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Abstract

The task of Naturalistic Driving Action Recognition aims to
detect and temporally localize distracting driving behavior
in untrimmed videos. In this paper, we introduce our
framework for Track 3 of the 8th AI City Challenge in
2024. The approach is primarily based on large model
fine-tuning and ensemble techniques to train a set of action
recognition models on a small-scale dataset. Starting
with raw videos, we segment them into individual action
sequences based on their annotation. We then fine-tune
four different action recognition models, with K-fold
cross-validation applied to the segmented data. Following
this, we execute a multi-view ensemble, selecting the most
visible camera views for each action class to generate
clip-level classification results for each video. Finally, a
multi-step post-processing algorithm, which is designed
for the AI City Challenge dataset’s specific features, is
employed to perform temporal action localization and
produce temporal segments for the actions. Our solution
achieves a final mOS score of 0.7798 and attains the 5th

rank on the public leaderboard for the test set A2 of the
challenge. The source code will be publicly available at
https://github.com/SKKUAutoLab/AIC24-
Track03.

1. Introduction

Distracted driving behavior refers to different activities
that divert a driver’s attention away from the primary task
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of navigating the vehicle, such as texting, making phone
calls, or drinking. This significantly increases the risk of
accidents and compromises road safety. In 2022, distracted
driving was a factor in the loss of 3,308 lives and injury of
nearly 290,000 people in the United States. Notably, almost
20 percent of the fatalities were pedestrians, cyclists, and
others outside the vehicle, according to the report by the
National Highway Traffic Safety Administration (NHTSA)
[6]. Therefore, naturalistic driving studies, leveraged by
computer vision techniques, are crucial in identifying and
eliminating distracted driving behavior on the road. They
capture all driver actions in the traffic, including those re-
lated to drowsiness or distracted behavior.

In recent years, many effective solutions [1, 4, 15, 31, 33]
have been developed to detect driving behavior on the road.
However, challenges such as insufficient labeling, subpar
data quality, and low resolution continue to hinder the ex-
traction of meaningful insights from real-world driver data.
To address this, AI City Challenge [28] has established
a Naturalistic Driving Action Recognition challenge track
to analyze the distracted behavior of the driver and intro-
duced synthetic distracted driving SynDD1 [21], SynDD2
[22] datasets to be used in the challenge. The 2024 iter-
ation of the dataset was collected inside a stationary vehi-
cle under three camera angles: on the dashboard, near the
rear-view mirror, and on the top right-side window corner.
For each driver, each activity is divided into two groups:
with and without appearance blocks (e.g., wearing a hat or
sunglasses). There are 16 distracted actions (such as phone
calls, eating, and texting) for each participant that happen
at random times and in order. The training annotations of
the dataset are labeled manually for each activity, including
start and end times (the start time may be annotated early
10 seconds before the action starts). The objective is to ac-
curately detect distracted actions as well as their start and
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end times in a given untrimmed video. Thus, this task can
be considered a temporal action localization (TAL) problem
[27].

Compared to TAL, the Naturalistic Driving Action
Recognition track presents distinct challenges. Firstly, the
collected dataset size is relatively limited, yet it comprises
16 action categories that require classification. Secondly,
certain actions pose difficulties in differentiation. For in-
stance, ”Singing or dancing with music” and ”Talking to
passengers at backseat” actions share some similarities. A
driver may glance at the rear-view mirror while conversing
with the backseat passenger, a gesture that could be mis-
taken as singing. Thirdly, the task permits the utilization
of multiple camera views for action prediction. ”Eating”
action can be identified easily from any camera view, but
”Adjusting control panel” action may only be discernible in
the Right-side view. Finally, some actions occur in a mere
second, such as ”Drinking” or ”Yawning”, making it diffi-
cult for action recognition systems to distinguish between
these actions.

In this paper, we present a solution to the driving ac-
tion recognition challenge. Our approach begins with a pre-
processing phase, where we segment the raw videos from
different camera angles in the dataset into class-specific and
temporally annotated action sequences. Then, we perform
fine-turning of three pre-trained action recognition mod-
els, including VideoMAE, UniformerV2 and X3D, with
five-fold cross-validation employed on the segmented data
across all 16 classes. We also fine-tune an additional Uni-
formerV2 model on two particularly challenging ”Talking
to passenger at the right”, ”Talking to passenger at back-
seat” classes alongside ”Normal forward driving” back-
ground class. Next, we ensemble the trained models to
generate clip-level classification results, tailoring different
camera view selections corresponding to each model and
each action class. Finally, a multi-step post-processing al-
gorithm is applied to perform temporal action localization
task, which merges together the clips within the same action
into a temporal segment and discards any inaccuracies with
low confidence scores.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the proposed
method. The experiments are examined in Section 4, and
the conclusion and future work are in Section 5.

2. Related work

2.1. Video action recognition

Video action recognition is a fundamental task of com-
puter vision that focuses on identifying and categorizing hu-
man actions from video data. Advances in this field have
been significantly influenced by the integration of Convolu-
tional Neural Networks (CNNs) and Transformers.

Initially, 2D CNN-based methods extract spatial features
before combining them via temporal modeling [14, 16].
These methods are computationally efficient and suitable
for large-scale video datasets. However, since temporal in-
formation is fused after spatial feature extraction, there is
a risk of losing fine-grained temporal nuances essential for
accurate action recognition. Moreover, the effectiveness of
2D CNN-based approaches heavily depends on the quality
of spatial feature extraction, making them sensitive to vari-
ations in pose, viewpoint, and object occlusion. In contrast,
3D-CNN-based methods treat video objects as 3D entities,
employing convolutions across both spatial and temporal
dimensions to capture intricate motion patterns over time
[3, 25]. By simultaneously capturing spatial and temporal
information, these models preserve crucial temporal context
for accurate action recognition. Moreover, 3D CNN-based
models exhibit greater robustness than their 2D counterparts
when dealing with spatial variations such as pose changes,
different viewpoints, and object occlusions. However, pro-
cessing spatiotemporal volumes demands more computa-
tional resources, resulting in longer inference time. Ad-
ditionally, due to their model complexity, 3D CNN-based
methods may require larger datasets for effective training,
which can be challenging to obtain in certain domains.

Transformer-based methods, inspired by the success of
Transformers in the image domain, use Vision Transformers
(ViT) as backbones and achieve outstanding results on vari-
ous video understanding benchmarks [2, 18]. Furthermore,
recent works take advantage of video foundation mod-
els and multi-model approaches to further enhance perfor-
mance in the video domain [12, 23]. Utilizing Transformer-
based models allow capturing long-range dependencies,
thereby enhancing action recognition accuracy. In addition,
Transformer-based architectures are highly scalable, which
enables processing both short and long video sequences
without computational inefficiency. However, Transformer-
based methods often require substantial labeled data for pre-
training and fine-tuning, which can be challenging in do-
mains with limited access to labeled datasets.”

2.2. Temporal action localization

Temporal action localization aims to detect activities in
an untrimmed video and output time boundaries for each
action. Typically, it is divided into three categories, multi-
stage, two-stage, and one-stage methods.

In the multi-stage approach, the process begins with
frame-level classification to identify potential action in-
stances. Subsequently, post-processing techniques are em-
ployed to refine this classification and determine the precise
start and end timestamps for each action [17, 30].

Conversely, the two-stage approach operates by initially
generating candidate proposals for potential actions within
a video sequence. These proposals are then subjected to
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classification and refinement stages to accurately determine
the temporal boundaries of each action [29, 32]. Despite
the model complexity, both multi-stage and two-stage ap-
proaches yield high temporal localization accuracy owing
to their multi-step refinement process.

Lastly, the single-stage approach integrates action clas-
sification and temporal localization steps into a single stage
without the need for explicit proposal generation. This ap-
proach aims to simplify the process by directly predicting
action labels and their temporal boundaries. Although this
approach is simple, it has been demonstrated ineffective
when applied to the AI City Challenge dataset because of
the limited amount of the data [26].

3. Proposed method

Overall, our framework is based on fine-tuning large
models on a small-scale dataset to build a strong set of video
action recognition models. Then, we use a multi-view,
multi-fold ensemble to obtain clip-level classification prob-
abilities. Finally, a multi-step post-processing algorithm is
applied to localize temporal segments corresponding to ab-
normal actions. The overview architecture of our model is
illustrated in Fig 1.

3.1. Video action recognition model fine-tuning

Due to the constrained size of the provided dataset, rely-
ing solely on a single large model could lead to overfitting.
To mitigate this, we employ a variety of action recognition
models in an ensemble, capitalizing on the unique visual
features each model can learn.

In the image domain, Masked Autoencoders (MAE) [9]
has been one of the state-of-the-art self-supervised models
that use mask modeling to perform diverse computer vision
tasks such as image classification, object detection, and seg-
mentation. In the video domain, VideoMAE [24] extends
MAE to 3D space by using the potential of a vanilla Vision
Transformer for video action recognition. It can also be
considered the first masked video pre-training framework
that adopts plain ViT backbones and has an excellent perfor-
mance on various video understanding benchmark datasets
such as Kinetics-400 [10], Something-Something V2 [7],
and AVA v2.2 [8]. Therefore, inspired by the success of this
model and the winning solution last year [33], we utilize
VideoMAE as one of our base models for distracted driving
action classification. Furthermore, to learn more represen-
tative features, we also initialized VideoMAE on Kinetics-
710 [11].

Owing to the powerful performance of Transformer-
based approaches in computer tasks, we also adopt Uni-
FormerV2 [11] as our second base model. UniformerV2 is
an improved version of Uniformer [13] that meticulously re-
fined the local and global relation aggregators, blending the

strengths of both ViT and Uniformer, resulting in a seam-
lessly integrated architecture. It is worth noting that Uni-
formerV2 achieved 90% top-1 accuracy on the Kinetics-400
dataset, positioning it among the first models to reach this
milestone. Furthermore, the network demonstrates com-
petitive results across eight popular video understanding
benchmarks when compared to previous Transformer-based
models. Our decision to include UniFormerV2 was also
influenced by the overlap in action labels between the Ki-
netics dataset and the SynDD2 dataset, such as ”yawning”
/ ”Yawning”, ”talking on cell phone” / ”Phone call”, and
”singing” / ”Singing or dancing with music”.

Upon examining of the inference performance of Video-
MAE and UniformerV2, we discover that certain actions,
specifically ”Talking to passenger at the right”, ”Talking to
passenger at backseat” frequently challenge action recogni-
tion models. To address these difficulties, we prepare two
versions of UniFormerV2. The first version is trained across
all 16 classes, paralleling the training of VideoMAE. For the
second version, we redefine the remaining actions as nor-
mal driving behavior and focus the training on three specific
classes. This approach significantly enhances our models’
capability to detect the aforementioned challenging actions.

For the last base model, we employ X3D [5], a
lightweight CNN-based network that progressively expands
the network axes of a tiny 2D image in terms of space,
time, width, and depth, respectively. X3D also requires
4.8× fewer multiply-adds operations and 5.5× fewer pa-
rameters compared to previous CNN-based networks, mak-
ing it more computationally efficient to train on a large-
scale dataset. During training, we observed that actions
easily visible from the Rear-view and Right-side such as
”Phone call”, ”Texting”, or ”Adjusting control panel” posed
challenges for UniformerV2. However, X3D performs well
on these actions. Consequently, X3D is adopted alongside
VideoMAE and UniformerV2 to learn more diverse fea-
tures.

3.2. Multi-view multi-fold model ensemble

First, to enhance the generalization of the video models,
we employ a K-fold cross-validation strategy with (K = 5)
in the training pipeline, drawing inspiration from [26].

Secondly, because the dataset provides calibrated videos
from three camera views, it is advantageous to incorporate
information from multiple camera views in detecting driver
actions. For instance, the Rear-view camera excels in iden-
tifying hand-related actions such as “Drinking”, “Phone
call (left)” and “Hand on head”, while the Dashboard cam-
era is particularly good at capturing instances of “Drink-
ing”. Conversely, the Right-side camera is invaluable for
actions that may otherwise be obscured, including “Phone
call (right)”, “Texting (right)”, “Texting (left)”, “Adjusting
control panel” and “Singing or dancing to music”. Based on
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Figure 1. The overview architecture of the proposed framework. Initially, each input video is divided into multiple segments corresponding
to 16 action classes from different camera views. Then, they are split into five folds before being fed into four action recognition models for
training (UniformerV2 1 and UniformerV2 2 are two versions that are trained on all 16 classes and three classes, respectively). Next, the
action classification probabilities are used for the multi-view ensemble to obtain clip-level classification results. Finally, a post-processing
technique is applied to generate temporal action localization results.

empirical analysis, we arrange different camera view selec-
tions corresponding to each model and each action class, as
listed in Table 1. The camera view selections will directly
affect the model ensemble score:

S = α ∗ (
∑5

i=1 Dashi

n
+

∑5
i=1 Dash′

i

n
)

+ β ∗
∑5

i=1 Righti
n

+ σ ∗
∑5

i=1 Reari
n

(1)

where n denotes the number of training folds,
Dash,Right,Rear are weights of VideoMAE cor-
responding to each fold of each view, Dash′ is the
Dashboard weight of UniformerV2 1, and α, β, σ are
hyperparameters to control the prediction accuracy of
action labels.

Our general ensemble score (Eq. 1) is applied to spe-
cific actions such as ”Eating”, ”Picking up from floor”
and ”Talking to passenger”. As can be seen in Table 1,
we observed that VideoMAE is performs well across all
views, while UniFormerV2 1 achieve good results for ac-
tions observed from the Dashboard view. Consequently,
we combine results from the Dashboard, Rear-view, and
Right-side of VideoMAE and UniformerV2’s Dashboard to
construct Eq. 1.For actions not covered by the general en-
semble score, we leverage different perspectives from Uni-
formerV2 2 and X3D, which handle cases typically visible
only from the Rear-view and Right-side.

3.3. Multi-step post-processing

Upon receiving a video input, each of the models com-
putes the probability score for the action clips. These ini-
tial outputs are then refined through a post-processing phase
to determine the action labels and their corresponding tem-
poral boundaries. While the Non-Maximum Suppression
(NMS) algorithm [20] is typically used for TAL, the study
in [26] has shown that it is ineffective for the AI City Chal-
lenge dataset due to the distinct timing of actions within
each video and the absence of overlap among them. In our
framework, we perform a multi-step post-processing algo-
rithm to generate final action temporal segments.

In Step 1, we aggregate the results from the five folds of
each model across three different views and calculate their
mean across all models and views. Following this, we apply
a smoothing operation with a mean filter, as suggested in
[19]:

P̃l(x) =
1

2w

l+w∑
j=l−w

pl(x) (2)

where w is the window size, p(x) and l(x) denote the se-
quence of probability scores and its length, respectively.
The smoothing operation aims to rectify any inaccuracies in
clip classification, resulting in a series of contiguous clips.
These refined fold-averaged results are then utilized in the
multi-view ensemble to calculate the composite probability
score for the action clips in accordance with Equation 1.

In Step 2, actions that exhibit low probability scores are
filtered by reassigning their category to 0, indicative of nor-
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Table 1. The summary of selected camera views of each model to predict each distracted driving action.

VideoMAE UniformerV2 1 UniformerV2 2 X3DActivities Dash Rear Right Dash Rear Right Dash Rear Right Dash Rear Right
Drinking ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Phone Call (Right) ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Phone Call (Left) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Eating ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Texting (Right) ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Texting (Left) ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Reaching behind ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Adjusting Control Panel ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Picking up from floor (Driver) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Picking up from floor (Passenger) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Talking to passenger (Right) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Talking to passenger (Backseat) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Yawning ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Hand on head ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Singing or dance with music ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

mal driving behavior, provided these scores fall below a pre-
defined threshold λ1.

In Step 3, the linking operation is initiated by first dis-
carding clips having category 0. We then merge the clips
sharing the same categories into a unified temporal segment,
provided their time gap is less than a pre-defined merging
threshold λ2. For activities that typically span longer dura-
tions, such as ”Singing or dance with music” or ”Talking to
passenger”, we apply a higher λ2 to capture both short and
long temporal segments of each action.

In Step 4, we perform two noise removal operations.
First, observation indicates that most actions occur within
a 1 to 30-second window. Hence, to prevent overlap with
standard actions, we exclude activities whose duration ex-
ceeds 32 seconds. Second, training annotations reveal that
actions like “drinking,” “reaching behind,” “adjusting the
control panel,” “picking up from the floor,” and “yawning”
are short-lived, whereas others are more prolonged. For
these longer actions, we eliminate any that fall below a pre-
defined noise threshold λ3 to avoid noisy actions. Notably,
λ1, λ2, and λ3 are hyperparameters that are fine-tuned dur-
ing the inference stage for optimal results.

In Step 5, based on the analysis of the results after Step
4, we identified a subset of actions with overlapping char-
acteristics that could potentially lead to erroneous identifi-
cations by action recognition models. Instances include ac-
tions such as “Talking to passenger at the right” and ”Talk-
ing to passenger at backseat”, or ”Talking to passenger at
the backseat” and ”Singing or dance with music”. To mit-
igate this, we start a reclassification operation where we
compare the prediction scores for corresponding views of
each action pair and assign the label with the higher proba-
bility score to enhance accuracy. Fig 2 illustrates five main

Figure 2. An example of our post-processing algorithm on a video
sequence.

steps of our post-processing algorithm.

4. Experiments
4.1. Dataset

The dataset consists of 594 video clips for about 90 hours
in total, which were captured by 99 drivers. In each video,
participants must do 16 different activities such as phone,
eating, and reaching back in random order. Three cameras
were mounted in the car, talking responsibility for record-
ing different angles in synchronization. Furthermore, each
driver performs the task twice, one is equipped with no ap-
pearance block and the another is equipped with sunglasses
or a hat. Thus, each driver has a total of six videos, resulting
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in 594 videos in total.
In Track 3 of AI City Challenge 2024, these videos are

split into three datasets A1, A2, and B, each including 69,
15, and 15 drivers, respectively. For dataset A1, the ground
truth labels of the start time, end time, and type of corre-
sponding distracted behaviors were provided. Dataset A2
was given with no labels, and it was used as the first test
set to evaluate action recognition algorithms on the online
evaluation server. Dataset B is released later and is used as
the final test set. The objective of this track is to locate ac-
curate timestamps and the types of distracted behavior from
the untrimmed videos.

4.2. Implementation details

Our framework is developed and tested on a workstation
running Ubuntu 22.04 with Pytorch 1.11.0. The machine
is powered by an Intel Core i9-10980XE @3.00GHZ CPU
and 4x RTX A6000 GPUs, each equipped with 48GB of
VRAM.

For the VideoMAE model, similar to [33], we use a 16-
frame vanilla ViT-L model as the backbone paired with
a simple linear classification head. The input size, clip
lengths, the number of samples, and the sampling rate are
specified as 224, 16, 1, and 4, respectively. Each view un-
dergoes a 35-epoch training cycle per fold, utilizing the lion
optimizer, a learning rate of 0.001, weight decay of 0.2, a
cosine annealing learning rate schedule, a five-epoch warm-
up period, and a layer decay of 0.75.

In the case of the two UniformerV2 models, we employ
the vanilla ViT-L model as the backbone with the input size,
clip lengths, the number of samples, and the sampling rate
specified as 336, 7, 1, and 16, respectively. Training for
each view extends over 50 epochs per fold, employing the
Adamw optimizer, a learning rate of 0.0004, weight decay
of 0.05, a cosine annealing learning rate schedule, no warm-
up epochs, and a dropout rate of 0.5.

Regarding the X3D model, we apply X3D-L model, se-
lecting width and depth multipliers as 2.0 and 5.0, respec-
tively. The input size, clip lengths, the number of samples
and, the sampling are set to 448, 8, 1, and 4, respectively.
The learning rate is initialized as 0.0005 with Adam opti-
mizer. The cosine annealing schedule is also applied with a
learning rate of 0.0005.

To train all the above models, we follow the format of the
Kinetics dataset by splitting input untrimmed videos into
multiple small segments corresponding to specific classes.
For VideoMAE, we utilized the pre-trained weight from
[33]. For UniformerV2, the pre-trained model is used from
its original repository [11]. For X3D, we use its pre-trained
model on the Kinetic dataset, which was published on the
PySlowFast library repository.

In the post-processing step, the k smoothing values are
set to 1, 2, 1, 1 for VideoMAE, UniformerV2 1, Uni-

formerV2 2, and X3D. The threshold values of λ1, λ2, and
λ3 are 0.3, 7, and 3. The α, β, and σ values are chosen as
0.3, 0.4, and 0.3, respectively.

4.3. Evaluation metric

Video action recognition. In video action recognition,
we evaluate our model using two common classification
metrics: Accuracy and F1 score. Specifically, the Accuracy
can be computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN,FP , and FN represent the number of true
positive, true negative, false positive and false negative, re-
spectively.

For the F1 score, it is calculated as follows:

F1 =
2× precision× recall

precision+ recall

=
TP

TP + 1
2 (FP + FN)

(4)

Temporal action localization. In temporal action local-
ization, we measure the performance of our model using
average activity overlap score. Let g be the ground truth
activity with start time gs and end time ge, we aim to find
the closest predicted activity match p of the same class as g
with the highest overlap score os. The start time ps and the
end time pe are allowed in the range [gs − 10s, gs + 10s],
and [ge−10s, ge+10s], respectively. The overlap between
g and p is defined as follows:

os(p, g) =
max(min(ge, pe)−max(gs, ps), 0)

max(ge, pe)−min(gs, ps)
(5)

After matching each ground truth and prediction activ-
ities by start times, all unmatched activities between the
ground truth and the prediction have an overlap score of
0. The final score is the average overlap score among all
matched and unmatched activities.

4.4. Results

Video action recognition. For each camera view, the 5-
fold cross-validation is applied across all drivers in the train-
ing set. Table 2 presents the results from different camera
views across five folds. It can be observed that the accuracy
and F1 scores exhibit slight variations when we alter the
camera angle for drivers. For example, the Dashboard view
performs exceptionally well in fold 1, surpassing the Rear-
view and Right-side by approximately 2.85%. However,
in fold 3, it exhibits the poorest accuracy, lagging behind
the Rear-view and Right-side by approximately 7.79%. To
enhance model performance, we employed ensemble tech-
niques that consider all camera angles rather than relying
solely on a single view.
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Table 2. Results from 5-fold cross-validation on the validation set
for each fold.

Camera View Fold Accuracy F1 Score

Dashboard

1 95.20 91.27
2 94.93 91.0
3 87.41 86.62
4 89.78 88.71
5 91.66 89.50

Rear-view

1 94.33 90.85
2 92.09 89.55
3 95.86 91.70
4 95.71 91.70
5 88.91 87.92

Right-side

1 90.36 87.86
2 91.79 89.22
3 88.73 87.55
4 82.84 84.47
5 90.48 88.68

Table 3 displays the accuracy of each action recognition
model for individual classes. As can be seen, the perfor-
mance varies across different models when evaluated us-
ing folds. In fold 2, VideoMAE, UniformerV2 1, and the
ensemble version exhibit comparative results. However,
across the remaining folds, the ensemble version consis-
tently outperforms the other models for all classes. In class
12 for all folds, the ensemble version’s results are relatively
lower, indicating the need for further hyperparameter opti-
mization.

Temporal action localization. Table 4 shows the top
teams from the public leaderboard of the challenge, evalu-
ated on test set A2. Our proposed method secured the 5th
position with a 0.7789 mOS score. We outperformed half
of the other teams with an average performance difference
of about 20%, showcasing the effectiveness and strong gen-
eralization ability of our approach.

5. Conclusion
In this study, we presented a solution for Track 3 of

the AI City Challenge 2024, which is viewed as a tem-
poral action localization task for Naturalistic Driving Ac-
tion Recognition. Concretely, the proposed framework in-
cludes three main steps. Firstly, we train four pretrained ac-
tion recognition models, VideoMAE, UniformerV2 1, Uni-
formerV2 2, and X3D for a clip-level classification. Sec-
ondly, we employ multi-view ensemble techniques to im-
prove the prediction results. Finally, a non-trivial post-
processing algorithm is given to locate precise temporal
boundaries and remove noisy actions for short and long
temporal correlations in untrimmed videos. The experimen-
tal results on the A2 dataset showed that our framework
achieved a good performance, with an mOS score of 0.7798,

and ranked fifth in the challenge. In our future work, we
plan to examine replacing VideoMAE with VideoMAEv2,
an improved version of VideoMAE that introduces a dual
masking strategy for efficient pre-training. Additionally,
we aim to enhance the model’s versatility by exploring op-
tical flow features and automatic image colorization tech-
niques.
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