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Abstract

Traffic video description and analysis have received
much attention recently due to the growing demand for effi-
cient and reliable urban surveillance systems. Most existing
methods only focus on locating traffic event segments, which
severely lack descriptive details related to the behaviour
and context of all the subjects of interest in the events.
In this paper, we present TrafficVLM, a novel multi-modal
dense video captioning model for vehicle ego camera view.
TrafficVLM models traffic video events at different levels of
analysis, both spatially and temporally, and generates long
fine-grained descriptions for the vehicle and pedestrian at
different phases of the event. We also propose a conditional
component for TrafficVLM to control the generation out-
puts and a multi-task fine-tuning paradigm to enhance Traf-
ficVLM’s learning capability. Experiments show that Traf-
ficVLM performs well on both vehicle and overhead camera
views. Our solution achieved outstanding results in Track 2
of the AI City Challenge 2024, ranking us third in the chal-
lenge standings. Our code is publicly available at https:
//github.com/quangminhdinh/TrafficVLM .

1. Introduction

The recent advancements in dense video captioning models,
which can precisely localize and describe incidents within
a continuous video stream, have brought new opportunities
and challenges to the field. This capability is particularly
crucial in complex urban environments where the dynamic
interactions between pedestrians, vehicles, and other ele-
ments can lead to accidents. As urban areas continue to
grow and traffic becomes denser, the ability to automati-
cally and accurately identify and describe accident scenar-
ios from multiple perspectives becomes essential. This not
only aids in immediate response efforts but also informs the
development of safer, more intelligent transportation solu-

tions.
Most traditional deep learning systems for this partic-

ular domain virtually utilize the supervising training ap-
proach to predict frames or localize the incident segments
[21, 47, 50]. While models of this kind may capture the nu-
anced details of the traffic interactions, they lack the abil-
ity to explain their predictions, making it difficult to an-
alyze causes, predict outcomes, and develop preventative
measures. In response to this challenge, the 8th AI City
Challenge [34] introduces the Traffic Safety Description
and Analysis task, which involves detailed video captioning
of traffic safety scenarios for both vehicles and pedestrians,
given the videos from multiple static overhead cameras or
moving vehicle ego cameras.

In this work, we introduce TrafficVLM, which leverages
the advancements of multi-modality dense video caption-
ing models, specifically adapted to the traffic domain. Traf-
ficVLM extracts different layers of visual features from the
vehicle camera frames to locate different phases of the traf-
fic events and then provide detailed descriptions for differ-
ent targets. Our contributions can be summarized as fol-
lows:

• We reformulate the multi-phase Traffic Safety Descrip-
tion and Analysis task as a temporal localization and
dense video captioning task with a single sequence as
the output and introduce TrafficVLM, a video language
model that is adapted specially to this task and domain.

• In accordance with our new fine-tuning objective, we pro-
pose a method to model the video features at different
levels, enabling our model to effectively capture the fine-
grained visual details, both spatially and temporally.

• We make use of the availability of captions for different
targets in the dataset to devise a multi-task fine-tuning
paradigm, allowing TrafficVLM to effectively learn the
alignments between the video and textual features for all
phases.

• We achieved the third rank on the blind test set of the
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AI City Challenge 2024 Track 2 with high results, which
show the competitiveness of our solution.

2. Related Works
2.1. Traffic Accident Detection with Descriptions

Traffic accident detection aims to identify accidental traf-
fic incidents during driving, such as collisions among ve-
hicles and objects and loss of control. Early methods for
this task [50] involve using a manual feature extraction pro-
cess and simply utilizing a Bayesian model to detect traffic
incidents, which lacks the ability to generalize and is sensi-
tive to the extracted features. Further advancements in deep
neural networks allow researchers to deploy deep learn-
ing approaches to reconstruct and predict errors in video
frames to detect traffic accidents [4, 8, 21]. In recent years,
to counter the problem of hectic backgrounds, researchers
have applied a two-stage process. Initially, architectures
such as Mask-RCNN [9], FlowNet [12], DeepSort [38] or
ORBSLAM [22] are used, for instance by Yao et al. [47]
to extract visual features such as bounding boxes, optical
flow, tracking ids, and ego-motion correspondingly. Then,
a detection process is applied to these features for the final
classification.

On the other hand, the latest applications in deep learn-
ing revolve around the power of multi-modality models. For
instance, Liang et al. [19] exploit the language features,
which are already aligned with visual features by extensive
training of CLIP [25], as supervised signals while capturing
the dynamic changes of driving scenes in the high tempo-
ral domain. A few other methods even approach the prob-
lem from a generative perspective, such as TRIVIA [24],
which infuses traffic-domain knowledge into a large video-
language model to elevate the combined capabilities derived
from having been multi-modality pre-trained.

2.2. Video Visual Language Models

Together with the advancements of image-text pre-training
models [1, 6, 11, 17, 25, 30–32, 36, 49, 55], recent works
are moving toward video-text pre-training, with some of the
representatives are [18, 35, 40, 43, 56]. Similar to image-
text pre-training, while these models are excellent at captur-
ing global semantic understanding of the videos, they still
struggle with temporal localization and are not suitable to
use off-the-shelf in a generative manner.

2.3. Dense Video Captioning and Localization

Dense video captioning takes a further step ahead to under-
stand events in the video as it uses timestamp information.
Solutions for this task often interest in capturing all the de-
tails in a video that describe major events that happen inside
it. The general flow for dense video captioning consists
of three steps: (1) Video Feature Extraction, (2) Tempo-

ral Event Localization, and (3) Dense Caption Generation.
Video feature extraction commonly uses strong video visual
language models mentioned above, while traditional ap-
proaches for temporal event localization can be categorized
into two types: proposal-based [3, 52, 53] and proposal-
free methods [7, 51, 54]. Proposal-based techniques gener-
ate candidate proposals before ranking them based on rel-
evance. In contrast, proposal-free methods directly predict
the start and end boundaries of the target moment. Early ap-
proaches often complete the dense caption generation task
by adding dedicated transformer models [41, 42, 44], while
more recent approaches [10, 33, 45, 46] in this field have
witnessed a shift towards joint training of captioning and
localization modules. For instance, Vid2Seq [46] enhances
a language model by incorporating specific time tokens, en-
abling the model to generate event boundaries and textual
descriptions within the unified output sequence. Further-
more, VTimeLLM [10] leverages the power of a large lan-
guage model to enable natural language interaction with hu-
mans, while presenting excellent generalization in video un-
derstanding and event localization.

3. Method

Traffic Safety Description and Analysis is a challenging
task which involves the long fine-grained captioning of dif-
ferent continuous phases of traffic safety scenarios for mul-
tiple targets, given the camera video, the timestamp of each
phase, and the target bounding box information for a num-
ber of frames. Specifically, for each phase, the goal is to
describe the surrounding context, attention, location, and
behaviour of the pedestrian and vehicle in detail. In this sec-
tion, we present TrafficVLM, a video language model that
involves fine-tuning a temporal transformer encoder and the
decoder of a large language model. Following Vid2Seq
[46], we reformulate this task as a temporal localization
and dense video captioning task wherein the model learns
to predict both the event boundaries and the descriptions for
a target as a single sequence of tokens. In Sec. 3.2, we intro-
duce a controllable component which allows TrafficVLM
to generate multiple captions for different targets. We also
show how to make use of different target captions to en-
hance our fine-tuning paradigm in Sec. 3.3.

Problem Formulation. Given a vehicle camera video
V ∈ RT×H×W×C with T frames, the event boundary se-
quence s = {(starti, endi)}Pi=1 with P phases, and a list
of pedestrian bounding boxes b = {(xst

i , xed
i , ysti , yedi )}ni=1

for n < T frames, the goal is to generate two sequences
ṽ = {ṽi}L

v

i=1 for vehicle and p̃ = {p̃i}L
p

i=1 for pedestrian
that contain both the temporal information and the textual
descriptions for all P phases. The final P captions of both
targets, v = {vi}Pi=1 and p = {pi}Pi=1, can be decoded and
extracted directly from ṽ and p̃.
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Figure 1. Overview of our method. First the sub-global and local frame sequences are extracted from the vehicle camera video. Some local
frames might be missing, depending on the availability of the bounding boxes in the event segment. A visual feature extractor fe is then
applied to both of them to get the two visual embeddings xg and parts of xl. The sub-global embedding is trimmed to the event segment
and subsampled to create the sub-global feature x̃g . Feature vectors in the learnable local tensor u are added to the local embedding as
the embeddings for the missing phases. Positional embeddings are then applied to both visual features, followed by the temporal encoder
ft. The final embeddings zg and zl are concatenated with the conditional embedding zcv for vehicle or zcp for pedestrian to control the
generation output. The text decoder h receives the concatenated embedding as the input and autoregressively generates the output sequence.
For fine-tuning, the final loss is calculated by combining the losses for generating the vehicle and pedestrian output sequences.

3.1. Visual Feature Extraction

Main Feature. To remove redundant information, we ex-
tract our main video feature at a sub-global level by crop-
ping each frame equally to a target segment that contains all
local pedestrian features across T frames. Explicitly, we se-
lect a segment (xst

min, x
ed
max, y

st
min, y

ed
max) from the bound-

ing box information b and extend the shorter dimension to
length

W̃ = max(yedmax − ystmin, x
ed
max − xst

min) (1)

to make the selected segment square. We crop all T frames
to this area, which results in Ṽ ∈ RT×W̃×W̃×C . Our visual
feature extractor, which is denoted as fe, is a frozen CLIP
ViT-L/14 [25] that processes at resolution 224×224 pixels.
We resize each cropped frame to the target resolution and
encode it independently to get the visual embedding for the

entire video:

xg = {fe(Ṽi)|Ṽi ∈ Ṽ } ∈ RT×d, (2)

with d being the dimension of the embedding.
We continue to use the event boundary sequence s to trim

the video feature to the segment that is related to the traf-
fic event. To diversify the segment duration and the phase
timestamps for training, we randomly select two offset du-
rations offsetst and offseted between 0s and 5s at the video
extracted frame rate and change the segment start and end
frame accordingly to increase the duration. Specifically, the
video feature xg is trimmed to

(max(0, start1 − offsetst),

min(endP + offseted, T )).
(3)

We subsample the trimmed feature to a smaller frame rate
and then continue to subsample or zero-pad it to F frames.
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The final feature x̃g ∈ RF×d is used as the main video
feature for training.

Local Feature. For each phase Pi ∈ P , we randomly
select a single pedestrian bounding box bPi ∈ b to con-
struct our local features. Similar to how we process our
main feature, we square crop each frame corresponding to
bounding box bPi

to the segment that is close to the bound-
ing box and resize it to 224 × 224 pixels, represented as
li ∈ R224×224×C . The cropped segment is then separately
encoded with our visual extractor to get:

xl
i = fe(li) ∈ Rd. (4)

As illustrated in Fig. 1, there can be several scenarios
where there is no bounding box bPj in relation to phase
Pj ∈ P . To address this issue, we add a learnable tensor
u = {ui}Pi=1 ∈ RP×d, and replace the missing visual fea-
ture xl

j with the learnable embedding uj at the correspond-
ing phase. All phase visual features are aggregated to form
the final local embedding xl = {xl

i}Pi=1 ∈ RP×d.
In practice, we extract all raw CLIP features xg and xl

prior to training to save computation time and resources.
Details about the selection of features will be explained in
Sec. 4.2.

3.2. Architecture

Temporal Visual Encoder. We model the temporal dynam-
ics for the frames of both the sub-global feature x̃g and the
local feature xl using two learnable positional embeddings
qg ∈ RF×d and ql ∈ RP×d, and a vision transformer [5]
ft, which results in the final visual embeddings zg and zl:

zg = ft(x̃g + qg) ∈ RF×d (5)

zl = ft(x
l + ql) ∈ RP×d (6)

Generation Output Control. We make use of how the
transformer decoder uses the multi-head attention layer to
attend to the input of the encoders and design the condi-
tional module in a way that allows the model to learn the
condition itself. Simply, for both targets vehicle and pedes-
trian, we add the additional learnable conditional embed-
dings zcv ∈ Rk×d and zcp ∈ Rk×d, where k is the extended
dimension of the embeddings.

Text Decoder. To generate the output sequences, we em-
ploy T5-Base [26] as our transformer decoder h. The output
sequences contain both the pseudo-timestamps and the tex-
tual descriptions for all phases:

ṽ = {ṽi}L
v

i=1 = h(zg, zl, zcv) (7)

p̃ = {p̃i}L
p

i=1 = h(zg, zl, zcp), (8)

where Lv and Lp are the lengths of the vehicle and pedes-
trian sequences correspondingly. As the main video fea-
tures are trimmed to the target scenario segments, we do
not include the temporal boundaries information in the in-
puts to the decoder to force the model to learn the temporal
alignment between the visual features of each phase and the
matching textual description. Details about the output se-
quences will be given in the following parts.

Time Tokenization. As T5-Base was selected for our
text decoder, we also use the T5 tokenizer, which is based
on the SentencePiece tokenizer [16] and is publicly avail-
able on the HuggingFace library [39]. Following Vid2Seq,
we extend the tokenizer by adding N = 100 additional
time tokens, which represent the relative timestamps in each
video segment.

Ouput Sequence Construction. This part explains
how we construct the two output sequences to be used as
groundtruths during training and their format. We first ad-
just the event boundary sequence s to the new start time
startn = max(0, start1 − offsetst) and end time endn =
min(endP + offseted, T ) at Eq. (3) to create the new event
boundary sequence sg:

sg = {(startgi , end
g
i )}

P
i=1

= {(starti − startn, endi − startn)}Pi=1

(9)

The new duration D of the video segment is obtained by:

D = endn − startn (10)

Each timestamp in the new event boundary sequence sg is
then rescaled to an integer between 0 and N−1 to construct
the quantized event boundary sequence sq:

sq =

{(⌊
startgi ×N

D

⌋
,

⌊
endgi ×N

D

⌋)}P

i=1

(11)

We map each quantized timestamp to one of N time tokens,
the result sequence is denoted as t:

t = {(tsti , tedi )}Pi=1 (12)

For the vehicle textual tokens, we first tokenize all phase
descriptions of the caption sequences v to obtain vt =

{vti}Pi=1, where vti = {vtij}
Lv

i
j=1 is the textual token sequence

for phase i. Similar to Vid2Seq, we construct a new se-
quence for each phase i by concatenating the start time to-
ken tsti , the end time token tedi , and all the textual tokens vtij
in vti . We concatenate all such sequences in increasing or-
der of the start time and add a BOS token at the beginning
and a EOS token at the end of the sequence. The result is
the final output sequence ṽ:

ṽ = {ṽi}L
v

i=1

= [BOS, tst1 , ted1 , vt11 , ..., v
t
1Lv

1

, tst2 , ..., EOS]
(13)
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(a) Vehicle view.

(b) Overhead view.

Figure 2. Sub-global and local segments for vehicle and overhead
camera views.

The output sequence p̃ is obtained in the same manner:

p̃ = {p̃i}L
p

i=1

= [BOS, tst1 , ted1 , pt11 , ..., p
t
1Lp

1

, tst2 , ..., EOS]
(14)

Phase Captions Reconstruction. During inference, the
P captions for both vehicle and pedestrian are recovered
by using the tokenizer to decode ṽ and p̃, and regular ex-
pression to extract each of the captions from the combined
sequences.

3.3. Fine-tuning

To leverage the two different sets of captions provided by
the dataset and let the model learn both the spatial and
temporal alignments between the video and textual features
better, we directly use vehicle captioning and pedestrian
captioning as our two fine-tuning tasks. For both tasks,
we apply the standard maximum likelihood objective, with
teacher forcing [37] and a cross-entropy loss:

Lc
θ(z

g, zl, zc, y) = −E

[
L−1∑
i=1

log pθ
(
yi+1 | zg, zl, zc, y<i

)]
,

(15)
where zg is the sub-global video feature, zl is the local
video feature, zc is the conditional embedding, y is the tar-
get output sequence, and L is the length of y.

Split Subset No. scenes No. videos

Train
Main 97 425
Normal trimmed 70 114
External 2430

Valid
Main 48 210
Normal trimmed 34 61
External 972

Test
Main 49 224
Normal trimmed 35 65
External 375

Table 1. Statistics of the WTS dataset.

The final loss is the combination of the losses of both
tasks:

Lθ = Lc
θ(z

g, zl, zcv, ṽ) + Lc
θ(z

g, zl, zcp, p̃) (16)

4. Experiments
4.1. Experimental Setup

Datasets. For fine-tuning and evaluation, we use the WTS
dataset [15], which is introduced along with the Traffic
Safety Description and Analysis track in the AI City Chal-
lenge 2024. The dataset contains 155 scenarios and 810
videos from both fixed overhead cameras and vehicle cam-
eras, as illustrated in Tab. 1. In addition, the dataset also
provides 3402 vehicle camera videos extracted from the
BDD100K dataset [48]. Each scenario has around 5 phases,
for which there is an annotation file capturing the location,
attention, behaviour, and context information of both the
vehicle and pedestrian in detail. Target pedestrian bounding
boxes are provided for a number of frames in each video,
and target vehicle bounding boxes are also provided for the
overhead videos.

As the vehicle camera videos take up the majority of the
WTS dataset, our fine-tuning data pipeline mainly extracts
the visual features from the vehicle videos. We still ran-
domly add in some overhead camera videos, which occupy
up to 10% of the data pipeline to create diversity in the fine-
tuning data. All of our experiments are evaluated on the
main subset of the WTS validation set. We generate vehicle
and pedestrian captions for all subsets in the WTS test set
and submit them to the AI City Challenge portal to obtain
the test results.

Evaluation Metrics. Following the evaluation setups of
Track 2 of the 8th AI City Challenge, we adopt BLEU-4
[23], ROUGE-L [20], METEOR [2], and CIDEr [29] as our
main evaluation metrics. BLEU and ROUGE are both stan-
dard metrics for assessing the quality of machine translation
systems based on n-grams overlap that focus on precision
and recall respectively. METEOR is an improvement of the
BLEU score by using an F3 measure of unigram similarity,
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Global Sub- Local Phase Vehicle Captioning Pedestrian Captioning Scoreglobal Encoder BLEU ROUGE METEOR CIDEr BLEU ROUGE METEOR CIDEr
✓ 0.395 0.584 0.478 0.607 0.302 0.37 0.424 0.323 33.08

✓ 0.426 0.591 0.489 0.316 0.302 0.376 0.42 0.512 33.55
✓ ✓ ✓ ✓ 0.402 0.589 0.472 0.354 0.316 0.376 0.429 0.882 33.84
✓ ✓ 0.432 0.594 0.495 0.703 0.313 0.375 0.425 0.257 34.12

✓ ✓ 0.411 0.598 0.479 0.647 0.326 0.375 0.437 0.412 34.15
✓ ✓ ✓ 0.433 0.589 0.499 0.555 0.315 0.386 0.437 0.482 34.54

✓ ✓ ✓ 0.443 0.591 0.5 0.785 0.317 0.367 0.431 0.507 34.74

Table 2. Ablation study results for our TrafficVLM variations on the WTS main validation set, vehicle view. Phase Encoder denotes
temporal modelling for the local feature. The final score used for selecting the models is calculated in the same manner as the evaluation
score of the 8th AI City Challenge Track 2.

Global Sub- Local Phase Vehicle Captioning Pedestrian Captioning Scoreglobal Encoder BLEU ROUGE METEOR CIDEr BLEU ROUGE METEOR CIDEr
✓ 0.394 0.564 0.467 0.384 0.297 0.373 0.416 0.171 32.08

✓ ✓ 0.401 0.591 0.474 0.218 0.322 0.378 0.432 0.392 33.23
✓ ✓ ✓ ✓ 0.413 0.597 0.479 0.252 0.306 0.377 0.433 0.345 33.31

✓ 0.395 0.588 0.474 0.601 0.314 0.374 0.43 0.661 33.76
✓ ✓ 0.419 0.596 0.49 0.577 0.317 0.384 0.428 0.459 34.23

✓ ✓ ✓ 0.434 0.593 0.49 0.574 0.32 0.373 0.436 0.423 34.33
✓ ✓ ✓ 0.419 0.589 0.493 0.609 0.316 0.378 0.438 0.61 34.43

Table 3. Ablation study results for our TrafficVLM variations on the WTS main validation set, overhead view.

alongside a penalty p for displacements of words in gener-
ated sentences. CIDEr measures the similarity between the
reference and the candidate sentences via the cosine simi-
larity of their TF-IDF [27] weights. The final score which
is used to rank the models is calculated as the combination
of all 4 metrics:

Score =
1

4
× [100× (B +M +R) + 10× C] (17)

where B, M , R, and C stand for BLEU-4, METEOR,
ROUGE-L, and CIDEr respectively.

Implementation Details. We initialize both the tem-
poral visual encoder and the text decoder with checkpoint
vid2seq htmchaptersvitt from VidChapters [45], which is
publicly available. The local temporal positional embed-
ding ql is initialized by subsampling the sub-global posi-
tional embedding qg , which is loaded from the VidChapters
checkpoint. All videos are extracted at 30 FPS, and the main
video features are subsampled to 3 FPS after the trimming.
We set F = 100 as the final number of frames for the sub-
global feature. The text decoder is truncated or padded to
Lv = Lp = 1024 tokens. We apply the Adam optimizer
[14] with a learning rate 3 · 10−4, a cosine learning rate de-
cay and a warm-up period. All of our models are fine-tuned
with batch size 1 for 30 epochs on an NVIDIA RTX-3060
GPU for around 8 hours. We select the best checkpoint for
each model based on the validation metrics.

4.2. Ablation Studies

To study the effects of different modules and feature levels
on the performance of our models, we mix and match them
to create different variations of TrafficVLM, the results of
which are shown in Tab. 2 and Tab. 3.

Choice of features. In addition to the sub-global and
the local features used in the main model, we conduct some
experiments with the features extracted at a global level by
square cropping the entire camera frames centering on all
the pedestrian bounding boxes. In Tab. 2, we present the
ablation results for the Traffic Safety Description and Anal-
ysis task on the vehicle branch of the main WTS validation
set. As our main concern is the vehicle camera view, we use
the results in this table to rank the models. It can be seen
that using a combination of two or more features is signifi-
cantly better than just using one of them. In the experiments
where the sub-global feature is directly used in comparison
with its global counterpart (row 1 vs row 2 and row 7 vs row
6), the results of both are mostly comparable. The two best
models use the global or sub-global feature alongside the
local feature with temporal modelling. Of the two of them,
the one with the sub-global feature (row 7) outperforms its
counterpart in 6 out of 8 metrics. Unfortunately, any com-
bination of both the global and sub-global features does not
give a high result compared to other options.

Performance on the Overhead Scenarios. Tab. 3
shows the results of our experiments on the overhead branch
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Rank Team Name Score
1 AliOpenTrek 33.4308
2 AIO ISC 32.8877
3 Lighthouse 32.3006
4 VAI 32.2778
5 Santa Claude 29.7838
6 UCF-SST-NLP 29.0084
7 Monitor 28.7485
8 X 27.7771
9 HCMUS AGAIN 22.7371

Table 4. Public leaderboard of the 8th AI City Challenge Track 2.

of the main WTS validation set. Although overhead videos
only take up to 10% of our training set due to their avail-
ability compared to the vehicle videos, it is apparent that
our models still perform relatively well in this scenario, as
most of the numbers are close to those in Tab. 2. Two mod-
els with the global or sub-global feature used together with
the temporal encoded local feature still perform the best in
this scenario.

Local Temporal Modelling. As most scenarios only
have around 5 phases, it is one of our designing concerns
on whether to do temporal modelling for the local feature
(which is denoted as Phase Encoder in Tab. 2 and Tab. 3).
We observe that in both scenarios, adding temporal mod-
elling to the local feature significantly improves the model
performance on most of the metrics (row 5 vs row 7 for
Tab. 2 and row 2 vs row 6 for Tab. 3), which show the ef-
fectiveness of our design.

4.3. Performance in the Challenge

In Track 2 of the AI City Challenge 2024, we generate the
result samples for the WTS internal blind test set (which
contains both traffic scenarios and normal scenarios) with a
model that uses only the sub-global feature. For the exter-
nal blind set, we employ an ensemble method to combine
that same model with the two best checkpoints of our main
model using the generation confidence scores of the text de-
coder.

Tab. 4 presents the final public leaderboard of the 8th

AI City Challenge Track 2. Our team (with the team
name Lighthouse) achieved third place with a final score
of 32.3006. The result of our solution is only behind the top
two teams by a small margin, which shows the competitive-
ness of TrafficVLM for the Traffic Safety Description and
Analysis task.

5. Conclusion
In this paper, we present TrafficVLM, a visual language
model tailored to perform dense video captioning for traf-
fic incidents, as well as an effective fine-tuning paradigm

leveraging the multi-target nature of the Traffic Safety De-
scription and Analysis task. TrafficVLM achieved the
third position in Track 2 of the AI City Challenge 2024
with an impressive score, demonstrating its effectiveness
for the task. Besides dense video captioning and tem-
poral localization, the current implementation of Traf-
ficVLM could be extended to a variety of new tasks, in-
cluding traffic video question answering, traffic video sum-
marization, and other video understanding tasks. We be-
lieve that future works can enhance TrafficVLM further
by exploring the use of different large language models,
such as Llama2 [28] or Mistral [13] and employ different
data augmentation strategies. The controllable design of
TrafficVLM can be strengthened by using a text encoder
to impose different conditions on the description genera-
tion.
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