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Abstract

Fisheye cameras are extensively employed in surveil-
lance systems because they provide a broad viewing an-
gle, enhancing visibility. The reception of an image from a
wide perspective can result in distortion, posing challenges
for recognition systems, mainly when dealing with moving
objects, as observed in traffic systems. This work presents
an effective framework comprising multiple modules to ad-
dress the issue of small objects and rapidly changing view-
ing perspectives in fisheye camera data. First, we use Slic-
ing Aided Hyper Inference (SAHI), an algorithm that uses
generic slicing-aided inference to deal with small objects.
Second, we integrate the outcomes of CNN (YOLO) and
state-of-the-art Transformer (Co-DERT) detection methods
to utilize the respective strengths of each strategy for han-
dling data limitations. This approach has demonstrated
promising performance, achieving an F1 score of 0.6077
and achieving the 4th in Track 4 of the AI City Challenge
2024.

1. Introduction
As cities grow, the demand for efficient traffic surveillance
and management systems becomes increasingly urgent. In-
telligent Transportation Systems (ITS) are crucial in en-
hancing road safety, optimizing traffic flow, and ensuring
overall urban mobility. Road object detection stands out as a
crucial problem for study and innovation among the various
difficulties that ITS encounters. Fisheye cameras, known
for their broader coverage, offer distinct advantages in ITS
by reducing the need for numerous individual cameras. This
broad coverage allows for more comprehensive traffic mon-
itoring and management. However, a significant drawback
of fisheye cameras is the introduction of distortions, which

create difficulties when detecting vehicles and pedestrians
in traffic. Addressing this issue can significantly contribute
to traffic management and congestion control, making it the
main focus of Track 4 [13] in the AI City Challenge 2024.
In this track, participants are tasked with harnessing the ca-
pabilities of machine learning/deep learning technology to
develop robust and precise object detection models. These
models are expected to accurately determine the location
and classify road objects such as buses, bikes, cars, pedestri-
ans, and trucks. Furthermore, these models are expected to
be able to compensate for the distortions introduced by fish-
eye cameras under various conditions, i.e., daylight, night-
time, varying camera angles, or different image resolutions.

Object detection methodologies have traditionally been
developed with a focus on perspective cameras. However,
their effectiveness is compromised when applied to images
captured by fisheye cameras, primarily due to the significant
distortion these cameras introduce [6]. Furthermore, the
strategic placement of security cameras at higher vantage
points with diverse angles significantly impacts surveil-
lance. While it inadvertently leads to reduced video res-
olution, it also simultaneously introduces variations in the
proportions and sizes of the objects captured and viewing
perspective. An additional challenge arises from the fact
that images can be captured day and night. These fac-
tors can further complicate the task of object detection,
necessitating the development of methodologies that are
robust to varying lighting conditions. To handle object
detection, transformer-based models have recently outper-
formed CNN-based [8], [9], [12]. Transformer models [17]
have demonstrated superior performance in various bench-
marks. However, CNN-based models continue to perform
well when detecting small objects or handling data limita-
tions [4].

In this study, we present an effective approach for road

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7227



object detection in fisheye cameras. During the train-
ing phase, our methodology leverages a data augmentation
technique known as random scaling to address the view-
ing perspective challenge in camera images, a critical as-
pect of object detection. By randomly scaling images in
the training dataset, we equip our model with various per-
spectives, enhancing its ability to generalize across different
scales. To handle small objects near the image periphery
due to fisheye camera distortion, we introduce an additional
loss function that places greater emphasis on these objects.
Additionally, we introduce a technique that partitions the
original image into sub-images, conducts inference on each,
and then combines their predictions. Finally, we employ an
advanced ensemble method called Weighted Boxes Fusion
(WBF) [10], which combines the predictions from each dif-
ferent strategy. Finally, we employ an advanced ensemble
method called Weighted Boxes Fusion (WBF) [10], which
combines the predictions from each different strategy. This
algorithm comes with a merging strategy to use the confi-
dence scores of all proposed bounding boxes to construct
the average boxes. As a result, the ensemble results ex-
hibit greater precision than those derived from the individ-
ual models due to their ability to optimize the strengths of
each model while simultaneously reducing its weaknesses.
This leads to a notable enhancement in the overall quality
of our system. Finally, the ensemble predictions are further
refined through a post-processing strategy.

Our proposed framework has demonstrated its effective-
ness by securing a commendable position within the top
four contenders in Track 4. This achievement is under-
scored by an impressive 0.6077 F1 score, which is consid-
erably higher than the 0.5965 F1 score of the top 5 teams,
highlighting the robust performance of our model.

2. Related Works
In this section, we provide the reader the landscape encom-
passing fisheye images and their associated datasets, object
detection methodologies, ensemble techniques, and the lat-
est strategies for small object detection.

2.1. Fisheye Camera Datasets

Fisheye images are a distinct category of wide-angle pho-
tographs produced using a fisheye lens that yields a hemi-
spherical and distorted perspective with a field of view of-
ten exceeding 180 degrees. This unique feature produces
a curvilinear distortion, bestowing images with a signature
“fisheye” look. Below, we highlight several notable fish-
eye datasets such as FishEye8K and WoodScape, along with
their own characteristics.

The FishEye8K [5] dataset, which forms the founda-
tion for this challenge, comprises 8,000 annotated images
of varied dimensions. This dataset is characterized by ap-
proximately 157K bounding boxes, presenting one of these

Table 1. The distribution of instances across various classes within
the FishEye8K dataset.

ID Class Number of Instances

0 Bus 2,984
1 Bike 88,531
2 Car 50,749
3 Pedestrian 11,759
4 Truck 3,335

five categories: ‘buses’, ‘bikes’, ‘cars’, ‘pedestrians’, and
‘trucks’. Detailed distribution of image sizes is provided
in Table 1. The FishEye1KEval dataset is utilized for test-
ing purposes. Additionally, Figure 1 visually illustrates the
diverse time of day captured in the images.

Figure 1. An illustration of the FishEye8K dataset, the dataset
contains images captured during both daytime and nighttime con-
ditions.

The WoodScape dataset [14], comprising 8,234 fisheye
images, is curated for autonomous driving research with di-
verse camera perspectives. It facilitates training models to
tackle fisheye lens distortion challenges, marking a signif-
icant advancement in this field. Researchers benefit from
its utility in algorithm development and testing, enhancing
autonomous driving technology.

2.2. Object detection

Object detection, a pivotal task in computer vision, entails
identifying and localizing objects within digital images or
videos. The primary goal of object detection algorithms is
to determine whether there are any instances of semantic
objects of a certain class, such as humans, cars, or animals,
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in a given image or video. If these instances are present, the
algorithms will localize these objects, typically providing a
bounding box around the object instance.

The advent of Convolutional Neural Networks (CNNs)
[8] has transformed the domain of object detection, with
the emergence of numerous detectors such as Faster-RCNN
[9], Cascade RCNN [3], YOLOR [12], and YOLOv6 [7].
Among these, the YOLO series has introduced a unique ap-
proach that employs a predefined set of bounding boxes,
termed ‘anchor boxes.’ These anchor boxes are designed to
encapsulate objects of diverse shapes and sizes. The model
optimizes its predictions by selecting the anchor box that
exhibits the highest alignment with the object’s shape and
size, thereby augmenting the precision of its location and
size prediction. Moreover, YOLO’s one-stage model de-
sign expedites training and inference processes, ensuring
impressive performance.

The introduction of Transformer models [11] has signif-
icantly reshaped the landscape of computer vision, with the
emergence of Co-DETR [17], an innovative training scheme
that amplifies the efficiency and effectiveness of DETR-
based detectors. This scheme strengthens the learning ca-
pacity of the encoder in end-to-end detectors by instructing
multiple parallel auxiliary heads under the guidance of one-
to-many label assignments.

2.3. Ensemble

In object detection, ensemble box algorithms have gained
significant attention due to their effectiveness in improving
model accuracy and robustness. Notably, Non-Maximum
Suppression (NMS) is a widely used post-processing tech-
nique that eliminates less significant bounding boxes with
high overlap, ensuring each object is detected only once and
enhancing model precision. Beyond NMS, other ensemble
box algorithms exist, such as the WBF [10] method. The
WBF method iteratively updates a fused box using confi-
dence scores, enhancing precision by effectively managing
overlap between predicted boxes. This strategy leads to no-
table improvements in object detection model accuracy.

2.4. Slicing Aided Hyper Inference

Slicing Aided Hyper Inference (SAHI) [1] is a simple but
effective framework that can be plugged into any object de-
tection model. This methods get the idea from viewing the
original image through multiple viewing perspective. In-
spired by examining the original image from multiple per-
spectives, SAHI divides the image into overlapping patches,
each undergoing independent inference procedures. This
approach enhances model resilience and prediction accu-
racy by detecting patterns overlooked when viewing the im-
age as a whole through a multi-dimensional inference strat-
egy.

3. Methodologies
3.1. System Overview

The pipeline of our proposed solution is depicted in Figure
2. Initially, the original dataset is organized into multiple
splits. Subsequently, various models are trained on these
datasets. These models are then subjected to inference using
SAHI techniques. The predictions are merged using an en-
semble algorithm such as WBF. Finally, a post-processing
strategy is applied to the final predictions to filter out unsat-
isfied predictions.

3.2. Object Detectors

During our experiments, we observed a significant class
imbalance in the dataset. This phenomenon could poten-
tially skew our models’ performance, as they may overfit
the overrepresented classes and vice versa. Addressing this
issue is crucial to ensuring the robustness and generalizabil-
ity of our object detection models across diverse scenarios.

Our approach was to leverage both anchor-based mod-
els and DETR-based models. Anchor-based models like
YOLOR and YOLOv6L6 detect objects using predefined
anchor boxes at various scales and aspect ratios. Further-
more, these models employ Varifocal loss [15], addressing
class imbalance in training to enhance performance by ade-
quately representing all classes during learning. In contrast,
DETR-based models utilize a Multi-scale Adapter to con-
struct a feature pyramid, which makes Co-DETR robust for
detecting objects at various scales. Additionally, by elim-
inating the NMS post-processing step, DETR-based infer-
ence speed is significantly reduced.

3.3. Distance-Aware Loss (DAL)

Figure 3 presents the distribution of road objects in the Fish-
Eye8K dataset at varying normalized distances from the im-
age’s center point. A notable observation from this figure is
the prevalence of objects situated at a considerable distance
from the camera’s center. This pattern suggests a potential
enhancement to our model’s default loss function. Specif-
ically, it indicates the need for an increased sensitivity to-
wards objects farther from the camera’s center.

To address this issue, we propose modifying our model’s
IoU loss function. Our solution involves splitting the cam-
era image into grid boxes, each assigned pre-calculated at-
tention values to our loss function, as illustrated in Figure
4. The Generalized Intersection over Union (GIoU) loss is a
popular choice for object detection tasks due to its ability to
consider both the shape and position of the bounding boxes.
However, in our case, we need the IoU loss function to be
more sensitive to objects located farther from the camera’s
center. The modified the GIoU loss is as follows:

DAL = (1−GIoU) × αv[idx] (1)
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Figure 2. The overview pipeline of our system. The process begins with the data preparation block, which pre-processes the original
dataset into multiple splits. Following this, the training block applies data augmentation techniques such as flipping, random scaling, and
mosaic to enhance the prepared data. This augmented data is then used to train models, including YOLOv6, YOLOR, and Co-DETR. Once
trained, these models undergo inference with SAHI. The ensemble block integrates the predictions from the trained models, both with and
without SAHI. Finally, a post-processing strategy is applied to each prediction from the ensemble results to generate the final predictions.

Figure 3. Distributions of the number of road object instances
based on their normalized distances from the center of the image.

The variable v represents a list of pre-computed atten-
tion values, each corresponding to a grid box in the camera
image. For objects outside an ellipse defined by half the
image width and height, the attention values are calculated
based on the ratio of the distance from the image center to
the grid box center and the distance from the image center
to the image boundary. For objects within this ellipse, the
attention values are set to 0. The index idx is used to fetch
the corresponding attention value from v, and α is a modu-
lating factor that balances the GIoU loss with an additional
loss term.

Figure 4. The illustration of our proposed class structure. Each
box represents a pre-calculated attention value for our loss func-
tion. The opacity of the box is inversely proportional to the atten-
tion of our loss, meaning higher opacity indicates less attention.
For every prediction made, a box encompassing its center is as-
signed, and the corresponding loss is added to the original loss.

3.4. Ensemble

In our approach, we combined the predictions from our var-
ious models using WBF. Unlike NMS, which removes re-
dundant bounding boxes, WBF uses the confidence scores
of all proposed bounding boxes to construct averaged boxes.

Figure 5 provides a comparative analysis of box aggrega-
tion for a bike object using NMS and WBF. The figure de-
lineates the disparities in the aggregation of bounding boxes
when employing these two techniques. For the bike object,
there are two predictions: one capturing a person on a bike
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and the other capturing the bike itself. Intuitively, the pre-
diction capturing the bike should be retained while the other
should be discarded. However, if the prediction captures
the person with a higher confidence score, NMS will retain
only this prediction, potentially leading to a false positive.
In contrast, the WBF method can construct an “averaged”
prediction that accurately represents the true positive.

Figure 5. Comparison of box aggregation using NMS and WBF
methods

3.5. Post-Processing

Small objects like pedestrians and bikes are often more
challenging to detect. Factors such as occlusion, where a
part of the object is hidden from view, and background clut-
ter, where the object blends with the surrounding environ-
ment, contribute to this difficulty. These factors can reduce
the distinct features the detection algorithm can use to iden-
tify these objects. Therefore, a lower confidence threshold
is necessary to ensure the system is sensitive enough to de-
tect these objects, even under challenging conditions.

On the other hand, large objects like cars, buses, and
trucks are generally easier to detect due to their distinct fea-
tures. However, this can lead to higher false positive rates.
To mitigate this, we set a higher confidence threshold for
larger objects, ensuring that only the most certain detections
are considered. Thus, false positives are reduced, and pre-
diction precision is maintained.

4. Experiments
4.1. Dataset

4.1.1 Training Datasets

In this challenge, we primarily utilized the FishEye8K
dataset provided by the organizers and the WoodScape
dataset. We used the WoodScape dataset for selected few
pre-trained models, which allowed them to learn from a
broader range of scenarios and conditions, improving their
ability to generalize to unseen data.

4.1.2 Data Preparation

Initially, the dataset is partitioned using a 9:1 split ratio,
where 90% of the data is allocated for training purposes,
and the remaining 10% is reserved for validation. The al-
gorithm for data sampling is shown in Algorithm 1. In this
algorithm, the dataset is partitioned according to the unique
identifiers of the camera and time. Specifically, for each dis-
tinct camera ID and captured time (denoted by A, M, E, N),
a 9:1 split is implemented. This strategy ensures a balanced
representation of each camera and time in both the training
and validation sets, thereby enhancing the robustness of the
model to variations across different cameras and times.

Algorithm 1: Data Sampling Algorithm
Input : Images with attribute camera ID, time (A,

M, E, N)
Output: The training and validation dataset
D ← {};
T ← {} ; // Train dataset
V ← {} ; // Val dataset
foreach p ∈ images do

D[p.cam][p.time]← D[p.cam][p.time] ∪ p
end
foreach k ∈ D.keys do

foreach z ∈ [”A”, ”M”, ”E”, ”N”] do
T ← (90% of D[k][z]) ∪ T
V ← (10% of D[k][z]) ∪ V

end
end
return T , V

Day - Night Splitting: To further enhance the diversity
of our training set, we implemented a day-night splitting
strategy. This strategy involves segregating the training data
based on the time of capture, allowing our models to learn
and adapt to the distinct features and challenges presented
by day and night conditions, such as variations in lighting
and shadows.

The overview of the data we used for training and vali-
dating the performance of our models is shown in Table 2.
This table provides a detailed breakdown of the number of
images in each subset of our data, including the training and
validation datasets and the day and night splits.

Data Augmentation: Is a powerful strategy used in ma-
chine learning to increase the robustness of the models.
In this study, we employ the following augmentation tech-
niques:
• Flipping: In our dataset analysis, we observed that many

cameras were positioned at intersections. This is a crucial
observation, as intersections are often the sites of complex
traffic patterns.

• Random Scale: This technique, which involves training
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Table 2. The overview of our dataset we used in training and test-
ing

Dataset M + A E + N Total

FishEye8K 5,841 2,159 8,000
FishEye8KEval 902 98 1,000

Train 4,679 1,728 6,407
Validation 1,162 431 1,593

Train - Day 6,068 0 6,068
Val - Day 675 0 675

Train - Night 0 2,060 2,060
Val - Night 0 227 227

at multiple scales, is designed to capture a wide range of
details. Doing so can significantly improve the model’s
performance across different perspectives, enhancing its
robustness and generalization ability.

• Mosaic [2]: A data augmentation strategy that combines
four training images into one, providing a more diverse
training sample. Therefore, it enhances its ability to gen-
eralize from the learned patterns.

4.2. Implementation Details

We conduct our experiments for the AI City Challenge’s
Track 4 using two NVIDIA RTX 3090 Ti 24GB graphics
cards.

Co-DETR: We employed the Co-DETR model (Swin-L
backbone) pre-trained on the Objects365 dataset and sub-
sequently fine-tuned on the COCO dataset. We used this
model with its default settings to train on our datasets,
which comprised a 9:1 split and a day-night dataset.

Furthermore, we leveraged this initial model for 10
epochs of pre-training on the WoodScape dataset, followed
by fine-tuning the 9:1 split using the default setting. This
enabled us to compare the model’s performance when pre-
trained on different datasets.

We have also substituted the Generalized Intersection
over Union (GIoU) loss, which was conventionally utilized
as the default loss function in the training of Co-DETR, with
a loss function that we have proposed. Then, we fine-tune
this model on the 9:1 split. In this experiment, we chose
modulating factor α = 2.

YOLO series: In this study, we utilized YOLOv6-L6
and YOLOR-D6 models. We modified the default YOLO
loss function to Varifocal Loss. To assess performance
across image sizes, we trained the models on 1280 and 1920
dimensions for 100 epochs and used a Non-Maximum Sup-
pression (NMS) threshold of 0.65 for the final prediction.

SAHI: The test dataset utilized for evaluating our model
performance encompasses a variety of image sizes, predom-
inantly large. Because we trained YOLO series models as

large training image sizes, applying the SAHI strategy be-
comes redundant for these models. However, for the in-
ference of the Co-DETR model, which is trained with ran-
dom multi-scale augmentation, the SAHI strategy needs to
be employed with a patch width size of 1280, maintaining
the aspect ratio for the patch height and an overlap ratio of
0.25.

Ensemble: Our observations indicate that small objects
often have low confidence scores. To address this, we con-
duct inference on the test dataset for each model in our cho-
sen ensemble, setting the confidence threshold of 0.1. This
approach prevents the premature exclusion of small objects
due to their lower scores, thereby ensuring their adequate
representation. Subsequently, we employ WBF with an IoU
threshold of 0.65 to combine the outputs from these models.

Post-Processing: The post-processing strategy is subse-
quently employed to derive the final prediction. A unique
confidence threshold is utilized for each category to filter
the predictions effectively. The confidence thresholds are
chosen through a visualization process to determine the ap-
propriate threshold for each category.

4.3. Experimental Results

Metrics: The evaluation metric we used to evaluate our
models and used for leaderboard ranking is F1, which of-
fers a balanced perspective by considering both precision
and recall.

Evaluation Dataset: In our experimental evaluation,
we employed approximately 800 images sourced from the
validation subset of a 9:1 split data partition as a testing
dataset, confidence score of less than 0.4 is excluded from
the prediction evaluation process without applying a post-
processing strategy.

Table 3. The evaluation result and FPS of trained models

Model Dataset Size F1 FPS

Co-DETR 9:1 split Random 0.7392

1.1

Co-DETR day-night Random 0.7401

Co-DETR WoodScape Random 0.74049:1 split

Co-DETR 9:1 split Random 0.7390DAL

YOLOR 9:1 split 1920 0.7306

9.8

YOLOR 9:1 split 1280 0.7335
YOLOR day-night 1920 0.7332

YOLOv6-L6 9:1 split 1920 0.7364
YOLOv6-L6 9:1 split 1280 0.6901
YOLOv6-L6 day-night 1920 0.7370

We noticed that the Co-DETR model’s performance im-
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proved when we pre-trained it using the WoodScape dataset
and then fine-tuned it on a 9:1 split. This model outper-
formed the models that were pre-trained using COCO. Our
finding suggests that using a dataset with a similar distribu-
tion to the target data can effectively enhance the model’s
performance.

Distance-Aware Loss: As demonstrated in Table 3, the
Co-DETR-DAL model, which is trained using our pro-
posed loss function, exhibits performance equivalent to that
achieved with the original loss function. This parity can be
attributed to several factors. Firstly, our proposed loss func-
tion integrates modulating factors that adjust each term’s
contribution to the loss function, reflecting the specific char-
acteristics of the training data. Secondly, due to the time
constraints of our experiments, extensive experimentation
and fine-tuning of the proposed loss function were not fea-
sible. Finally, in our proposed methodology, the additional
losses are solely applied to the Intersection over Union
(IoU) loss function, suggesting the potential for application
to the box loss function. Given more time and resources,
further optimization of our loss function parameters could
enhance performance beyond the original loss function.

Day-Night Training: As indicated in Table 3, the day-
night split training also shows potential for performance
improvements. This observation suggests that the model
learns distinctive features from day and night data, enhanc-
ing its ability to generalize across different lighting condi-
tions. The day-night split training approach thus not only
enriches the model’s learning but provides a more compre-
hensive understanding of the data, leading to more accurate
and reliable predictions. The comparison between the mod-
els trained on all data and trained on the day-night split is
shown in Figure 6.

Figure 6. The figure illustrates the detection capabilities of two
models - one trained on a comprehensive dataset (left) and the
other on a day-night split dataset (right). Despite employing the
same confidence threshold, the model trained on the day-night
split dataset successfully identifies a car which the model trained
on the full dataset fails to achieve

High-Resolution Training: High-resolution training
significantly boosts YOLO series models’ performance, no-

tably for small to medium-sized objects. YOLOv6-L6 ben-
efits notably from image size increase (1280 to 1920), while
YOLOR shows stable performance across varied resolu-
tions.

Inference with SAHI: We employ the SAHI technique
on each trained Co-DETR model in the inference process.
As shown in Table 4, the integration of the SAHI technique
during the inference stage influences the performance of
each Co-DETR model. Although there is a noticeable de-
crease in the performance of individual models when eval-
uating on the validation dataset, it is observed that the uti-
lization of results from the SAHI technique can effectively
enhance the overall performance.

Table 4. Comparative evaluation of trained models with and with-
out the SAHI technique in the inference stage

Model Dataset F1 + SAHI

Co-DETR 9:1 split 0.7392 0.7265
Co-DETR day-night 0.7401 0.7294

Co-DETR-DAL 9:1 split 0.7390 0.7255

Co-DETR WoodScape 0.7404 0.72779:1 split

Ensemble: As delineated in Table 5, we have selected
certain models for the ensemble. Our observations indi-
cate that all Co-DETR models consistently outperform the
YOLO models, thereby leading us to incorporate all Co-
DETR models into the ensemble. In the case of the YOLO
series models, we have restricted our selection to those
trained on the day-night dataset and those trained on a 9:1
split with a training image size of 1920. For model infer-
ence with SAHI, we only used Co-DETR pre-trained on
WoodScape for the ensemble. The performance of some
methods used for ensemble outputs is shown in Table 5. The
WBF method was observed to outperform other methods.

As depicted in Table 6, the performance of ensembled
various Co-DETR models with WBF is evaluated. These
models include those trained on a 9:1 split, under day-night
conditions and those pre-trained on WoodScape and subse-
quently fine-tuned on a 9:1 split. The table further illustrates

Table 5. Comparison of F1 scores for NMS, Soft-NMS, NMW,
and WBF ensemble methods before and after the application of
post-processing techniques.

Method F1 + Post-Processing

NMS 0.7439 -
Soft-NMS 0.7459 -

NMW 0.7302 0.7455
WBF 0.7573 0.7583
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the performance enhancement when these models are en-
sembled with a Co-DETR model incorporating a distance-
aware loss function and YOLO series models trained on a
9:1 split under day-night conditions.

Table 6. Comparison of baseline ensemble Co-DETR models,
when combined with a Co-DETR model incorporating a distance-
aware loss function and YOLO series models trained on distinct
datasets.

Model Dataset F1

Co-DETR models 9:1 split 0.7466
+ Co-DETR-DAL 9:1 split 0.7478

+ YOLO series 9:1 split 0.7511
+ YOLO series day-night 0.7568

Post-Processing: As depicted in Table 5, each ensem-
ble method’s performance was evaluated, highlighting the
influence of post-processing strategies. Our experiments
indicate that implementing post-processing techniques can
enhance the effectiveness of our solution. For the Non-
Maximum Weighted (NMW) [16] method, applying post-
processing techniques increased the F1 score from 0.7302
to 0.7455, representing a 1.53% improvement. In the case
of the WBF method, post-processing marks a marginal im-
provement of approximately 0.1%. Even though there was
only a slight increase in the validation dataset, we observed
an improvement upon applying WBF with post-processing
on the test set.

Comparison with other teams: Table 7 shows the per-
formance of our solution in Track 4 of the AI City Chal-
lenge 2024. Our solution demonstrated a commendable F1
score of 0.6077, securing the 4th position amidst a compet-
itive field of over 50 participating teams.

Table 7. In track 4 of the AI City Challenge, our proposed solution
demonstrated a noteworthy performance. Among 50+ teams, our
solution successfully secured the 4th position.

Rank Team F1

1 VNPT AI 0.6406
2 NetsPresso 0.6196
3 SKKU-AutoLab 0.6194
4 UIT AICLUB 0.6077
5 SKKU-NDSU 0.5965

5. Limitations
Our system has encountered specific challenges in the realm
of object detection. Distortions originating from particular
cameras have been identified as a significant hurdle. These
distortions often warp the objects in the images, compli-

cating our system’s ability to identify and locate them ac-
curately. A particular issue arises with images containing
numerous tiny objects near the image’s edge or objects with
most of the parted overlapped by more significant objects.
Our current approach tends to need to be revised to detect
these objects, highlighting a critical limitation we strive to
address. Focusing on system limitations is crucial in our on-
going efforts to enhance object detection capabilities. These
limitations are shown in Figure 7.

Figure 7. Illustrations of the limitations of our approach. In the
first row, our system struggles to detect certain tiny objects. In the
second row, we encounter difficulties in identifying objects that
are partially overlapped.

6. Conclusion
In this study, we have introduced an effective framework for
road object detection, explicitly tailored for fisheye cameras
within the framework of Intelligent Transportation Systems
(ITS). This method employs an ensemble of deep-learning
models, each of which is intricately designed to overcome
a specific challenge. Our approach has demonstrated ro-
bust performance, achieving a fourth position in the AI City
Challenge 2024, as evidenced by an impressive 0.6077 F1
score. This work significantly advances the field of ITS and
lays a solid foundation for future research in the domain of
wide-angle photographic analysis and object detection.
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