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Abstract

In recent years, traffic surveillance systems have begun
leveraging fisheye lenses to minimize the requisite number
of cameras for comprehensive coverage of streets and in-
tersections. However, as fisheye images have large radial
distortion, they pose new challenges to standard object de-
tection algorithms. In this study, we propose a robust object
detection method in traffic scenarios using fisheye cameras.
Specifically, we develop a novel data augmentation method,
which is applied to VisDrone dataset. Note that we select
this dataset for augmentation, since it bears resemblances
to the Fisheye8K dataset. Furthermore, we leverage pseudo
labels generated by a pre-trained object detection model
based on the Fisheye8K and original VisDrone dataset to
further enrich the training data. Finally, we utilize various
state-of-the-art object detection models trained with differ-
ent combinations of the proposed augmented data, which
are then combined with robust ensemble techniques to fur-
ther enhance the overall object detection performance. As
a result, our proposed method achieves a final F1 score of
64.06% on the 2024 AI City Challenge - Track 4 and ranks
first among the competing teams.

1. Introduction

With the escalating demand for intelligent transportation
systems and the growing complexity of urban traffic en-
vironments, traffic surveillance has become indispensable
in modern urban management and safety strategies [46].
The main components of traffic surveillance applications
include camera systems and object detection algorithms,

*Corresponding author.

which enable automated monitoring, analysis, and manage-
ment of traffic conditions. While traditional traffic cam-
era systems have predominantly relied on pinhole cameras,
which suffer from limited coverage areas, the emergence
of fisheye cameras presents a promising alternative. Fish-
eye cameras offer wide-area coverage with a single cam-
era setup, thereby alleviating the need to install multiple
cameras, particularly at road intersections. However, their
unique distortion characteristics are really challenging for
object detection tasks.

The roots of fisheye cameras trace back to 1908 when
[43] first introduced the concept and constructed the first
fisheye camera by filling a pinhole camera with water. Sub-
sequently, in 1922, [2] replaced water with a hemispheri-
cal lens. Initially employed in automotive surround-view
systems, fisheye cameras have gained traction for their
wider field of view compared to conventional pinhole cam-
eras, providing additional context and covering blind spots
around vehicles. Despite their potential, the absence of pub-
licly available data hindered extensive research on fisheye
cameras, particularly in the realm of object detection. Re-
cently, [13] created the Fisheye8K dataset - the first open
dataset dedicated to the training and evaluation of road ob-
ject detection for traffic surveillance, which facilitated work
in this branch of research. Due to the optical design of their
lenses, images produced by fisheye cameras typically ex-
hibit stronger distortion towards the periphery compared to
the center of the image, making objects that are far away
from the camera appear shrunk and warped. Furthermore,
traditional road object detection challenges, such as class
imbalance, occlusion, and viewing perspective, persist in
fisheye imagery, exacerbating the complexity of the task.

In this paper, we propose an efficient approach to the
vehicle and pedestrian detection problem in the context of
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Figure 1. Predictions made by our proposed framework on the 2024 AI City Challenge - Track 4 test dataset, where red, blue, pink, yellow,
and green bounding boxes represent predictions for Cars, Bikes, Pedestrians, Trucks, and Buses, respectively. Figure 1a and Figure 1b
demonstrate bounding boxes detected on images captured during daytime and nighttime, respectively.

fisheye camera in the 2024 AI City Challenge - Track 4 [40].
Our main contributions are summarized as follows:

• We propose a novel data augmentation method tailored
to the VisDrone dataset [8], which aims to generate syn-
thetic data having similar characteristics to the Fisheye8K
dataset. Additionally, we leverage pseudo labels gen-
erated by our pre-trained CO-DETR [48] model based
on Fisheye8K and the original VisDrone dataset. Sub-
sequently, we combine the synthetic VisDrone data and
pseudo data with Fisheye8K to train an ensemble-based
object detection model detailed in the following.

• We introduce a novel ensemble model that com-
bines 4 state-of-the-art object detection models, namely,
YOLOv9-e [39], YOLOR-W6 [38], InternImage [41],
and CO-DETR [48] using the Weighted Boxes Fusion
(WBF) [34] method. These selected models are trained
with different combinations of VisDrone, synthetic Vis-
Drone, FishEye8k, and pseudo data (see Section 3).

• Finally, we conduct extensive experiments to demonstrate
the superior performance of our proposed data augmenta-
tion and ensemble method over the state-of-the-art base-
lines, securing the 1st position in Track 4 of the challenge.
Specifically, Figure 1 illustrates the objects detected by
our proposed method on samples captured during day-
time and nighttime in the 2024 AI City Challenge - Track
4 test dataset. It is shown in this figure that our method
accurately detects and classifies objects in the presence
of diverse environmental contexts, including diminutive

objects situated at the image periphery.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a review of pioneering works on object de-
tection in fisheye images. Section 3 elaborates on our ap-
proach and system architecture. We summarize experiment
results and implementation details of the proposed method
in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Object Detection

Object Detection is a fundamental task in computer vision
that involves identifying and localizing objects within im-
ages or videos. In traffic surveillance applications, utilizing
object localization algorithms facilitates automatic monitor-
ing and analyzing traffic flow, leading to effective traffic
management. Regarding technical design, object detection
algorithms can be categorized into two main groups: two-
stage and one-stage detectors. In two-stage object detec-
tion methods, the process involves two main stages: region
proposal and classification. The algorithm first generates
a set of candidate object bounding boxes using techniques
such as selective search, edge boxes, or region proposal net-
works. Afterward, the proposed regions of interest are fed
into a classifier to predict the presence of objects and refine
the bounding boxes’ coordinates. Popular two-stage object
detection architectures include R-CNN [12], Fast R-CNN
[11], Faster R-CNN [30], and Mask R-CNN [14]. In con-

7018



trast, one-stage detectors are designed to directly estimate
the bounding boxes’ coordinates and class probabilities in a
single pass through the network. Examples of one-stage ob-
ject detection methods include YOLO [1, 9, 17, 27–29, 37–
39], SSD [20], RetinaNet [19], EfficientDet [36], and In-
ternImage [41]. Recently, there has been a paradigm shift
in object detection that leverages attention mechanisms and
transformer-based architecture initially designed for natu-
ral language processing tasks. Several detection architec-
tures based on transformers have gained popularity due
to their effectiveness, including DETR [4], DEformable-
DETR [47], Swin Transformer [21], and CO-DETR [48].

2.2. Road Detection Datasets

Dedicated datasets play a pivotal role in training and eval-
uating object detection algorithms, especially in traffic set-
tings. Hence, multiple datasets have been created explicitly
for various tasks, such as road detection and autonomous
driving. Road detection datasets typically consist of images
captured from an overhead view, often extracted from traffic
surveillance cameras or drones. Well-known datasets used
for road detection tasks include the UA-DETRAC [42], the
MIO-TCD [23], the UAV [7], and the VisDrone dataset [8].
In contrast, datasets designed for self-driving scenarios are
often created using cameras mounted on vehicles. Exam-
ples of object detection datasets created for this task include
the KITTI [10], the Eurocity Persons [3], and the Cityscapes
dataset [6].

2.3. Object Detection in Fisheye Images

Despite the growing popularity and long development his-
tory of fisheye cameras, publicly available datasets for fish-
eye images remain limited. In 2019, [44] created the Wood-
Scape dataset, the first comprehensive dataset for road de-
tection. However, the dataset was explicitly designed for
autonomous driving. The Fisheye8K [13], published in
2023, was the first fisheye image dataset dedicated to traffic
surveillance, and it is the foundation of the 2024 AI City
Challenge - Track 4 [40]. Fisheye images exhibit strong
radial distortion, which can affect the appearance of ob-
jects, making their shapes and sizes different from those in
perspective images. Thus, it is challenging for traditional
object detection algorithms to accurately detect objects in
fisheye images due to the distorted representations. Ad-
dressing this challenge often requires developing special-
ized techniques and algorithms tailored to fisheye imagery.
In 2018, [5] introduced the spherical CNNs (SCNNs) that
were specifically constructed for analyzing spherical im-
ages. Afterward, in 2019, [45] created a neural network
based on SCNNs that specialized in object detection for
panoramic images. In [26], the authors surveyed different
object representations and proposed a curved bounding box
model that possesses the optimal properties for fisheye im-

ages. Despite the development of multiple techniques, only
a few were explicitly targeted at road object detection tasks.

3. The Proposed Method

3.1. Data Selection

We approach the competition with a data-centric strat-
egy rather than focusing solely on the model. There are
two main problems we needed to address: finding public
datasets that are similar to the Fisheye8K [13] dataset to
augment our data and finding data augmentation methods to
handle the unique characteristics of fisheye camera data. We
thoroughly survey several public datasets containing classes
relevant to traffic surveillance, such as UA-DETRAC [42],
Eurocity Persons [3], Cityscapes [6], MIO-TCD [23], UAV
[7], and VisDrone [8]. Note that the classes of interest in-
clude truck, pedestrian, motorbike, bus, and car.

Observing datasets like Eurocity Persons, Cityscapes,
and UA-DETRAC, we note that the images were predom-
inantly captured from front-facing cameras with low view-
ing angles and large object sizes, limiting their resemblance
to fisheye camera data. On the other hand, datasets like
MIO-TCD, UAV, and VisDrone, containing images cap-
tured from drones with high viewing angles and numerous
small objects, show close similarities with the Fisheye8K
dataset. Therefore, we individually combine these three
datasets with the Fisheye8K dataset for further experiments.

Through experimental evaluations presented in Sec-
tion 4.2, we determine that combining the VisDrone dataset
with the Fisheye8K dataset yields the best performance (see
Table 1 in Section 4). Consequently, we select the VisDrone
+ Fisheye8K dataset for further experiments.

Additionally, we explore various data augmentation
techniques tailored to fisheye camera data, including tech-
niques that transform regular images into fisheye images.
One such technique involves transforming regular images
into fisheye-like images to mimic the unique characteristics
of the Fisheye8K dataset. This approach aims to bridge the
gap between datasets captured from different perspectives,
enhancing the model’s ability to generalize across diverse
environments. We refer to this augmented dataset as Syn-
thetic VisDrone. The experiment results in Section 4.3 indi-
cate that while there is not a significant improvement in the
overall mAP, the model trained on the Synthetic VisDrone
dataset performs exceptionally well in predicting small ob-
jects at the edges of the frame. Furthermore, by leveraging
ensemble modeling techniques, we further enhance the ac-
curacy of the main model by integrating predictions from
the model trained on the Synthetic VisDrone dataset, as will
be detailed in Section 4.4.
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Final resultWBF

WBF

VisDrone

FishEye8k train + val

Pseudo Label

VisDrone - Synthetic FishEye8k fold 0

VisDrone FishEye8k fold 0

VisDrone FishEye8k fold 1

VisDrone FishEye8k fold 2

VisDrone FishEye8k train + val

Figure 2. The proposed framework for object detection using fisheye camera images, where green blocks represent datasets, red blocks
represent models, and blue blocks represent the model’s output. The final prediction is obtained by employing the Weighted Boxes Fusion
method to ensemble 7 models, consisting of 3 models (YOLOv9-e, YOLOR-W6, InternImage) trained with the VisDrone + Fisheye8K
dataset, and 4 CO-DETR models trained with 4 different datasets: train data, train + val data, train + val + pseudo data, and synthetic data.

3.2. Model Selection

In terms of model selection, we choose the current top-
ranked model in the object detection category of the COCO
dataset, namely, CO-DETR [48]. Additionally, we also
utilize a combination of other models such as YOLOR-
W6 [38], which achieves the best performance as reported
by the authors of the Fisheye8K dataset in their paper.
YOLOv9-e [39], the latest object detection model in the
YOLO family, is also included for experimentation to eval-
uate its performance on the Fisheye8K dataset. InternImage
[41], a well-known model that achieves high ranks in object
detection leaderboards, is also employed.

After training these models on the VisDrone + Fish-
eye8K dataset, we employ the WBF method [34] for ensem-
ble modeling. Note that WBF is currently the most effective
bounding box ensemble method for object detection tasks,
as evidenced by its performance in various object detection
competitions. In addition, we employ the pseudo-labeling
method to further improve the accuracy on the test dataset.
The proposed framework are illustrated in Figure 2.

4. Experiment Results and Discussion

4.1. Evaluation Metrics

Mean Average Precision Initially, the evaluation metric
used for the 2024 AI City Challenge - Track 4 was the mAP,
which is the mean of average precision over all classes. Be-
cause the mAP inadvertently favors strategies that lead to
many false positives in detection, the evaluation metric was
modified later in the competition. Consequently, most of
our experiments are evaluated based on mAP formulated as

mAP =
1

n
·

n∑
k=1

APk. (1)

F1-score The primary ranking criterion was later
changed to the harmonic mean of total Precision and Re-
call, which is the F1-score or F-measure [31]. The F1 metric
serves as a balanced measure that combines Precision and
Recall into a single score, offering insights into a model’s
effectiveness in correctly identifying instances of positive
classes while minimizing false positives and false negatives.
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The F1-score is calculated as follows:

F1 =
2 · Precision · Recall
Precision + Recall

. (2)

4.2. Dataset

Original Dataset Track 4 of the AI City Challenge 2024
[40] is based on the Fisheye8K dataset [13]. The origi-
nal dataset contains 8000 images extracted from 35 fisheye
cameras in various locations across Hsinchu City, Taiwan.
Images are captured at 1080x1080 and 1280x1280 resolu-
tions. Annotations are provided for objects belonging to
five categories, including Bus, Bike, Car, Pedestrian, and
Truck, with a total of 157,000 bounding boxes. The dataset
is divided into a training set, which consists of 5288 images,
and a validation set, which has 2712 images.

Additional Dataset To increase diversity and improve
the detection performance, we utilize additional datasets.
According to the rules of the 2024 AI City Challenge -
Track 4, using any non-public dataset for training, valida-
tion, or testing is invalid and will not be qualified for the
challenge awards. Thus, we experiment with three pub-
lic datasets, including the UAV dataset [7], the MIO-TCD
dataset [23], and the VisDrone dataset [8]. We chose these
three datasets because they bear several resemblances to the
original Fisheye8K dataset, such as containing small ob-
jects, having images captured from an overhead view, and
annotating similar object categories. We modify the anno-
tations’ categories and combine the datasets with the origi-
nal Fisheye8K training set individually. Afterward, we fine-
tune the CO-DETR [48] model for 16 epochs on each com-
bined dataset and evaluated the results with the mAP0.5-0.95
metric on the Fisheye8K validation set. As shown in Ta-
ble 1, enhanced performance was only witnessed when
training on the combined dataset composed from the Fish-
eye8K train set and the VisDrone train set. Hence, we select
the VisDrone dataset as the additional dataset for our further
experiments.

Training data mAP0.5-0.95

Fisheye8K only 47.00
MIO-TCD + Fisheye8K 44.50
UAV + Fisheye8K 43.50
VisDrone + Fisheye8K 49.05

Table 1. Performance comparison of CO-DETR model trained
with different datasets on validation set.

Data Augmentation To effectively improve the perfor-
mance of our model on the Fisheye8K dataset, it is neces-
sary to generate fisheye images from the pre-selected Vis-
Drone dataset. We expect that training on additional syn-
thetic fisheye images makes the models more robust to ra-
dial distortion, thus enhancing their generalization ability

on fisheye images. There are multiple methods for apply-
ing the fisheye effect on ordinary images [32, 35]. In our
work, we utilize the formula implemented by the iFish tool
[25] due to its efficiency and simplicity. When generating
synthetic data, the original image is split into two square
images to minimize the dark area around fisheye images.
Afterward, the images are transformed and cropped to re-
move the surrounding dark area. To transform the bounding
box’s coordinates, we convert the coordinates of each ver-
tex independently, and then we calculate the coordinates of
the new top-left and bottom-right corners by taking the min-
imum and maximum of the newly calculated x-coordinates
and y-coordinates, respectively. The process of converting
an ordinary image to two fisheye images is demonstrated
in Figure 3. For convenience, we term the new dataset as
Synthetic VisDrone.

(a)

(b) (c)

Figure 3. Example of the synthetic data generation process. Fig-
ure 3a depicts the original image. Figure 3b and Figure 3c illus-
trate the fisheye images generated from the left and right halves.

4.3. Implementation Details

CO-DETR In our study, we employ the CO-DETR model
with the Swin-L backbone architecture, which was pre-
trained with the COCO [18] and the Objects365 [33]
datasets. The checkpoints of this model are publicly avail-
able on the mmdetection GitHub repository [24]. The train-
ing is conducted over 16 epochs with a learning rate of 1e-5.
Throughout the training process, the image size is randomly
resized from 480 to 2048. During inference, the image size
is resized using a scale of (1920, 2048). We utilize the
CO-DETR model trained on two datasets: VisDrone + Fish-
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Model Pretraining data Data used for finetuning mAP0.5-0.95

CO-DETR COCO + Objects365 VisDrone + Fisheye8K fold 0 49.05
CO-DETR COCO + Objects365 Synthetic VisDrone + Fisheye8K fold 0 45.78
InternImage ImageNet22k VisDrone + Fisheye8K fold 0 41.11
YOLOv9-e None VisDrone + Fisheye8K fold 0 43.89
YOLOR-W6 COCO VisDrone + Fisheye8K fold 0 43.47

Table 2. Performance comparison of different object detection models on the Fisheye8K validation set.

eye8K and VisDrone Synthetic + Fisheye8K. The model’s
performance is summarized in Table 2.

InternImage We use a COCO-pretrained InternImage-L
model [41] and fine-tune it on the dataset composed of the
Fisheye8K training set and the VisDrone training set for 50
epochs using the AdamW optimizer [22]. The learning rate
is set to 1e-4.

YOLOv9 We train the YOLOv9-e [39] on the dataset
composed of the Fisheye8K training set and the VisDrone
training set. Since the COCO-pretrained model provided by
[39] is specifically tailored for images of size 640x640, we
train the YOLOv9-e on input size 1280x1280 from scratch
for 250 epochs using the stochastic gradient descent (SGD)
optimizer [15] with the learning rate of 0.01.

YOLOR We fine-tune the COCO-pretrained YOLOR-
W6 model [38] on the dataset composed of the Fisheye8K
training set and the VisDrone training set for 250 epochs
using the Adam optimizer [16] with the learning rate of 0.01
and the input size of 1280x1280.

We run all experiments on one DGX node with 8
NVIDIA A100-80GB GPU. The result of each model on
the Fisheye8K validation set is shown in Table 2. Evidently,
when training with the dataset composed of the Fisheye8K
training set and the VisDrone training set, the CO-DETR
achieves superior performance compared to the remaining
models. Hence, we select it as the main model for our fur-
ther experiments. Regarding the YOLO models, it is shown
via Table 2 that the YOLOv9-e demonstrates great poten-
tial, achieving better mAP compared to YOLOR-W6 and
InternImage without using pretrained checkpoints. Notably,
when utilizing the Synthetic VisDrone dataset instead of the
original VisDrone dataset in the training process, the mAP
of the CO-DETR model decreases. However, as illustrated
in Figure 4, using the Synthetic VisDrone dataset makes the
CO-DETR model more robust to radial distortion, thus en-
hancing its accuracy when objects are located towards the
periphery of the image. As a result, ensembling the pre-
dictions of the two models will increase the overall perfor-
mance, as will be demonstrated in Table 9 in Section 4.4.

4.4. Training Strategy and Performance Analysis

Fine-tuning Strategy We conduct several experiments to
evaluate the effectiveness of different fine-tuning strategies.

(a) Original VisDrone

(b) Synthetic VisDrone

Figure 4. Predictions made by the CO-DETR model. Figure 4a
and Figure 4b illustrate the bounding boxes detected for the Bike
objects by the CO-DETR model trained on the original VisDrone
dataset and the synthetic VisDrone dataset, respectively.

The backbone architecture used for these experiments is
CO-DETR. The baseline model, which is pretrained on the
COCO dataset and the Objects365 dataset, then fine-tuned
on the Fisheye8K dataset, achieves a mAP of 47% on the
validation set. In a second experiment, the same pretrained
model is fine-tuned on the VisDrone dataset, resulting in
an mAP of 30.8%. Subsequently, we pretrain a model on
the VisDrone dataset, then fine-tune it on the Fisheye8K
dataset, yielding a mAP of 47.8%. Utilizing VisDrone
pretrained model instead of COCO + Objects365 results
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in a 0.8% mAP increase. Finally, we finetune the same
model previously pretrained on the COCO + Objects365
dataset, using a combination of the VisDrone and Fish-
eye8K datasets, resulting in a noteworthy enhancement of
2.05% mAP, bringing it to 49.05%. The results of these ex-
periments are shown in Table 3. In subsequent steps, we
adopt the best approach of combining the VisDrone and
the Fisheye8K datasets together to fine-tune the CO-DETR
model pretrained on the COCO and Objects365 datasets.

Pretraining data Finetuning data mAP
COCO-Objects365 Fisheye8K 47.00
COCO-Objects365 VisDrone 30.80
VisDrone Fisheye8K 47.80
COCO-Objects365 VisDrone + Fisheye8K 49.05

Table 3. Performance comparison of CO-DETR model trained
with different training strategies on the validation set.

K-fold Split We partition the Fisheye8K dataset into 3
folds, with fold 0 distributed according to the organizers’
default distribution. The folds are divided by camera IDs,
ensuring a 70-30 ratio of object quantities between the train-
ing and validation sets. Videos selected for the validation
set in one fold are excluded from the validation sets of other
folds. Based on these criteria, for fold 1, we select videos
1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18 for
the training set, and videos 3, 5, and 11 for the validation
set. For fold 2, we choose videos 1, 2, 3, 4, 5, 7, 8, 10, 11,
15, and 17 for the training set, and videos 6, 9, 12, 13, 14,
16, and 18 for the validation set. The number of objects per
class and their specific ratios are described in Table 4, 5, 6.
Each fold is used to train a CO-DETR model with configu-
ration settings outlined in Section 4.3. The mAP results of
the models are presented in Table 7.

Class Train set Val set
Bus 2052 68.8% 930 31.2%
Bike 62068 70.2% 26305 29.8%
Car 36473 72.1% 14124 27.9%
Pedes 9111 77.6% 2632 22.4%
Truck 2115 63.8% 1202 36.2%

Table 4. Fold 0 data split from the Fisheye8K dataset.

Pseudo Labeling Our proposed pseudo-label process
involves three steps as illustrated in Figure 5. Particularly,
in step 1, we generate pseudo-labels by ensembling the re-
sults of the 3-fold models presented above. Then, in step
2, we combine the training and validation data from fold
0 to form new training data and validate it on the pseudo-
labels we created. Finally, we combine pseudo-labels with
the training and validation data to form new training data. In
this step, there is no validation data, and we select the model

Class Train set Val set
Bus 2193 73.5% 789 26.5%
Bike 59181 67.0% 29192 33.0%
Car 33912 67.0% 16685 33.0%
Pedes 9379 79.9% 2364 20.1%
Truck 2942 88.7% 375 11.3%

Table 5. Fold 1 data split from the Fisheye8K dataset.

Class Train set Val set
Bus 2329 78.1% 653 21.9%
Bike 66235 74.9% 22138 25.1%
Car 37972 75.0% 12625 25.0%
Pedes 8111 69.1% 3632 30.9%
Truck 2284 68.9% 1033 31.1%

Table 6. Fold 2 data split from the Fisheye8K dataset.

Data mAP0.5-0.95

VisDrone + Fisheye8K fold 0 56.23
VisDrone + Fisheye8K fold 1 55.84
VisDrone + Fisheye8K fold 2 54.51

Table 7. K-fold mAP performance of CO-DETR on the test set.

obtained from the last epoch. Table 8 demonstrates a sig-
nificant performance improvement achieved by CO-DETR
trained with the proposed pseudo-data compared with those
without using the pseudo-data. In other words, this table in-
dicates that the performance is constantly improved across
three steps (see Figure 5). This is due to the fact that the
proposed pseudo-data helps the model better familiarize and
recognize patterns in the test data.

Training data mAP0.5-0.95

Visdrone + Fisheye8K fold 0 56.23
Visdrone + Fisheye8K train + val 58.40
Visdrone + Fisheye8K train+val+pseudo 61.02

Table 8. Performance of CO-DETR model trained with our pro-
posed pseudo-label method on the test set.

Model Ensembling We employ the WBF method [34]
to ensemble multiple models, using an IOU threshold of
0.75 and a skip bounding box threshold of 0.15. As illus-
trated in Figure 2 of Section 3, seven models are chosen
for the ensemble: CO-DETR trained on train+val+pseudo
data and CO-DETR trained on train+val data from Sec-
tion 4.4, as well as YOLOv9, YOLOvR-w6, InternIm-
age, CO-DETR Synthetic, and CO-DETR fold 0 from Ta-
ble 2. When ensembling the models, CO-DETR trained on
train+val+pseudo data is assigned with the highest weight
due to having the highest mAP, followed by the remaining
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Step 2

(val set)
Pseudo label

CO-DETR

CO-DETR train + val

(train set)
Visdrone + FishEye8k train + val

Step 3

(train set)
Visdrone + FishEye8k train + val + pseudo label

CO-DETR

CO-DETR train + val + pseudo

Step 1

CO-DETR fold 2

CO-DETR fold 1

CO-DETR fold 0

WBF
Pseudo Label

Figure 5. The proposed pseudo-labeling process.

models.
When testing on the validation set, we achieve the best

performance using a confidence score threshold ranging
from 0.3 to 0.4 for each class. For night-time camera
footage, this threshold ranges from 0.2 to 0.3. We apply
these thresholds to the final ensemble results. The best F1-
score achieved by our proposed approach is 64.06% on the
public leaderboard. As such, ensembling the models helps
increase the accuracy by approximately 1.5% over the base-
line + pseudo scheme, as shown in Table 9.

Model F1 score
Baseline (CO-DETR only) 57.02
Baseline + pseudo (CO-DETR only) 62.46
Synthetic + pseudo + ensemble (Ours) 64.06

Table 9. Final F1 score of our proposed method on the test set in
comparison with the baselines, where the baseline refers to the
CO-DETR model trained on the VisDrone + Fisheye8K fold 0
data, baseline + pseudo stands for the CO-DETR model trained
on the VisDrone + Fisheye8K data along with pseudo labels, and
synthetic + pseudo + ensemble represents our final solution by en-
sembling 7 models as well as exploiting the proposed synthetic
data and pseudo-data for training, as shown in Figure 2 of Sec. 3.

5. Conclusions
In this paper, we proposed a robust object detection method
for fisheye camera images, which wisely combines the ad-
vantages of advanced techniques, such as, data augmenta-
tion, pseudo-labeling and model ensembling. Particularly,
for data augmentation, we focused on finding datasets most
similar to the Fisheye8K dataset. The VisDrone dataset has
been chosen, as it is empirically proven to significantly im-

prove the performance compared to others. We then devel-
oped an efficient data augmentation applied to VisDrone for
generating synthetic data supplemented the model in detect-
ing objects at the far distance and at the edges of the frame.
We further enriched training data by proposing the pseudo-
labeling process. Furthermore, we utilized the state-of-the-
art CO-DETR object detection models to notably enhance
the detection accuracy. Finally, ensembling it with other
models such as YOLOv9, InternImage, and YOLOvR-w6
further improved the performance. As a result, we achieved
the 1st rank in the competition with a F1-score of 64.06%
on the leaderboard, as seen via Table 10.

Rank Team Name F1 score
1 VNPT AI 64.06
2 NetsPresso 61.96
3 SKKU-AutoLab 61.94
4 UIT-AICLUB 60.77
5 SKKU-NDSU 59.65

Table 10. Final leaderboard of Track 4.
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