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Abstract

Fish-eye cameras have long been employed in traffic
surveillance systems to allow for wider observation of the
roads. Despite their widespread use, limited computer vi-
sion research is tailored explicitly to images captured by
fish-eye cameras. The AI City Challenge 2024 - Track 4 in-
troduces a novel fish-eye camera dataset for the 2D road
object detection task. This paper proposes a framework
designed to detect objects in fish-eye camera images. Our
approach involves several key steps: first, we generate im-
age data to bridge the representation gap between day and
night images. Next, we leverage zero-shot open vocabulary
detection to produce pseudo-labels, aiding in training su-
pervised object detection models. Additionally, we optimize
the model’s hyper-parameters and inference configuration
for better performance. Finally, we apply various post-
processing techniques to enhance detection performance.
Our solution achieves a final F1 score of 0.6194 in the AI
City Challenge 2024 - Track 4, ranking third among com-
peting teams. The source code is available at GitHub Repo.

1. Introduction
Traffic surveillance using cameras is one of the essen-

tial components of smart cities. Typically, conventional
surveillance cameras have a limited field-of-view (FOV),
thus requiring multiple cameras to cover an intersection
fully. Fisheye cameras have become an alternative solution
due to their wide and omnidirectional coverage capabilities.

*This work was supported by the Institute of Information & commu-
nications Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No. 2021-0-01364, An intelligent system for
24/7 real-time traffic surveillance on edge devices)

They offer a significant advantage by efficiently reducing
the required cameras to capture broader views of roads and
intersections.

Despite their advantages, fish-eye cameras present
unique challenges for object detection. The distortion re-
sulting from the circular representation of the camera’s field
of view leads to significant object deformation, particularly
near the center and image boundaries. This warping com-
presses and skews environmental information, making pre-
cise object localization difficult. While previous approaches
have attempted to convert fish-eye images into rectangular
panoramas to mitigate this distortion, they still need to fully
address the variations in object scales caused by their rela-
tive distances to the camera. Nonetheless, fish-eye cameras
represent a valuable source of data and an underexplored
research field.

The limited availability of publicly annotated fish-
eye datasets in the literature hinders the current research
progress in fish-eye cameras. To address this limitation,
the FishEye8K dataset [1] has been introduced as the first
dataset for 2D road object detection in fish-eye cameras.
This dataset is tailored for traffic surveillance applications
across five object classes: bus, bike, car, pedestrian, and
truck. The FishEye8K dataset was also established as a
challenge track in the AI City Challenge 2024 (AIC24) [2].

In this paper, we proposed a solution to the 2D road
object detection task in the FishEye8K [1] dataset. Given
that the dataset lacks the calibration matrix for each camera,
our approach revolves around adapting knowledge from the
general object detection domain to fish-eye cameras. As il-
lustrated in Fig. 1, our proposed method consists of three
main modules as follows:

• We present an Image Generation Module (IGM) utiliz-
ing Style Transfer to generate nighttime images from
their daytime counterparts synthetically. The primary
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Figure 1. The framework of our solution.

objective is to augment the number of nighttime im-
ages, which are limited in the original FishEye8K
dataset [1] training set.

• We propose an Open-Vocabulary Pseudo-Labels
(OVPL) strategy that integrates knowledge distilla-
tion with semi-pseudo-labels. We employ a zero-shot
open-vocabulary detection model as the teacher model
to generate pseudo-labels for previously unlabeled im-
ages. These pseudo-labels are subsequently employed
to train the object detection models using the standard
supervised learning strategy.

• We implement an Object Detection Module (ODM) to
identify 2D road objects. All object detection mod-
els are trained with guidance from the proposed PLG
module. Additionally, the module integrates several
popular techniques, including augmentation (both at
training and test-time) and ensemble methods, to gen-
erate the final results.

To evaluate the proposed method, we submit the results
to the public leaderboard of AIC24 - Track 4. Experimental
results demonstrate competitive performance compared to
other methods, achieving a top-3 ranking with an F1 score
of 0.6194, with only a marginal difference of 0.002 from the
second place.

2. Related Work

2.1. Traffic Surveillance Dataset

Traffic surveillance and monitoring stand as one of
the most well-established applications in computer vision.
With recent advancements in deep learning-based methods,
there is a growing demand for high-quality traffic surveil-
lance datasets. However, most existing datasets reside in
private domains of government and industry, limiting ac-
cess for researchers in the academic community. To over-
come this obstacle, several datasets have been publicly re-

leased in recent years, including UA-DETRAC [3], MIO-
TCD [4], AAU RainSnow [5], CityFlow [6], and Fish-
Eye8K [1]. These datasets provide bounding box labels for
object detection tasks, and some also include unique IDs for
object tracking-related tasks [3, 6]. While most datasets are
captured using conventional RGB cameras, FishEye8K [1]
stands out as the first dataset to utilize fish-eye lenses, of-
fering omnidirectional and wide coverage of road intersec-
tions. Some examples of the FishEye8K [1] dataset are vi-
sualized in Fig. 2. This trend underscores traffic surveil-
lance’s significance in academic literature and industry.

2.2. Style Transfer

Style transfer or image translation from one domain to
another is integral to numerous computer vision tasks. This
problem is a common challenge in various domains, includ-
ing medical image analysis, autonomous driving, and vir-
tual reality. Generative adversarial networks (GANs) based
methods, which emerged as a highly promising approach
for image stylization, comprise two distinct components:
generative and discriminative models. While the latter com-
ponent is used to distinguish between the real and the gen-
erated images, the former is utilized to capture the proba-
bility distribution of data to generate images. Pix2Pix [7]
is one of several ideas that uses a conditional GAN that
learns to map input images from one domain to correspond-
ing output images in another domain. Many subsequent
works have employed a similar approach to that of Pix2Pix
[7], utilizing the technique to tackle various tasks, includ-
ing the generation of high-resolution images from seman-
tic label maps [8] or the creation of photographic images
from sketches [9, 10]. However, these approaches require
paired training examples, limiting the possibility of gener-
ating more data.

Conversely, certain methods do not necessitate having
corresponding data pairs. CycleGAN [11] extends the
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GAN-based method to unsupervised, which results in no
pair data required, with the idea of cyclic consistency. Or
shared latent space methods like UNIT [12] and MUNIT
[13] for multiple-domain translation.

2.3. Object Detection

Object detection remains one of the fundamental tasks in
traffic surveillance systems and has been extensively stud-
ied. In earlier days, on-road object detection primarily re-
lied on extracting moving foregrounds through background
subtraction methods [14], followed by classification using
machine learning techniques such as SVM or Decision Tree
[15]. However, this approach requires manual feature en-
gineering tailored to each context, limiting generalization
capabilities. With the advent of deep learning, object detec-
tion can now be accomplished end-to-end, leading to more
efficient and accurate detection capabilities.

Currently, YOLO [16] with its successor variants
YOLOR [17], YOLOv5 [18], YOLOv7 [19], YOLOv8 [20],
and YOLOv9 [21] have gained immense popularity for their
ease of training and fine-tuning, particularly with custom
datasets. These models are single-stage object detection
methods that predict object classes and bounding box coor-
dinates in a single pass. These models leverage predefined
bounding box anchors and adjust scales and aspect ratios for
accurate object localization. Moreover, they are supervised
learning approaches that require input data in the form of
images along with corresponding bounding box labels. This
requirement poses a limitation, as acquiring and annotating
labels for unseen data can be costly and time-consuming.
Furthermore, supervised methods are sensitive to erroneous
labels, which can significantly impact the performance and
reliability of the model.

Recently, the zero-shot open-vocabulary object detection
models, for instance, Grounding DINO [22] and YOLO-
World [23], have shown impressive performance. These
models accept one or more text prompts and aim to iden-
tify the location of all the objects of interest. While zero-
shot detection models demonstrate increasing accuracy in
detecting objects, smaller custom models are faster, more
compute-efficient, and more accurate in specific domains.
However, despite these trade-offs, large zero-shot models
offer a significant advantage as they can automatically label
unseen data.

3. Methodology
An overview of our solution can be visualized in Fig. 1.

We first provide a summary of the FishEye8K [1] dataset,
followed by a thorough analysis of its contents (Section
3.1). In Section 3.2, we use the IGM to synthesize nighttime
images from the corresponding day-time scenes to bridge
the representation domain gap. In the next step (Section
3.3), we deploy the PLG training strategy with the state-

(a) (b)

(c) (d)

Figure 2. Examples erroneous labels in FishEye8K [1] dataset.
a) Wrong classification. b) Inaccurate localization. c) Missing
labels. d) Inconsistency labels.

Table 1. Summary of our dataset derived from FishEye8K [1].

Item Distribution

im
ag

es

train 5,288
val 2,712
test 1,000
background 800
synthesis 5,841
Total 15,641

Class Distribution Min (px) Max (px)

la
be

ls

bus 5,751 864 36,7302
bike 157,544 100 39,476
car 90,878 100 109,324
pedestrian 22,079 230 5,104
truck 6,362 1,435 96,775
Total 282,614

of-the-art open-vocabulary object detection model, YOLO-
World [23], to infer the unlabelled images with bounding
box pseudo-labels, thereby performing active learning. Fi-
nally, we train multiple object detection models within the
standard supervised learning pipeline (Section 3.4). We also
apply standard inference techniques such as test-time aug-
mentation (TTA) and ensemble to produce the final solution
to the challenge.

3.1. FishEye8K Dataset

Dataset Summary. Before proceeding, we analyze the
FishEye8K dataset [1]. In summary, the dataset comprises
8,000 images extracted from 18 pre-recorded videos. These
images are divided into 5,288 for training and 2,712 for
validation. A total of 157,012 annotated bounding boxes
are provided across 5 road object classes: ”bus”, ”bike”,
”car”, ”pedestrian”, and ”truck”. Additionally, an addi-
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tional 1,000 unlabeled images are included for the testing
phase. Throughout the dataset, the images’ resolutions of
1245×1080 and 1920×1920 are mainly used. Most road ob-
jects are either ”bike” or ”car”, which occupy 56.3% and
32.3% of the total bounding boxes. Alternatively, bounding
boxes labeled as ”pedestrian” exhibit a moderate number,
7.5% over the total boxes. At the same time, the dataset
represents a modest number of objects labeled as ”bus” and
”truck”, around 2% per class. One final note is that the
dataset does not include the camera calibration matrix for
each camera. As a result, the conversion of fish-eye images
into rectangular panoramas is not feasible.
Annotation Quality. Upon conducting a thorough exami-
nation of the dataset, we have identified several flaws that
could potentially impact the accuracy of the detection mod-
els. Specifically, we have uncovered four main issues: in-
correct class labeling, inconsistent labeling, and inaccurate
localization. Examples of these erroneous labels are visu-
alized in Fig. 2. One common error we encountered is
the bounding box of an object labeled as ”bike” covering
only half of the human body, which may lead to ambigu-
ity for the model to distinguish between the classes ”bike”
and ”pedestrian” (Fig. 2b). On the other hand, there are
some inconsistencies between object classes in consecutive
frames. For instance, in Fig. 2d, a ”truck” instance has two
different classes in two frames. Moreover, we notice many
objects with missing labels, as shown in Fig. 2c.

The dataset cannot be utilized directly due to the pres-
ence of erroneous bounding boxes. Therefore, we under-
take a data-cleaning procedure to eliminate incorrect bound-
ing boxes and annotate additional objects to enhance image
consistency. Table 1 presents the comprehensive distribu-
tion of annotated instances.

3.2. Image Generation Module (IGM)

In the FishEye8K [1] dataset, most images are captured
during the daytime, while some are captured at nighttime.
There is a significant difference between the two scenar-
ios. The daytime images are in full RGB color, whereas
the nighttime images are black-and-white (BW). However,
a major issue is the limited number of annotated nighttime
images. Hence, the dataset is skewed towards daytime im-
ages, which may lead to suboptimal training results. There
are two approaches to address this issue: training separate
models for each scenario or balancing the data. This paper
follows the second approach by synthesizing more night-
time images using style transfer.

We opted for an optimized and lightweight solution to
enhance the dataset by employing style transfer, specifically
utilizing CycleGAN [11] to transform the daytime images
in the dataset into a comparable nighttime version. Cycle-
GAN [11] was selected due to its ability to perform style
transfer without requiring paired data and ease of training

(a)

(b)

(c)

Figure 3. Examples of nighttime data generation using style
transfer. a) Real nighttime image. b) Original daytime images. c)
Synthesized nighttime images.

and fine-tuning. We divided the dataset into two subsets:
morning and afternoon images and images from the remain-
ing periods. Due to time constraints, we chose not to split
the data into four categories: morning, afternoon, evening,
and night. The CycleGAN [11] model consists of two gen-
erative networks based on the image transformation net-
work by Johnson et al. [24] and two discriminative networks
employing 70x70 PatchGAN [7]. Examples of images gen-
erated by the image generation module are depicted in Fig.
3. Adding this augmented data significantly enhanced the
performance of our detection models, as evidenced by the
results outlined in Table 2.

3.3. Open-Vocabulary Pseudo-Labels (OVPL)

Zero-shot object detection models provide a solution for
localizing objects in an image using text prompts. These
models are trained on extensive datasets to recognize a wide
range of objects, eliminating the need for custom train-
ing. Despite their effectiveness, zero-shot models tend to be
large and resource-intensive compared to fine-tuned mod-
els, making them impractical for large-scale, real-time, or
edge applications. However, they can still be utilized across
images for analysis or to automatically label data, serving
as a robust teacher model for training smaller, fine-tuned
models.

In our framework, we integrate the YOLO-World [23]
model to perform pseudo-labeling on the unannotated test
set of the FishEye8K [1] dataset. We chose the YOLO-
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World’s implementation [20] for its state-of-the-art per-
formance and ease of training and fine-tuning on custom
datasets. Specifically, we optimized the model to detect
only the classes defined in the FishEye8K [1] dataset. By
providing custom prompts, we direct the model’s attention
towards objects of interest, enhancing the detection results’
relevance and accuracy. We choose a moderate confidence
threshold value of 0.3 during the inference stage. This
threshold selection helps mitigate false positive detections
while inferring the test-set images. The detailed training
procedures can be found in Section 4.3.

In the following phase, we leverage the pseudo-labeled
data acquired from YOLO-World [23], making slight man-
ual corrections before dividing it into training and valida-
tion subsets. The incorporation of pseudo-labels has sig-
nificantly enhanced the performance of our object detection
models, as demonstrated in Table 2.

3.4. Object Detection Module (ODM)

Model. Our selection process entailed an extensive review
of the literature to identify the top-performing models sim-
ilar to [1]. Due to limitations in time and resources, we fo-
cused solely on single-stage object detection models. This
included assessing models such as YOLOR [17], YOLOv7
[19], YOLOv8 [20], and YOLOv9 [21]. We experimented
with the largest variant available for each model to explore
its potential for our task.
Data Augmentation. Data augmentation involves applying
various transformations to the training images. These trans-
formations help increase the diversity of the training data,
allowing the model to learn from a wider range of scenar-
ios and improve its generalization ability. Our framework
applies the following transformations during training: rota-
tion, scaling, horizontal flipping, random cropping, mixup,
and mosaic.

Test-Time Augmentation (TTA) [25] is a technique used
during inference where multiple augmentations of a single
test image are generated, and the model makes predictions
on each augmented version. The final prediction for each
object is typically obtained by aggregating the predictions
from all augmented image versions, such as taking the av-
erage or the maximum confidence score. This technique
enables the model to detect objects from various perspec-
tives, which increases its ability to identify objects that may
not be visible from certain angles. The TTA combines scal-
ing (×1, ×0.83, ×0.67) and horizontal flipping for all YOLO
models.
Ensemble. Model ensembling is a strategy used to boost
overall performance by merging predictions from multiple
individual models. The goal is to minimize variance and
bias, enhancing the final predictions’ reliability and consis-
tency. Mean ensemble, a widely used ensembling method,
is frequently applied to YOLO models and other object de-

tection architectures. Each YOLO model’s predictions are
gathered and aggregated in the mean ensemble by calculat-
ing the average of their bounding box coordinates and con-
fidence scores for each detected object. This amalgamation
process yields a more polished and inclusive collection of
predictions compared to the output of any single model on
its own.

4. Implementation and Experiments
4.1. Experimental Settings

Implementation Details. We train and test all deep learn-
ing models on a machine equipped with 4× NVIDIA A6000
GPUs, each with 48GB of VRAM. All methods are imple-
mented using PyTorch.
Dataset. Our training and validation datasets combine the
provided data and our generated data (as described in Sec.
3.2 and 3.3). Additionally, we obtained 800 background
images without any labels from the COCO [26] dataset to
reduce false positives, as suggested in [20]. We obtained
around 15,641 images with 282,614 bounding boxes for
training and validation. A summary of our modified dataset
can be found in 1.

4.2. Metrics

We use the COCO evaluation script [26] to measure the
performance of all models. The evaluation metrics include
Precision, Recall, APs, and F1 score. However, our primary
focus lies on the F1 score, given its significance as the main
evaluation criterion for the AIC24 - Track 4 [2]. The F1
score is calculated as:

  \begin {gathered} F_{1} = \frac {2 \times Precision \times Recall}{Precision + Recall}, \\ Precision = \frac {TP}{TP + FP} \text {, } Recall = \frac {TP}{TP + FN}, \label {eq:total_loss} \end {gathered} 








 
 



 


(1)

where TP, FP , and FN are the true positives, false posi-
tives, and false negatives.

The choice between using AP or F1 scores can dictate
different approaches to inference. When aiming to opti-
mize AP, the primary objective is to enhance the precision-
recall curve. This is often achieved by reducing the con-
fidence threshold, leading to more true positive detections
and improving recall. Consequently, this strategy typically
yields a higher number of overall detections. Conversely,
prioritizing the F1 score aims to strike a harmonious bal-
ance between precision and recall, thereby minimizing false
positives and negatives. Simply increasing true positives
may not improve the F1 score if it results in a dispro-
portionate rise in false positives. Consequently, adjusting
model thresholds or employing post-processing techniques
to diminish false positives and negatives simultaneously be-
comes crucial for optimizing the F1 score. While AP op-
timization often involves lowering the confidence threshold
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Table 2. Ablation study on the impact of proposed modules: Back-
ground images (BG), Image Generation Module (IGM), Open-
Vocabulary Pseudo-Labels (OVPL), and Ensemble (Ens). The
first row is the baseline results from YOLOR-D6. All models are
trained using the input size of 1280 for 50 epochs and are inferred
with TTA on the validation set of FishEye8K [1].

BG IGM OVPL AP F1

Baseline 28.19 37.68

✓ 30.00 (+1.81) 39.89 (+2.21)
✓ 29.66 (+1.47) 40.79 (+3.11)

✓ 29.27 (+1.08) 38.50 (+0.82)
✓ ✓ 30.49 (+2.30) 41.18 (+3.50)
✓ ✓ 30.13 (+1.94) 40.93 (+3.25)

✓ ✓ 31.94 (+3.75) 41.17 (+3.49)
✓ ✓ ✓ 32.16 (+3.97) 43.30 (+5.62)

Table 3. Ablation study on the impact of training input sizes and
model ensemble. All models are trained using the suggested mod-
ules in Table 2.

1280 1536 1920 AP F1

✓ 32.16 43.30
✓ 33.44 (+1.28) 44.10 (+0.80)

✓ 34.29 (+2.13) 44.85 (+1.55)
✓ ✓ 32.37 (+0.21) 44.08 (+0.78)
✓ ✓ 32.50 (+0.34) 43.98 (+0.68)

✓ ✓ 33.81 (+1.65) 45.23 (+1.93)
✓ ✓ ✓ 35.33 (+3.17) 45.53 (+2.23)

to enhance recall and maximize the precision-recall trade-
off, F1 score optimization necessitates a more nuanced ap-
proach that addresses false positives and false negatives for
a well-rounded performance.

4.3. Training Procedure

Style Transfer. By utilizing the summer-winter pre-trained
weight, a pre-trained weight for image translating from
summer to winter, we fine-tune it on our custom dataset,
with 1080x1080 of the image size, for 100 epochs using
Adam optimizer. The learning rate is set at 0.0002 and de-
cayed by a lambda scheduler.
YOLO-World. In this phase, we conducted fine-tuning of
the YOLO-World model [20], initializing it with COCO
pre-trained weights on the FishEye8k dataset [1] for 100
epochs. We set the learning rate to 0.0002 and maintained
the default configuration of the YOLO-World X model. Ad-
ditionally, we applied augmentations such as rotation and
flipping during the training process to enhance the model’s
robustness and generalization capabilities.
Object Detection. we utilize a COCO pre-trained weight
for each YOLO model and fine-tune it on our generated
dataset. Initially, we perform ablation study by training

YOLOR-D6 [17], YOLOv7-E6E [19], YOLOv8x [20], and
YOLOv9-E [21] for 50 epochs using the default training
configuration. Upon identifying the best-performing model
through the ablation study (Sec. 4.4, which is YOLOR-D6
in our case, we proceed with the actual training procedure.

For the final training procedure of YOLOR-D6, we fine-
tune it on three different input sizes: 1280, 1536, and 1920
for 300 epochs using the SGD optimizer. The learning rate
is set to 0.01 and decayed by a cosine scheduler at 0.0005.
Additionally, during the later training phase, we incorpo-
rate the validation set of the FishEye8K dataset [1] into our
training set.

4.4. Evaluation

Ablation Study. We conduct an ablation study to assess the
impact of each proposed module. The baseline results are
evaluated using a COCO pre-trained YOLOR-D6 [17] fine-
tuned on FishEye8K [1] training and validation sets. Sub-
sequently, we systematically incorporate all the proposed
modules and report the performance results in Table 2. All
models are trained with the input size of 1280×1280 for 50
epochs. We can observe that incorporating the BG, IGM,
and OVPL modules significantly improves both the AP and
F1 scores. However, the most substantial enhancement is
observed when these modules are utilized together. We in-
vestigated the relationship between input size and detection
accuracy in the second ablation study. We systematically in-
creased the training and inference input size of the YOLOR-
D6 model. Interestingly, we observed improvements in both
AP and F1 scores when using a resolution of 1920. Finally,
we tried an ensemble of all three models and observed a
considerable boost in both AP and F1 scores. The ablation
results are in Table 3.
Hyper-parameter Tuning. We conduct hyper-parameter
tuning for both the training and inference pipelines. To de-
termine the optimal values, we submit several results to the
AIC24 - Track 4 evaluation system and obtain the metrics.
Our submission results are summarized in Table 4. Initially,
we focus on maximizing the AP score, which involves pro-
gressively lowering the confidence threshold for object de-
tection. This strategy aims to increase the number of true
positives captured while accepting the trade-off of poten-
tially increasing false positives. The intention is to explore
the detection space comprehensively, thereby enhancing re-
call and overall AP score. However, balancing these adjust-
ments and the risk of introducing excessive false positives is
essential, which could adversely affect precision and overall
performance.

As the challenge progresses, the evaluation metric shifts
to the F1 score. Consequently, our subsequent submissions
prioritize achieving a higher F1 score. To accomplish this,
we gradually increase the confidence threshold to reduce
false positives and potentially enhance precision. Moreover,
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Table 4. Hyper-parameter tuning using the testing set from AIC24 - Track 4. The best results are shown in red, and the second-best are
shown in blue.

Method Train Size Infer Size Confidence IoU AP AP@50 AP@S AP@M AP@L F1
YOLOR-P6 1280 1280 0.0001 0.5 0.5801 0.8594 0.4125 0.7121 0.5581 0.1631

YOLOR-D6

1280 1280 0.00001 0.5 0.5867 0.8647 0.4350 0.7133 0.5704 0.1094
1280 1280 0.0001 0.5 0.5861 0.8630 0.4341 0.7127 0.5697 0.3377
1280 1280 0.001 0.5 0.5845 0.8602 0.4326 0.7109 0.5607 0.4773
1280 1280 0.01 0.5 0.5844 0.8601 0.4330 0.7110 0.5605 0.4774
1280 1280 0.1 0.5 0.5812 0.8522 0.4287 0.7086 0.5610 0.5486
1280 1280 0.2 0.5 0.5789 0.8466 0.4259 0.7079 0.5610 0.5652
1280 1280 0.3 0.5 0.5752 0.8395 0.4207 0.7072 0.5610 0.5822
1280 1280 0.4 0.5 0.5714 0.8318 0.4163 0.7071 0.5605 0.5903
1280 1280 0.5 0.5 0.5653 0.8189 0.4085 0.7065 0.5599 0.5976
1280 1280 0.6 0.5 0.5519 0.7912 0.3900 0.7029 0.5599 0.5995
1920 1920 0.6 0.5 0.5547 0.7765 0.3522 0.7041 0.5748 0.6134

1920, 1536, 1280 1920 0.6 0.5 0.5690 0.8022 0.3943 0.7097 0.5716 0.6151
1920, 1536, 1280 2560 0.6 0.5 0.5680 0.7933 0.3941 0.7134 0.5579 0.6194
1920, 1536, 1280 2560 0.65 0.5 0.5462 0.7551 0.3776 0.6976 0.5489 0.6101
1920, 1536, 1280 3200 0.6 0.5 0.5386 0.7572 0.3989 0.6739 0.5252 0.6061
1920, 1536, 1280 varying 0.6 0.5 0.5684 0.8148 0.4274 0.7021 0.5606 0.6051

YOLOv7-E6E

1280 1280 0.0001 0.5 0.5679 0.8497 0.4016 0.6986 0.5953 0.1467
1920, 1536, 1280 1280 0.65 0.5 0.5597 0.8045 0.3860 0.6934 0.5724 0.5933
1920, 1536, 1280 2560 0.5 0.5 0.5773 0.8333 0.4271 0.7080 0.5640 0.5938
1920, 1536, 1280 2560 0.65 0.5 0.5578 0.8001 0.3981 0.6921 0.5638 0.5942
1920, 1536, 1280 varying 0.65 0.5 0.5801 0.8243 0.4103 0.7133 0.5714 0.6082

YOLOv8x 1280 1280 0.0001 0.5 0.5793 0.8553 0.4367 0.6927 0.5700 0.1688

YOLOv9-E
1280 1280 0.0001 0.5 0.5817 0.8585 0.4293 0.7072 0.5764 0.1586
1280 1280 0.6 0.5 0.5702 0.8336 0.4181 0.7020 0.5540 0.5771

Table 5. The public leaderboard of AIC24 - Track 4.

Rank Team ID Team Name F1
1 9 VNPT AI 0.6406
2 40 NetsPresso 0.6196
3 5 SKKU-AutoLab (ours) 0.6194
4 63 UIT-AICLUB 0.6077
5 15 SKKU-NDSU 0.5965
6 33 MCPRL 0.5883
7 156 zzl 0.5828
8 52 DeepDrivePL 0.5825
9 86 NCKU-ACVLAB 0.5637

10 13 FRDC-SH 0.5606

we observe that enhancing the input resolution can con-
tribute to more accurate detection of smaller objects. Ad-
ditionally, employing ensemble techniques can further en-
hance accuracy, even if only marginally. Our final solution
is an ensemble of three YOLOR-D6 models, each trained on
input sizes of 1280, 1536, and 1920. We set the input size to
2560 during inference and maintain a confidence threshold
of 0.6.
Comparison. We submit our final solution to the evaluation
system of AIC24 - Track 4. The rankings are summarized
in Table 5. Our solution achieves an F1 score of 0.6194

and ranks 3rd among 52 teams. Notably, our score has a
marginal difference compared to the 2nd rank, with only
0.002.

5. Conclusion
This paper introduces an innovative approach to the 2D

road object detection task tailored specifically for fish-eye
cameras. Our method incorporates various techniques to
adapt general object detection knowledge to the fish-eye
image domain. Firstly, we deploy an image generation
module to reconcile the representation differences between
daytime and nighttime images. Secondly, we leverage the
state-of-the-art zero-shot open-vocabulary object detection
model, YOLO-World, to facilitate semi-pseudo-labeling.
We trained and evaluated several single-stage object detec-
tion models with the modified dataset. The final solution of
our method was evaluated on the AIC24 - Track 4 dataset,
achieving the third ranking with an F1 score of 0.6194,
demonstrating the efficacy of our approach.
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