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1. Architecture Details

In this section, we present more details on the neural net-
work architecture used in our method. As mentioned in the
main paper, our method is based on the sandwiched codec,
which has a neural preprocessor and a postprocessor. Both
neural processors are constructed using the U-Net architec-
ture [1] and the multi-layer perceptron (MLP) architecture.
As shown in Fig. 3 from the main paper, the preprocessor
is composed of one U-Net (see architecture details in Ta-
ble 1) and two MLPs (see architecture details in Table 2
with C = 6 for each of them). The post-processor is com-
posed of one U-Net (see architecture details in Table 1) and
one MLP (see architecture details in Table 2 with C = 12).

2. Visualization of Neural Codes

We visualize the learned neural code generated by the pre-
processor, with a low-bit-rate model (in Fig. 1) and a high-
bit-rate model (in Fig. 2), respectively. As described in
the main paper, we organize the 12 latent channels into 4
groups, each group containing 3 channels, corresponding to
the Y ′, U ′, and V ′ channels of the YUV color space. As
shown, at higher bit-rates, the preprocessor learns to main-
tain more detailed information by fully utilizing the 12 neu-
ral code channels. In contrast, at lower bit-rates, the pre-
processor learns to compress the information by compress-
ing the input stereo RGB-D information into fewer chan-
nels and produce high frequency modulation in the com-
pact latent channels. The resulting neural code channels are
thus more sparse and different from the human perceptable
RGB-D information.

3. Extension: Relightability

Since decoder side relightability is sometimes desired in a
scene transmission pipeline. In this section, we demonstrate

a simple extension of our method to support decoder-side
relighting by transmitting normal maps together with the
RGB-D signal in our sandwiched codec. We qualitatively
evaluate the extension setting by relighting the transmitted
3D representation. Results shown in Fig. 3 demonstrate that
our method can be easily extended to a relighting rendering
pipeline and maintains better performance.
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Table 1. Architecture details for the U-Net used in our method.

Layer Type Input Source Input Shape Output Shape Kernel Stride

1 Convolution - (12, H, W) (64, H, W) 3x3 1
2 Convolution 1 (64, H, W) (64, H, W) 3x3 1
3 Convolution 2 (64, H, W) (128, H/2, W/2) 5x5 2
4 Convolution 3 (128, H/2, W/2) (128, H/2, W/2) 3x3 1
5 Convolution 4 (128, H/2, W/2) (256, H/4, W/4) 5x5 2
6 Convolution 5 (256, H/4, W/4) (256, H/4, W/4) 3x3 1
7 Convolution 6 (256, H/4, W/4) (512, H/8, W/8) 5x5 2
8 Convolution 7 (512, H/8, W/8) (512, H/8, W/8) 3x3 1
9 Convolution 8 (512, H/8, W/8) (512, H/16, W/16) 5x5 2
10 Convolution 9 (512, H/16, W/16) (512, H/16, W/16) 3x3 1
11 Transposed Conv. 10 (512, H/16, W/16) (512, H/16, W/16) 5x5 2
12 Concatenation 11, 8 2 x (512, H/8, W/8) (1024, H/8, W/8) - -
13 Convolution 12 (1024, H/8, W/8) (512, H/8, W/8 ) 3x3 1
14 Transposed Conv. 13 (512, H/8, W/8) (256, H/4, W/4) 5x5 2
15 Concatenation 14, 6 2 x (256, H/4, W/4) (512, H/4, W/4) - -
16 Convolution 15 (512, H/4, W/4) (256, H/4, W/4) 3x3 1
17 Transposed Conv. 16 (256, H/4, W/4) (128, H/2, W/2) 5x5 2
18 Concatenation 17, 4 2 x (128, H/2, W/2) (256, H/2, W/2) - -
19 Convolution 18 (256, H/2, W/2) (128, H/2, W/2 ) 3x3 1
20 Transposed Conv. 19 (128, H/2, W/2) (64, H, W) 5x5 2
21 Concatenation 20, 2 2 x (64, H, W) (128, H, W) - -
22 Convolution 21 (128, H, W) (64, H, W) 3x3 1
23 Convolution 22 (64, H, W) (12, H, W) 3x3 1

Table 2. Architecture details for the multi-layer perceptron (MLP) used in our method.

Layer Type Input Source Input Shape Output Shape Kernel Stride

1 Convolution - (C, H, W) (512, H, W) 1x1 1
2 Convolution 1 (512, H, W) (C, H, W) 1x1 1
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Figure 1. Visualization of the latent channels generated by the preprocessor with a low bit-rate setting.
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Figure 2. Visualization of the latent channels generated by the preprocessor with a high bit-rate setting.
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Figure 3. Qualitative results with The Relightable dataset showing the relightability of the decoded signal in the extension setting.
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