% p10 accuracy. The
overall latency speedups can reach 11.2× to 72.6× when
compared to an embedded GPU.

Despite the outstanding performance SEE achieved, we
aim to enhance the further latency performances by inte-
grating the recurrent module or attention modules into our
FPGA dataflow accelerator. This endeavor necessitates the
development of novel quantization techniques or the im-
plementation of some non-linear functions, as well as the
support of inter-batch pipeline.

5777

6. Acknowledgment

This work was supported in part by the Research Grants
Council (RGC) of Hong Kong under the Research Impact
Fund project R7003-21 and the Theme-based Research
Scheme (TRS) Project T45-701-22-R.

References
[1] Event-based eye tracking - ais2024 cvpr workshop.

https : / / www . kaggle . com / competitions /
event-based-eye-tracking-ais2024/. 2

[2] PYNQ — pynq.io. https://www.pynq.io/. 4
[3] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Anto-

nio Rios-Navarro, Ricardo Tapiador-Morales, Iulia-Alexandra
Lungu, Moritz B Milde, Federico Corradi, Alejandro Linares-
Barranco, Shih-Chii Liu, et al. Nullhop: A flexible convolu-
tional neural network accelerator based on sparse representa-
tions of feature maps. IEEE transactions on neural networks
and learning systems, 30(3):644–656, 2018. 2

[4] Anastasios N Angelopoulos, Julien NP Martel, Amit PS
Kohli, Jorg Conradt, and Gordon Wetzstein. Event based,
near eye gaze tracking beyond 10,000 hz. arXiv preprint
arXiv:2004.03577, 2020. 2

[5] Patrick Bardow, Andrew J Davison, and Stefan Leutenegger.
Simultaneous optical flow and intensity estimation from an
event camera. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 884–892, 2016.
2

[6] Qinyu Chen, Zuowen Wang, Shih-Chii Liu, and Chang Gao.
3et: Efficient event-based eye tracking using a change-based
convlstm network. In 2023 IEEE Biomedical Circuits and
Systems Conference (BioCAS), pages 1–5. IEEE, 2023. 2

[7] Warapon Chinsatit, Takeshi Saitoh, et al. Cnn-based pupil
center detection for wearable gaze estimation system. Applied
Computational Intelligence and Soft Computing, 2017, 2017.
2

[8] Jun Ho Choi, Kang Il Lee, and Byung Cheol Song. Eye
pupil localization algorithm using convolutional neural net-
works. Multimedia Tools and Applications, 79(43):32563–
32574, 2020. 2

[9] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3075–3084,
2019. 4

[10] Yuhao Ding, Jiajun Wu, Yizhao Gao, Maolin Wang, and Hay-
den Kwok-Hay So. Model-platform optimized deep neural
network accelerator generation through mixed-integer geo-
metric programming. In 2023 IEEE 31st Annual International
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pages 83–93, 2023. 5

[11] Ajoy S Fernandes, T Scott Murdison, and Michael J Proulx.
Leveling the playing field: A comparative reevaluation of
unmodified eye tracking as an input and interaction modality
for vr. IEEE Transactions on Visualization and Computer
Graphics, 29(5):2269–2279, 2023. 1

[12] Wolfgang Fuhl, Thiago Santini, Gjergji Kasneci, and Enkele-
jda Kasneci. Pupilnet: Convolutional neural networks for
robust pupil detection. arXiv preprint arXiv:1601.04902,
2016. 2

[13] Wolfgang Fuhl, Thiago C Santini, Thomas Kübler, and
Enkelejda Kasneci. Else: Ellipse selection for robust pupil
detection in real-world environments. In Proceedings of the
ninth biennial ACM symposium on eye tracking research &
applications, pages 123–130, 2016. 2

[14] Wolfgang Fuhl, Gjergji Kasneci, and Enkelejda Kasneci.
Teyed: Over 20 million real-world eye images with pupil, eye-
lid, and iris 2d and 3d segmentations, 2d and 3d landmarks, 3d
eyeball, gaze vector, and eye movement types. In 2021 IEEE
International Symposium on Mixed and Augmented Reality
(ISMAR), pages 367–375. IEEE, 2021. 1

[15] Yizhao Gao, Baoheng Zhang, Yuhao Ding, and Hayden Kwok-
Hay So. A composable dynamic sparse dataflow architecture
for efficient event-based vision processing on fpga. In Pro-
ceedings of the 2024 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, page 246–257, New
York, NY, USA, 2024. Association for Computing Machinery.
2, 4

[16] Mathias Gehrig and Davide Scaramuzza. Recurrent vision
transformers for object detection with event cameras. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13884–13893, 2023. 2

[17] Chao Gou, Hui Zhang, Kunfeng Wang, Fei-Yue Wang, and
Qiang Ji. Cascade learning from adversarial synthetic images
for accurate pupil detection. Pattern Recognition, 88:584–594,
2019. 2

[18] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010. 4

[19] Ryuhei Hamaguchi, Yasutaka Furukawa, Masaki Onishi, and
Ken Sakurada. Hierarchical neural memory network for low
latency event processing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 22867–22876, 2023. 2

[20] Dan Witzner Hansen and Qiang Ji. In the eye of the beholder:
A survey of models for eyes and gaze. IEEE transactions
on pattern analysis and machine intelligence, 32(3):478–500,
2009. 1

[21] Sangwon Kim, Mira Jeong, and Byoung Chul Ko. Energy
efficient pupil tracking based on rule distillation of cascade
regression forest. Sensors, 20(18):5141, 2020. 2

[22] Ahmad F Klaib, Nawaf O Alsrehin, Wasen Y Melhem, Ha-
neen O Bashtawi, and Aws A Magableh. Eye tracking algo-
rithms, techniques, tools, and applications with an emphasis
on machine learning and internet of things technologies. Ex-
pert Systems with Applications, 166:114037, 2021. 1

[23] Andoni Larumbe-Bergera, Gonzalo Garde, Sonia Porta,
Rafael Cabeza, and Arantxa Villanueva. Accurate pupil center
detection in off-the-shelf eye tracking systems using convolu-
tional neural networks. Sensors, 21(20):6847, 2021. 2

[24] Kang Il Lee, Jung Ho Jeon, and Byung Cheol Song. Deep
learning-based pupil center detection for fast and accurate
eye tracking system. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XIX 16, pages 36–52. Springer, 2020. 2

5778

https://www.kaggle.com/competitions/event-based-eye-tracking-ais2024/
https://www.kaggle.com/competitions/event-based-eye-tracking-ais2024/
https://www.pynq.io/

[25] Haotian Liu, Guang Chen, Sanqing Qu, Yanping Zhang, Zhi-
jun Li, Alois Knoll, and Changjun Jiang. Tma: Temporal
motion aggregation for event-based optical flow. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 9685–9694, 2023. 2

[26] Min Liu and Tobi Delbruck. Adaptive time-slice block-
matching optical flow algorithm for dynamic vision sensors.
BMVC, 2018. 2

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer, 2016. 2

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015. 2

[29] Yansong Peng, Yueyi Zhang, Zhiwei Xiong, Xiaoyan Sun, and
Feng Wu. Get: group event transformer for event-based vision.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6038–6048, 2023. 2

[30] Wachirawit Ponghiran, Chamika Mihiranga Liyanagedera,
and Kaushik Roy. Event-based temporally dense optical flow
estimation with sequential learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9827–9836, 2023. 2

[31] Nikolaos Poulopoulos and Emmanouil Z Psarakis. A real-
time high precision eye center localizer. Journal of Real-Time
Image Processing, 19(2):475–486, 2022. 1, 2

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted resid-
uals and linear bottlenecks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4510–4520, 2018. 5

[33] Timo Stoffregen, Hossein Daraei, Clare Robinson, and
Alexander Fix. Event-based kilohertz eye tracking using
coded differential lighting. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
2515–2523, 2022. 2

[34] Linhui Sun, Yifan Zhang, Ke Cheng, Jian Cheng, and Hanqing
Lu. Menet: A memory-based network with dual-branch for
efficient event stream processing. In European Conference
on Computer Vision, pages 214–234. Springer, 2022. 2

[35] Lech Świrski, Andreas Bulling, and Neil Dodgson. Robust
real-time pupil tracking in highly off-axis images. In Pro-
ceedings of the symposium on eye tracking research and ap-
plications, pages 173–176, 2012. 2

[36] Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde,
Radu Timofte, Shih-Chii Liu, Qinyu Chen, et al. Event-Based
Eye Tracking. AIS 2024 Challenge Survey. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2024. 2

[37] Zheng Xiang, Xinbo Zhao, and Aiqing Fang. Pupil center
detection inspired by multi-task auxiliary learning characteris-
tic. Multimedia Tools and Applications, 81(28):40067–40088,
2022. 2

[38] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami,
Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang,
Michael Mahoney, et al. Hawq-v3: Dyadic neural network
quantization. In International Conference on Machine Learn-
ing, pages 11875–11886. PMLR, 2021. 4

[39] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2223–2232, 2017.
2

5779

	. Introduction
	. Related Work
	. Eye tracking
	. Acceleration of Event-based DNN Models

	. Method
	. Overall Architecture
	. Software design
	Model Architecture
	Submanifold Sparse Convolution
	Quantization

	. Hardware design
	Overall Architecture
	FPGA SCNN Accelerator
	CPU SIMD Implementation of GRU+FC

	. Software-hardware Co-optimization

	. Experiments
	. Implementation Details
	. Standard vs. Submanifold Sparse Convolution
	. Latency and Accuracy
	. Hardware Implementation Details
	. Compare with Embedded GPUs

	. Conclusion and Future Work
	. Acknowledgment

