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Abstract

In the realm of intelligent traffic systems, fisheye cam-
eras have emerged as a pivotal tool, distinguished by their
expansive field of view which significantly enhances the
surveillance of complex street networks and intersections.
However, the inherent distortion characteristics of fisheye
lenses, various illumination, tiny objects and confusion of
vehicle classes pose significant challenges to conventional
image processing and object detection techniques. To ad-
dress these challenges, we propose an advanced object de-
tection framework named FE-Det specifically designed for
fisheye cameras in traffic monitoring systems. This frame-
work integrates detection models optimized for day and
night scene variability. Additionally, it incorporates inno-
vative post-processing operations which brings detection
enhancement, including a Vehicles Classifier Module for
precise vehicle identification, a Static Objects Processing
Module for more accurate detection of stationary objects
and a Confidence Score Refinement Module to adjust confi-
dence scores for improving the detection of peripheral ob-
jects. Experimental evidence substantiates that our frame-
work exhibits a 1.4% improvement in distinguishing be-
tween day and night scenes compared to traditional models.
Moreover, the application of the proposed post-processing
method results in an additional enhancement of 4.1%.

1. Introduction

Fisheye cameras have recently attracted widespread atten-
tion across industries. In traditional methodologies for the
acquisition of environmental information, reliance has pre-
dominantly been placed upon narrow-angle pinhole cam-
eras. However, comprehensive environmental perception is
a necessity for autonomous vehicular technologies. In con-
trast, fisheye camera, characterized by its expansive field
of view and extensive perspective, has emerged as a piv-
otal tool within the domain of autonomous driving [18].
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Figure 1. Hard samples in FishEye8K dataset. Red, blue, green,
yellow, and purple rectangular boxes represent Bus, Bike, Car,
Pedestrian, and Truck, respectively.

Moreover, within the sphere of intelligent traffic systems,
the application of fisheye cameras provides an unrivaled
panoramic overview, surpassing the capabilities of conven-
tional narrow field of view cameras in capturing broad en-
vironmental expanses. This attribute facilitates a signifi-
cant diminution in the requisite number of cameras for the
surveillance of extensive street networks and complex in-
tersections, thereby augmenting the efficiency and compre-
hensiveness of traffic surveillance endeavors [8].

Nonetheless, the intrinsic properties of fisheye optics in-
troduce geometric distortion to the captured images, pos-
ing substantive challenges to the established frameworks
of image processing and object detection. Current object
detection methods in fisheye images are grouped into two
categories: distortion correction-based and original fisheye
image-based [14]. In the distortion correction-based meth-
ods, a common practice is to use a fourth-order polyno-
mial model or a unified camera model to correct distortions
in images [3]. However, camera parameters are often un-
known, and undistorted images come with artifacts from
resampling distortion, especially at the periphery, reduced
field of view, and non-rectangular images caused by invalid
pixels [17].

However, conducting detection directly on the original
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fisheye images of street scenes presents numerous chal-
lenges. For instance, fisheye cameras introduce target rota-
tion that is dependent on the scene location, complicating
the differentiation of vehicle categories (Car, Truck, and
Bus) due to shape distortions caused by the lens. More-
over, there is a significant disparity in target features be-
tween daytime and nighttime scenes, complicating detec-
tion. Small objects at the image periphery are also diffi-
cult to detect, and street scenes frequently contain numer-
ous densely packed stationary vehicles. Fig. 1 shows some
hard examples in FishEye8K dataset.

Thus, to enhance the performance of current general-
purpose object detection models on original fisheye im-
ages, we have developed An Effective Traffic Object De-
tection Framework for Fisheye Cameras, called FE-Det.
This framework, by integrating advanced detection mod-
els and separately addressing day and night scenes, coupled
with meticulous and innovative post-processing operations,
achieves precise object detection on original fisheye images.
Specifically, we experiment on several excellent object de-
tection models, implement a comprehensive suite of data
preprocessing operations to address issues of rotational dis-
tortion, and develop a specialized classification branch for
vehicular identification. Additionally, we adjust confidence
scores of small objects located at the periphery of images
to enhance detection accuracy. A static objects processing
module is also introduced, utilizing the Structural Similar-
ity Index (SSIM) to assess the similarity of image regions,
thereby facilitating refined handling of static objects [25].

In summary, the main contributions of this paper are as
follows:

1) We propose a novel detection framework tailored for
fisheye images in complex street scenes. It conducts seg-
regated processing of day and night images, integrates Co-
DETR [27], YOLOv8 [11] and InternImage [24], and en-
hances the detection accuracy through sophisticated post-
processing techniques.

2) We have designed a creative and plug-and-play post-
processing pipeline, comprising the Vehicles Classifier
Module, Static Objects Processing Module, and Confidence
Score Refinement Module.

3) The comprehensive experiments show the efficiency
of the framework. Finally, our model is ranked 6th in 2024
AI CITY CHALLENGE Track 4 [23].

2. Related Work

2.1. General Object Detection

Object detection, as one of the foundational challenges in
the field of computer vision, aims to classify instances
of objects and locate their positions with bounding boxes
within images.

YOLOv8. In the latest evolution of object detection

models, YOLOv8 emerges as a preeminent solution, show-
casing unparalleled capabilities for simultaneous detection.
This iteration inherits the architectural paradigm of its
predecessor, YOLOv5 [12], encompassing a backbone,
head, and neck, while introducing novel architectural
advancements, upgraded convolutional layers within the
backbone, and a more sophisticated detection head. These
enhancements position YOLOv8 as a prime candidate for
real-time object detection tasks. The model utilizes the
Darknet-53 backbone network, which surpasses YOLOv7
[22] in both speed and accuracy. YOLOv8 employs an
anchor-free detection head to predict bounding boxes,
leveraging an expanded feature map and an optimized
convolutional network to surpass previous versions in
efficiency and accuracy. Furthermore, YOLOv8 integrates
feature pyramid networks to adeptly recognize objects of
various sizes [1]. Moreover, YOLOv8 incorporates support
for cutting-edge computer vision algorithms, including
image classification and instance segmentation with high
precision.
Co-DETR. Co-DETR enhances the proficiency of detec-
tion transformers through the utilization of several parallel
auxiliary heads. This innovative training strategy simplifies
the enhancement of the encoder’s capability for end-to-end
detection learning. It achieves this by directing some
auxiliary heads to perform simultaneous one-to-many label
assignments, such as ATSS, FCOS and Faster RCNN [10].
Furthermore, Co-DETR introduces an optimization by ex-
ecuting specialized positive queries. This is accomplished
by extracting positive coordinates from the auxiliary heads,
thereby improving the decoder’s training efficiency and its
ability to accurately identify positive samples. Upon the
completion of training, these auxiliary heads are discarded.
This design choice ensures that the Co-DETR method does
not incur additional variables or computational overhead
compared to its predecessors, while also eliminating
the necessity for manual intervention in non-maximum
suppression (NMS) [13].
InternImage. InternImage emerges as a foundational
model predicated on the large-scale CNN framework, echo-
ing the parameter and data scaling strategies reminiscent of
Vision Transformers. At the core of InternImage design lies
the implementation of deformable convolutions, a pivotal
feature enabling the model to encapsulate more nuanced
contextual details in object representations. Distinguishing
itself from conventional CNN architectures, InternImage
integrates adaptive spatial aggregation mechanisms. These
mechanisms are fine-tuned based on the specifics of the
input and the task at hand, thereby mitigating the rigid
inductive biases typically associated with traditional CNN
models [4]. Cascade Mask R-CNN [5] based on InternIm-
age has excellent detection performance.
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Figure 2. Overall pipeline of FE-Det. The top row shows the
processing flow for the daytime scene, and the bottom row shows
the processing flow for the nighttime scene.

2.2. Fisheye Object Detection

Recently fisheye cameras, owing to their large field of view
(LFOV), have attracted diverse attention. Current fish-
eye image object detection methods can be mainly divided
into two categories: distortion correction-based methods
and methods based on original LFOV images. Distortion
correction-based methods usually consist of two stages: im-
age rectification and general object detection. In [20], fish-
eye images are transformed using Mercator projection to
minimize the effects of pedestrian shape variances, fol-
lowed by the application of the Viola-Jones detector for
pedestrian detection. [2] firstly integrates deep learning for
the detection of multi-class objects in fisheye images, and
confirms the viability of approaches based on the original
LFOV images. FisheyeMODNet [26] conducts end-to-end
training of the network utilizing temporally sequential im-
ages that encapsulate both semantics and motion simultane-
ously. FisheyeDet [14] integrates distortion feature repre-
sentation learning and precise bounding box refinement di-
rectly into the detection process. This innovative approach
substantially enhances the generalization ability of object
detection in fisheye images. FisheyeYOLO [17] designs
novel forms, including curved boxes and adaptive step poly-
gons, for fisheye image object representations. It adapts
YOLOv3 [19] model to output different representations.

3. Methodology
In this section, we illustrate FE-Det to detect fisheye im-
age objects. Fig. 2 shows the overall pipeline of FE-Det.
We aim to maximize the detection performance in fisheye
images by our enhancing strategies in three main sections:
data process, ensemble detection model, and post-process.

3.1. Data Processing

3.1.1 Data Overview

2024 AI CITY CHALLENGE Track 4 is based on the Fish-
Eye8K benchmark dataset [8]. The FishEye8K benchmark
dataset, presented at CVPRW23, is comprised of 5288 im-
ages for training and 2712 images for validation. The im-

Figure 3. The distributions of objects in the FishEye8K dataset.

ages have resolutions of 1080×1080 and 1280×1280, with
a combined total of 157K annotated bounding boxes across
5 road object classes, including Bus, Bike, Car, Pedestrian
and Truck. The test dataset FishEye1Keval consists of 1000
images sourced from 11 camera videos that were not em-
ployed in creating the FishEye8K dataset but similar to
those in the training dataset.

Fig. 1 displays visualizations of 5 road object classes ob-
served in several streets, captured by different cameras at
varying time periods. The top row displays the original im-
ages, while the bottom row represents the Ground Truth. In
Fig. 1, it is evident that the fisheye view introduces shape
distortion in all categories, with significant variations be-
tween distinct categories, such as pedestrians and vehicles.
Moreover, among all the types of vehicles, it is particularly
challenging to differentiate between cars, buses, and trucks
based on their visual characteristics. Additionally, it is also
observed that there is a large difference in image labeling
between night and day.

Fig. 3 shows a statistical graph illustrating the quantity
and size of each category, as well as the frequency of its oc-
currence across various time periods. Fig. 3(a) and Fig. 3(e)
explicitly show that the FishEye8K dataset has an unequal
distribution of categories. Fig. 3(b) and Fig. 3(f) demon-
strate the presence of numerous small objects in the dataset
and a significant diversity in the scales of different cate-
gories. The dimensions of bicycles and pedestrians are pre-
dominantly categorized as small to medium, with a notable
absence of larger sizes. In contrast, the dimensions of buses
demonstrate a more evenly distributed size spectrum. As
can be seen in Fig. 3(c) and Fig. 3(g), there are also signif-
icant differences in the occurrence preferences of different
categories across time. For instance, buses and trucks pre-
dominantly manifest during the day and are absent during
the night, while bicycles and cars are present both during
the day and at night. However, overall, the quantity of all
identifiable objects in the night environment is significantly
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Figure 4. Examples of image preprocessing. (a) shows the crop-
ping scheme. (b) is a batch of images after data augmentation.

lower compared to daytime.

3.1.2 Data Augmentation

Data augmentation represents a pivotal approach within the
realm of computer vision, aimed at augmenting the size and
heterogeneity of training datasets. This methodology holds
particular significance for endeavors related to object detec-
tion, such as the current task, where the challenges include
a multitude of diminutive target objects, an expansive field
of vision attributable to fisheye lenses, and suboptimal illu-
mination conditions. To address the above difficulties, the
following data enhancement methods are used in this study.

Cropping. For each image, we crop it into 4 parts, with
25% of the length or width overlapping between each part.
Fig. 4(a) shows the cropping scheme.

Rotation. The fisheye view introduces both forward and
reverse objects into the image. To ensure an equal distri-
bution of forward and reverse objects, each cropped image
is rotated by 90°, 180°, and 270° respectively. This adjust-
ment aids the model in acquiring a more comprehensive un-
derstanding of the target’s appearance characteristics.

Scaling. As previously stated, there is a significant dis-
parity in the size of various targets, and scaling enables the
model to more effectively learn about targets with varying
dimensions.

Color manipulation and histogram equalization.
Color manipulation and histogram equalization are em-
ployed to optimize the image’s brightness, contrast, and sat-
uration, hence enhancing the model’s ability to recognize
objects under varying lighting circumstances.

Mosaic. Mosaic stitches together multiple images into a
single training example, which improves model robustness
by exposing it to a wider variety of object scales, positions,
and contexts in one image.

Fig. 4(b) shows a batch of images after data augmenta-
tion.

3.2. Ensemble Detection Model

The study has experimented on three object detection mod-
els: YOLOv8, Co-DETR, and InternImage. Each model
possesses distinct attributes and performs well at detecting
different classes of objects. The appearance characteristics
of objects, such as color, vary significantly between daytime
and nighttime scenes, and the standards for annotation are
also not uniform. Therefore, we implement distinct training
and inference processes for images taken during the day and
at night.

For daytime images, since the complex variability and
low resolution of traffic scenes, our proposed framework
model ensemble with different models to improve perfor-
mance. The object detection approach used in this paper is
based on YOLOv8, Co-DETR, and InternImage. We fetch
the bounding boxes of the detected objects in each image
and the corresponding confidence using the detection mod-
els:

Bi = {(bij , cij , sij)|i ∈ ν, j ∈ N} (1)

where bij = (x1,y1,w,h) is the corresponding bounding
box information, cij is the class id, sij is the confidence
score, ν is the number of images and N is the number of
objects in image i . We perform Weighted Boxes Fusion
(WBF) to filter detection boxes that overlap the same ob-
jects. Accordingly, the final prediction extracted from the
three individual models by using WBF is generally formu-
lated as follows:

Zi = {wbf(BE1,i, BE2,i, BE3,i) | i ∈ ν} (2)

where Z represents the final prediction. E1, E2, E3 are
YOLOv8x, Co-DETR and InternImage fine-tuned on Fish-
Eye8K dataset [21].

For images captured at night, due to the significantly
fewer number of targets compared to daytime images and
the virtual absence of large-sized objects like trucks and
buses, we opted to fine-tune using only Co-DETR. How-
ever, during inference, we employ Test Time Augmentation
(TTA), making it necessary to employ WBF for result inte-
gration.

3.3. Post Process

Weighted Boxes Fusion. WBF is an advanced technique
in object detection that addresses the challenge of integrat-
ing multiple bounding boxes predicted by different mod-
els or the same model with varying configurations. Af-
ter the three models output detection results, we perform
WBF on them. The fusion process is calibrated by assign-
ing variable weights to the detection outcomes from differ-
ent models, because of their respective proficiency in recog-
nizing certain categories. For instance, when detecting Bus
and Truck, the InternImage model’s results are given higher

7094



weights because it performs better in these categories. On
the other hand, when identifying Bike and Pedestrian, the
Co-DETR model’s detections are prioritized due to its su-
perior performance in these classes.
Vehicles Classifier Module. By analyzing the confusion
matrix of the validation set predictions, we observed that
the three vehicle categories exhibit high confusion rates.
Additionally, there is a tendency to incorrectly identify the
background as one of these three categories. To address this
issue, we employ YOLOv8s-cls to train a classification net-
work specifically for vehicles. We select the targets with
high prediction scores but belonging to false positives as
negative samples. Additionally, we extract the regions cor-
responding to these three categories from the training set as
positive samples. Finally, we randomly partitioned all sam-
ples into training and validation sets with a ratio of 8:2.
Static Objects Processing. The static object definition is
contingent upon two factors: positional stability and image
region similarity. An object qualifies as static if it retains
a nearly identical location in at least ten out of twenty se-
quential frames, corroborated by significant similarity in the
relevant image area. To discern static pedestrians, which are
atypical in urban scenes, the method combines static indica-
tors with confidence scores to exclude non-dynamic entities
such as utility poles. For static vehicles, intermittent detec-
tions are interpolated to maintain continuous identification.
We adopt SSIM as the metric of image similarity between
two images. The Structural Similarity Indexis a perceptual
metric that quantifies the similarity between two images.
SSIM is designed to improve upon traditional metrics like
Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR) by taking into account the perceptual properties of
the human visual system which includes changes in struc-
tural information, luminance, and contrast. The SSIM index
is a decimal value that ranges between -1 and 1. A value of
1 indicates that the two images being compared are identi-
cal. The measure between two images x and y of common
size N ×N is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

where µx and µy are the average pixel values of images x
and y, respectively.

µx =

N∑
i=1

wixi (4)

σx and σy are the variances of x and y, respectively.

σx = (

N∑
i=1

wi(xi − µx)
2)

1
2 (5)

Figure 5. The frequency distribution of the confidence scores be-
fore and after adjustment. (a) shows the original distribution of
confidence scores across the specified distance intervals before
adjustment. (b) illustrates the frequency distribution of the con-
fidence scores following the application of refinement techniques.

σxy is the covariance of x and y.

σxy =

N∑
i=1

wi(xi − µx)(yi − µy) (6)

C1 = (k1L)
2 and C2 = (k2L)

2 are two variables to sta-
bilize the division with weak denominator, with L being
the dynamic range of the pixel-values. k1 = 0.01 and
k2 = 0.03 are the default parameters.
Confidence Score Refine. When conducting target detec-
tion using a fisheye camera, the distortion caused by the
camera lens affects the confidence of detecting targets in
different areas of the image. As a result, there are significant
variations in the performance of target detection across dif-
ferent regions. Upon completion of the detection process,
we observe that the scores decrease as the distance from
the center increases from Fig. 5(a). Additionally, we no-
tice a significant number of targets located in the surround-
ing edge region. Consequently, it is essential to statistically
assess the confidence scores of different areas and employ
correction techniques such histogram matching to modify
the distribution. This method does not require modifying
the initial detection model and can function as a standalone
post-processing procedure to enhance the confidence distri-
bution by examining the detection outputs.

Fig. 6 shows the flowchart of Confidence Score Refine
Module. Firstly, we divide the image into three distinct re-
gions: the central region, the intermediate annular region,
and the peripheral region. For each demarcated region,
the confidence scores associated with all detected objects
are aggregated independently. Subsequently, an analysis
of the distribution characteristics of these confidence scores
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Figure 6. The flowchart of Confidence Score Refine Module.

is conducted for each region, encompassing the calculation
of their histograms [9]. The histogram of the intermediate
annular region is designated as the reference distribution.
Utilizing histogram matching techniques, the distributions
of confidence scores in the remaining regions are adjusted
to align with this reference. This adjustment of confidence
scores within each region is predicated on the outcomes of
the distribution matching process. Finally, the integration
of these calibrated confidence scores into the final detection
results.

4. Experiments
4.1. Implementation Details

We have selected Co-DETA, InternImage, and YOLOv8x
as the detection networks, and YOLOv8s-cls as the network
for classifying vehicles. We trained and test these models on
two NVIDIA GeForce RTX 3090 24GB graphics cards.

Training phase. Since there are differences in object
features and labeling standards across daytime and night-
time scenarios in the dataset, we apply different detection
strategies for each. For images in daytime scenes, three
models are used for training. We employ the ImageNet22K
pre-trained Swin-L vision converter as the backbone for Co-
DETR. The detector was pretrained using the Objects365
and MS COCO datasets. And we apply the InternImage-XL
network based on the Cascade Mask R-CNN framework us-
ing DCNv3 [6] as the core operator. The detector has been
pre-trained on MS COCO. Additionally, we employ the
YOLOv8x model for object detection and the YOLOv8s-cls
as the classification network in the training phase. The size
of the input images for all detection networks is 1600×1600.

The batchsize for Co-DETR, InternImage and YOLOv8 is
2, 4, 8 respectively. In contrast, the size of the input images
for the classification network is 256×256 and the batchsize
is 256. For the images in the night scene, only Co-DETR is
used for training since trucks and buses are extremely rare.
The input image size and batchsize are the same as above.

Test phase. In the inference, the TTA method is em-
ployed. We input four versions of an image into the detec-
tion networks: the original image at a resolution of 1600 ×
1600 and flipped them 180°; as well as flipped versions at
90° and 270° with a resolution of 4000 × 4000. The ulti-
mate prediction is determined by averaging the predictions
generated from the augmented versions of the test data. Fur-
thermore, we conduct a WBF process on the predictions
obtained from three models. Particularly, the weights of
models are not the same for different categories when fus-
ing, because different models are good at detecting different
classes.

4.2. Metrics of Evaluation

The challenge ranking is based on F1 Score [7]. It repre-
sents the harmonic mean of Precision and Recall, offering a
comprehensive measure of a model’s accuracy in predicting
positive instances. F1 Score is the balance between preci-
sion and recall, the value ranging between 0 to 1. Higher F1
Score means a better balance on precision and recall [15].

F1 Score = 2 · Precision ·Recall

Precision+Recall
(7)

where precision finds the percentage of correct predictions
over false positive and true positive, which measure how
accurate the prediction results are.

Precision =
TruePositive

TruePositive+ FalsePositive
(8)

Recall defines how well the algorithm finds all the positive
cases.

Recall =
TruePositive

TruePositive+ FalseNegative
(9)

4.3. Experiments Results

Tab. 1 presents comparative results of object detection mod-
els evaluated on the validation dataset. YOLOv8 show-
cases strong performance in detecting Bus, Car, and Truck
with AP scores of 0.693, 0.677, and 0.636 respectively.
It indicates a relatively high accuracy for larger vehicle
types. However, its performance on Bike and Pedestrian
is lower, at 0.504 and 0.44, which could suggest a need for
improved feature extraction for smaller objects. The Co-
DETR models, segmented into Daytime and Night, display
a mixed performance. Co-DETR-Daytime excels in detect-
ing Pedestrian with an AP of 0.742, outperforming the other
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Model AP Bus AP Bike AP Car AP Pedestrian AP Truck AP 0.5-0.95 AR 0.5-0.95

YOLOv8x 0.693 0.504 0.677 0.440 0.636 0.590 0.698
Co-DETR-Daytime 0.535 0.685 0.474 0.742 0.609 0.609 0.681
Co-DETR-Night 0.486 0.731 0.432 0.435 0.510 0.521 0.664
InternImage 0.770 0.555 0.691 0.464 0.788 0.654 0.702

Table 1. Experimental results on validation dataset.

models in this category, while it shows moderate perfor-
mance in other categories. Co-DETR-Night, on the other
hand, has its highest AP score for Bike at 0.731, suggest-
ing an effective adaptation to low-light conditions for this
category. Nonetheless, its efficacy is reduced for other cat-
egories under nighttime conditions, as seen in the other AP
scores. The InternImage model shows a promising perfor-
mance across all categories, with the highest AP scores for
Bus at 0.77, Car at 0.691, and Truck at 0.788. Its perfor-
mance on Bike and Pedestrian is also competitive at 0.555
and 0.464, respectively. This suggests a well-rounded capa-
bility in object detection tasks across varying object scales
and types.

In conclusion, each model shows specific strengths in
certain categories. the InternImage model consistently per-
forms at a high level for vehicle types and pedestrians,
while Co-DETR performs for small object detection such
as pedestrians and Bike. This analysis shows that combin-
ing the individual models can provide a powerful solution
for a variety of object detection scenarios.

Tab. 2 shows the AP 0.5-0.95 and F1 scores on the test
set for YOLOv8x, Co-DETR, InternImage, and the Ensem-
ble Model. YOLOv8x shows lower performance in both
metrics compared to the other models, with an AP 0.5-0.95
of 0.3102 and a F1 Score of 0.4024. This might suggest that
while it is capable of detecting objects, its robustness is rel-
atively lower. Co-DETR displays significantly higher per-
formance, with an AP 0.5-0.95 of 0.4759, indicating better
precision across varying levels of IoU thresholds. It also has
a high F1 Score of 0.4743, suggesting a good balance be-
tween precision and recall. InternImage has an AP 0.5-0.95
similar to Co-DETR at 0.4756, which denotes it has almost
equivalent precision across IoU thresholds as Co-DETR.
However, its F1 Score is substantially lower at 0.3415, indi-
cating that either precision or recall, or both, are not as bal-
anced as Co-DETR. Ensemble Model shows a mixed per-
formance with a lower AP 0.5-0.95 of 0.4089 compared to
Co-DETR and InternImage but has the highest F1 Score of
0.4909 among all models. In fact, after applying the Ensem-
ble Model, many false positives can be filtered out. How-
ever, it also filters out some truth positives with lower con-
fidence scores. Consequently, the AP 0.5-0.95 decreases.
Nevertheless, this approach leads to a more balanced preci-
sion and recall rate, resulting in more reasonable detection

Model AP 0.5-0.95 F1 Score

YOLOv8x 0.3102 0.4024
Co-DETR 0.4759 0.4743
InternImage 0.4756 0.3415
Ensemble Model 0.4089 0.4909

Table 2. Experimental results on test dataset.

TTA Night
Network

Vehicles
Classifier
Module

Static Objects
Processing

Module

Confidence
Score
Refine

F1
Score

0.4909
✓ 0.5329
✓ ✓ 0.5645
✓ ✓ ✓ 0.5713
✓ ✓ ✓ ✓ 0.5799
✓ ✓ ✓ ✓ 0.5853
✓ ✓ ✓ ✓ ✓ 0.5883

Table 3. Ablation results on test dataset.

outcomes. This suggests that the ensemble method, which
typically combines the strengths of multiple detection mod-
els, has achieved a better balance of precision and recall,
leading to a higher overall F1 Score.

Tab. 3 shows the ablation results on test dataset. Our ab-
lation study systematically investigates the impact of each
component on the overall performance of our system. Ini-
tially, we observe a baseline score of 0.4909, indicating the
performance without the integration of any of the proposed
modules.

TTA. With the addition of TTA, the score is increased
to 0.5329, which can improve the performance and robust-
ness of the model during the testing phase by applying data
augmentation and integrating the prediction results.

Night Network Integration. Nighttime network inte-
gration refers to training a specific set of Co-DETR weights
designed specifically for dark night scenes. By fusing the
prediction results from the night network, the score rises
to 0.5645, which indicates that using different prediction
weights for images at different time improves the accuracy
of detection.
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Figure 7. Visualization of the effect of the Static Objects Process-
ing module.

Vehicles Classifier Module. In our self-curated classi-
fication dataset on vehicles, the YOLOv8s-cls achieves a
top-1 accuracy of 98.5%. As analyzed above, trucks and
buses are rarely present at night. Therefore, considering
both inference time and classification accuracy, we will only
utilize the Vehicles Classifier Module in daytime scenes
and refrain from using it during nighttime scenes. Tab. 3
shows that when we introduce the Vehicles Classifier Mod-
ule, designed to distinguish between different vehicle types
and reduce confusion, there is a noticeable improvement to
0.5713. This suggests that the module effectively reduces
misclassification among the vehicle categories and between
vehicles and background classes.

Static Objects Processing. The integration of the Static
Objects Processing Module, which discerns stationary en-
tities, refines the detection algorithm by excluding inert
false positives and incorporating overlooked false negatives,
thereby marginally elevating the accuracy metric to 0.5799.
Fig. 7 delineates the module’s efficacy. The initial triplet
of frames in the upper tier erroneously categorizes utility
poles as pedestrians, evidenced by their diminished confi-
dence scores, leading to their subsequent exclusion post-
processing. Conversely, the trailing triad illustrates the
module’s rectifications. In the second row, a truck located
at camera24 A 69.png was neglected, despite its identifica-
tion in antecedent frames and considerable visual congru-
ence with the preceding imagery. After applying the mod-
ule, the truck is consequently integrated into the detection
output of camera24 A 69.png.

Our proposed method has been submitted to the AI City
Challenge 2024 Track4 for evaluation. As shown in Tab. 4,
our method surpassed many methods with a score of 0.5883
and ranked sixth out of 52 teams from all over the world.
Fig. 8 shows the visualization of the final submission re-
sults, from which it can be observed that our detection re-
sults are quite accurate.

5. Conclusion
In this paper, we analyze some problems that need to be
solved urgently in the fisheye detection issue, e.g., tiny
objects, shape distortion and confusion of similar classes.

Rank Team ID Team Name Score

1 9 VNPT AI 0.6406
2 40 NetsPresso 0.6196
3 5 SKKU-AutoLab 0.6194
4 63 UIT AICLUB 0.6077
5 15 SKKU-NDSU 0.5965

6 (ours) 33 MCPRL 0.5883
7 156 zzl 0.5828
8 52 DeepDrivePL 0.5825
9 86 NCKU ACVLAB 0.5637

10 13 FRDC-SH 0.5606

Table 4. Top 10 Leaderboard of Track4 in the AI City Challenge
2023.

Figure 8. Visualization of the final submission. Red, blue, green,
yellow, and purple rectangular boxes represent Bus, Bike, Car,
Pedestrian, and Truck, respectively.

Aiming at these, we propose an advanced object detection
framework named FE-Det based on Co-DETR, YOLOv8
and InternImage. The whole framework is mainly enhanced
from object detection models and post-processing. Ex-
tensive experiments demonstrate the effectiveness of our
method. In the future, we would conduct experiments other
fisheye datasets [16] to verify the scalability of our method.
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