
Supplemental Materials

Jia-Jie Lim∗ Matthias S. Treder* Aaron Chadha Yiannis Andreopoulos

Sony Interactive Entertainment, London, UK
{first dot last}@sony.com

1. Composable autoencoder
The encoder fenc was a multi-layer perceptron (MLP) with
1 hidden layer. The hidden layer’s dimension was twice
the input dimension. The bottleneck layer dimension d
was adapted to the class of assets. For instance, for con-
trol rig parameters we used a maximum of 80 components
whereas a larger number of components was required for
blendshapes defined on the vertices. The decoder fdec had
the same architecture in reverse. All activation functions
were Rectified Linear Units (ReLU). Masks were randomly
selected from a uniform distribution. An Adam optimizer
was used with a learning rate of 0.0001. The model was
trained for 50 epochs. L2 loss, ||x− x̂||, was used as objec-
tive function.

One consequence of using masking during training is
that the last units in the bottleneck layer get fewer updates
on their weights than the first units, since they are masked
out most of the time. To counteract this, we devised two
strategies. First, we pretrained the composable autoencoder
without masking for 5 epochs such that all weights would
get trained. Second, we used a non-uniform sampling dis-
tribution. To this end, we defined a multinomial distribu-
tion where the dimension d was selected with a probability
that was proportional to either a quadratic or a cubic func-
tion. This assured that the trailing components would get
updated more often. We thus performed an ablation study
with different modifications of the base model.

Results are depicted in Fig. 1. We used an example
dataset consisting of control rig of a humanoid character
with 455 dimensions and dmax = 80. 19 different motion
sequences (crouching, walking, jumping, dancing, sword
attacks) representing a total of 6154 frames were used for
training and 2 held out sequences (high spin sword swing
and a combo move) representing 644 frames were used
for testing. The legend specifies which modifications were
added:
• uniform. Base model without pretraining where the

masks are selected from a uniform distribution.
*Equal contribution. Listing order of the two authors is random.

• multinom. Instead of a uniform distribution, a multino-
mial distribution was used for selecting d. The probability
was proportional to a quadratic function of d.

• pretrain. Before the training loop, the model was pre-
trained for 5 epochs without masking.

• multinom3. Instead of a quadratic function, a cubic
function was used for sampling the mask.

• reg. In addition to the L2 loss, a regularization loss was
added on the activations in the bottleneck layer. The loss
was 0.0001 (i − 1) ||ai||2 where ai was the activation of
the i-th neuron in the bottleneck layer. In other words,
activations in later neurons were increasingly penalized,
encouraging the model even more to concentrate informa-
tion in the first few units.

As the figure illustrates, the regularization term had a
detrimental effect, with the later components adding little
information. Using pretraining and a multinomial instead
of uniform distribution both improved overall results. Us-
ing a cubic multinomial function (multinom3) instead of
a quadratic one led the lowest overall error, but this came
at the expense of worse performance for a smaller number
of components. We therefore chose the model with pre-
training and a quadratic multinomial probability distribu-
tion (multinom pretrain, red line) because it offered
a good trade-off of performance across the whole compo-
nent spectrum.

2. Optimality of the REVI algorithm

Optimality of Algorithm (1) requires that ∀a ∈ Aview :
benc(a) < bvid(a), i.e., streaming an asset as encoded con-
trol weights should incur a lower bitrate cost than stream-
ing an asset as video. Here, we will discuss two scenarios
involving distant assets and occlusion wherein the require-
ment can be violated and the encoded bitrate exceeds the
video bitrate.

In the first scenario, the asset is far away from the cam-
era and contributes a relatively small number of pixels to
the server-rendered video. In this case, encoding as a video
can be cheaper than naively sending control weights. How-

1

Figure 1. Ablation study for the composable autoencoder. We
compared different sampling strategies for the mask (uniform vs
multinomial), pretraining, and an additional regularization loss
(reg).

ever, the scalability our composable autoencoder provides
a possible solution. Unlike standard autoencoders, which
are trained on a specific dimensionality, the composable
autoencoder allows for on-the-fly tradeoffs between bitrate
and perceptual quality. For instance, starting from a given
number d of components used, bitrate can be reduced at
the expense of perceptual quality by decreasing d. Fig. 2
shows that assets that are further away from the camera in-
deed require less components to attain a target visual qual-
ity. In other words, by scaling down d we can assure that
benc(a) < bvid(a) while maintaining perceptual quality.

The second scenario involves occlusions. If one as-
set completely occludes another asset then rendering the
asset on the server will not contribute video bitrate, i.e.,
bvid(a) = 0 < benc(a). This can be solved by using occlu-
sion awareness in streaming: control weights do not need
to be streamed if the asset is occluded. An approximate
but simple way for detecting occlusions between assets is
to measure the intersection of their bounding boxes. We
did not implement occlusion awareness in our experiments
and leave its development for future work. Our results
show consistent bitrate savings despite between occlusion
unaware.

3. REVI manifest file
In the REVI streaming framework, the server provides the
client with sufficient information to run Algorithm (1) and
select which assets are to be rendered and which are to be
sent as compressed scene control weights. To this end, we
envision that the server sends a manifest file before each
decision time point. The file provides a list of asset IDs
followed by their rendering time and bitrate estimates from

Figure 2. Perceptual optimization. Dimensionality d of the com-
posable autoencoder is plotted against VMAF for an exemplary
asset from the Multiface dataset for three different distances to the
camera: far (green), middle (orange), and near (blue). The further
the asset is away the less components are required to attain a spe-
cific quality level.

Random Forest estimators. In the following example we
assume that assets are provided from front to back:

#vf-actor1 10 23.2
#vf-actor2 5 19.1
#vf-actor3 3 15.5
#vf-actor4 1 11.01
#vf-actor5 11 12.1
#background 3 189.1

If for instance the client has a rendering time budget of
20%, it could request the server to send the first 3 assets
as control weights (at a total rendering time cost of 18%)
and receive the remaining assets as server-rendered video.
For adequate usage of the server’s rendering time estimates,
meta information on the server’s CPU and GPU capabilities
needs to be provided to enable the client to translate server
rendering time cost into its own rendering capabilities.

4. Random Forest predictions
Fig. 3 shows Random Forest (RF) predictions of normal-
ized rendering time and bitrate (x-axes) vs. ground truth
for third-person view scenes. Each line corresponds to a
different scene segment, that is, different set of characters,
background, and camera path. The RF is evaluated on the
features extracted from the characters.

Fig. 3a shows cumulative rendering time predictions.
That is, for rendering time, the first datapoint at 0 is for zero
assets rendered on the client, first datapoint to the right for
the first (closest to camera) asset, second datapoint for the

Figure 3. Random Forest predictions of normalized rendering time and bitrate. (a) Real rendering time vs. predicted rendering time. (b)
Real bitrate vs. predicted bitrate.

first 2 assets, and so on. The last datapoint corresponds to
the background asset. It is more costly to render the back-
ground as opposed to a single character, this explains the
jump for the last data point.

Fig. 3b shows cumulative bitrate predictions. This is
best interpreted from the server perspective. For the first
datapoint (bottom left), the server only streams the control
weights. The second datapoint corresponds to streaming the
background as video plus all other assets as control weights.
Since the background fills most of the image it incurs a high
bitrate. This explains the big jump in bitrate. We can see
that while the predicted bitrate (x-axis) inreases steadily,
the real bitrate (y-axis) levels off in many cases and even
reduces in some cases. In particular, we can identify differ-
ent patterns for scenes with a static camera vs. scenes with
a dynamic camera. In scenes with a static camera, the back-
ground does not move and is easily compressed by the video
codec. It is the moving characters that add dynamics and
hence bitrate. Static scenes correspond to the lower lines in
Fig. 3b that most closely follow the diagonal. In scenes with
a dynamic camera, the scene background itself is moving
and hence incurs a high bitrate cost. Here, dynamic char-
acters do not incur much additional bitrate since the char-
acter just occludes the background (which is moving too).
In some cases, such as when the texture of the character is
simpler than the texture of the background, adding a charac-
ter can even slightly reduce bitrate (small dips in the line).
Dynamic scenes correspond to the upper lines in Fig. 3b
that do not follow the diagonal very well.

If the RF predictions were highly accurate, the line of
predicted vs. real rendering time and bitrate should be close
to the diagonal. This is not the case for many scenes. The

reason is that implicitly the RF prediction assumes additiv-
ity, that is, the total cost for, e.g., 5 assets should be the sum
of the costs of each asset in isolation. For rendering time,
we find that rendering a single asset incurs an additional
constant rendering cost that is likely related to steps in the
rendering pipeline such as initializations. Adding a second
asset adds a lower cost since these steps have already been
performed. For bitrate, we find that additivity does not al-
ways hold (e.g., the total bitrate for three characters is not
necessarily the sum of their individual bitrates), due to mu-
tual occlusions of characters or characters superimposed on
a moving background.

5. HEVC encoding

All video encodings were carried out with HEVC,
using the low-latency oriented recipe: ffmpeg
-vsync 0 -i <input> -c:v libx265 -preset
medium -tune psnr -crf 23 -maxrate
20000k -bufsize 40000k -x265-params
keyint=120 :min-keyint= 120: bframes=0:
rc-lookahead=0: sync-lookahead=0:
no-mbtree=1: scenecut=0 -an <output>.

6. Example videos

We provide a set of videos for an example scene with 7
characters. It illustrates the rendering on the client, server,
and the composite client+server rendering. The filename
describes how many characters were rendered. For instance,
eevee 5server 2client.mp4 indicates that 5 assets
were rendered on the server and 2 on the client. Note that
for this visualization the closest assets were determined on

a frame-by-frame basis. Furthermore, the view used for the
distance calculation was larger than the camera view, so the
closest asset may not be actually visible in a given camera
view, leading to less characters displayed in the client view.
The videos can be played with ffmpeg’s ffplay.

7. Results for FPV and Metaverse/VR
Fig. 4 shows additional results of Experiment 1 for first-
person view (FPV) and Metaverse/VR scenes. Just like
for third-person view (TPV), bitrate saving increases with
client rendering time. The REVI w/o RF model consistently
outperforms the REVI w/RF model. For FPV scenes (Fig.
4a) we furthermore find that REVI w/o RF consistently out-
performs the fixed baseline methods, yielding higher bitrate
savings for the same render time.

For Metaverse/VR scenes (Fig. 4b), the results are more
mixed. We observe a non-monotonic relationship between
render time and the number of assets (see digits in figure).
For instance, going from rendering 1 character to render-
ing 2 characters, average render time increases as expected,
but going from 2 to 3 it decreases. We believe that this is
due to occlusion effects: the head avatars might be simpler
to render that some of the background elements. There-
fore, adding them to the scene might occlude more com-
plex background elements in some cases and therefore de-
crease total rendering time. For the Client-Foreground set-
ting (left panel), REVI w/o RF again outperforms the ad-
hoc methods. For the Client-Background setting, we found
that REVI outperforms the fixed baseline for low bitrate
savings but underperforms for higher bitrate savings.

8. Minimizing rendering time
The optimization problem considered in the main paper is

minimize bvid(Aserver,t) + benc(Aclient,t)

subject to c(Aclient,t) ≤ Θt

In other words, we minimize bitrate subject to a render-
ing time constraint. Let us now consider the complementary
optimization problem whereby we minimize client render-
ing time subject to a bitrate constraint, given by flipping the
roles of the terms,

minimize c(Aclient,t)

subject to bvid(Aserver,t) + benc(Aclient,t) ≤ Θt

(1)

To test this, we used the third-person view data in the
Client-Foreground scenario. Fig. 5 shows the results. We
observe a mixed pattern of results. The REVI w/RF model
performs en par with fixed baselines that always use 1, 2, or
4 characters (respective digits in the figure). The model fails

to target higher bitrates, which is due to limited accuracy in
bitrate and rendering time predictions. The REVI w/o RF
model does not rely on the bitrate predictions. For lower
bitrates, it is outperformed by the 1, 2, and 4 character fixed
baseline (which requires lower rendering time for an equiv-
alent bitrate), but it out performs the 6, 8, and 9 character
baseline for higher bitrates.

Concluding, this illustrates that REVI can be success-
fully applied to the complementary problem of minimizing
rendering time subject to bitrate constraints. However, in
this problem REVI outperforms a fixed baseline for higher
bitrates but not for lower bitrates.

9. Equivalent bitrate encoding
Previous analyses have shown that REVI enables bitrate
savings by streaming both video and compressed control
weights and distributing rendering time between the server
and client. Here, we provide evidence that when bitrate is
fixed, REVI provides better visual quality vis-à-vis a full-
cloud rendering solution. As shown in Fig. 6, at an equiv-
alent bitrate, the REVI solution provides more crisp details
and high-frequency content. This is particularly evident for
irregularly textured surfaces such as the grass in Fig. 6a and
clothing details such as the pants in Fig. 6b.

10. Global Illumination
In the main paper, we used Blender’s EEVEE real-time
rasterization pipeline with light probes. For comparison,
we show a visualization of one our scenes using Blender’s
CYCLES engine [2] in Fig. 7. In this case, High-
Definition Range (HDR) maps [1] are synced with the
client. HDR maps allow for termination of rays without
too many bounces by embedding the environment within
a sphere upon which a HDR map is projected. The path
tracing results show deeper shadows and a richer dynamic
range. Implementing it into our REVI framework would
require either offline delivery or online streaming of HDR
maps.

References
[1] Paul Debevec. Rendering synthetic objects into real scenes:

bridging traditional and image-based graphics with global il-
lumination and high dynamic range photography. In Proceed-
ings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, pages 189–198, New York, NY,
USA, 1998. Association for Computing Machinery. 4

[2] Blender Docs. Cycles, 2024. Accessed: 2024-03-20. 4

Figure 4. REVI result for FPV and Metaverse/VR. Points closest to the bottom right are optimal. (a) Bitrate savings for FPV scenes. The y-
axis shows the relative client rendering time, averaged across all clips. The x-axis shows the bitrate saving obtained with the corresponding
method when compared to the full cloud rendering solution. Each data point represents a different rendering time target. Left: Client-
Foreground. Right: Client-Background. (b) Bitrate savings for Metaverse/VR scenes.

Figure 5. AIMD results for minimizing rendering time subject to bitrate constraints for the third-person data in the Client-Foreground
scenario. The x-axis shows the average total bitrate (sum of video bitrate and scene control weights bitrate) and the y-axis show the average
rendering time percentage on the client. For the low bitrate range < 15, REVI does not outperform the fixed baseline which sends a fixed
number of 1, 2, or 4 characters as control weights for rendering on the client. For the higher bitrate range > 15, however, REVI requires
requires significantly less client rendering time than the fixed baseline for the same bitrate target.

Figure 6. Example frames for bitrates obtained with REVI (background is rendered on server, all characters are rendered on client) vs.
cloud rendering (everything rendered on server) at equivalent bitrates. (a) REVI vs. full-cloud at 8.2 mbps. (b) REVI vs. full-cloud at 14.0
mbps. Compared to REVI, cloud-based rendering has losses in texture crispness and reduced level of detail.

Figure 7. EEVEE rasterization pipeline with light probes (used in the main paper) compared to a path-tracing pipeline CYCLES with HDR
maps.

	. Composable autoencoder
	. Optimality of the REVI algorithm
	. REVI manifest file
	. Random Forest predictions
	. HEVC encoding
	. Example videos
	. Results for FPV and Metaverse/VR
	. Minimizing rendering time
	. Equivalent bitrate encoding
	. Global Illumination

