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Abstract

In this study, we introduce DeepLocalization, an inno-
vative framework devised for the real-time localization of
actions tailored explicitly for monitoring driver behavior.
Utilizing the power of advanced deep learning methodolo-
gies, our objective is to tackle the critical issue of dis-
tracted driving—a significant factor contributing to road
accidents. Our strategy employs a dual approach: leverag-
ing Graph-Based Change-Point Detection for pinpointing
actions in time alongside a Video Large Language Model
(Video-LLM) for precisely categorizing activities. Through
careful prompt engineering, we customize the Video-LLM
to adeptly handle driving activities’ nuances, ensuring its
classification efficacy even with sparse data. Engineered to
be lightweight, our framework is optimized for consumer-
grade GPUs, making it vastly applicable in practical sce-
narios. We subjected our method to rigorous testing on the
SynDD2 dataset, a complex benchmark for distracted driv-
ing behaviors, where it demonstrated commendable perfor-
mance—achieving 57.5% accuracy in event classification
and 51% in event detection. These outcomes underscore
the substantial promise of DeepLocalization in accurately
identifying diverse driver behaviors and their temporal oc-
currences, all within the bounds of limited computational
resources.

1. Introduction

According to the National Highway Traffic Safety Admin-
istration (NHTSA), distracted driving was responsible for
3,522 fatalities in 2021, alongside causing injuries to an
additional 362,415 individuals in motor vehicle accidents
[3]. Distracted driving encompasses any activity that di-
verts attention from the primary task of driving safely. This

includes but is not limited to engaging in phone conversa-
tions or texting, eating and drinking, interacting with pas-
sengers, and adjusting the vehicle’s stereo, entertainment,
or navigation systems. Essentially, any action that detracts
from the focus on safe driving falls under this category [3].
Drivers often engage in secondary activities to avoid feeling
drowsy; however, these actions lead to distractions.

The consequences of distraction are significant, often re-
sulting in crashes, some of which are fatal. Substant eco-
nomic repercussions exist beyond the physical harm in-
flicted on those involved in accidents. The NHTSA has
reported that crashes incurred a total cost of 340 billion dol-
lars in 2019. Specifically, distraction-related crashes con-
tributed approximately 98.2 billion dollars to this figure,
representing 29% of the total traffic-related economic costs.
As such, there is a pressing need to mitigate the damages
caused by distracted driving and enhance road safety. One
viable solution is the implementation of a real-time driver
behavior monitoring system. Such a system would alert
drivers upon detecting any form of distraction. Given their
low maintenance and cost-effectiveness, in-vehicle cameras
are optimal for real-time driver behavior monitoring [24].

In recent years, the surge in computational capabilities,
coupled with advancements in deep learning algorithms,
has significantly bolstered the prominence of computer vi-
sion technologies, especially in the realm of driver behav-
ior classification. Unlike traditional machine learning algo-
rithms—which rely on manually defined key features and
specific classifiers for image classification, a process that
varies across different datasets and complicates applica-
tion in diverse scenarios—the advent of deep learning tech-
niques, such as Convolutional Neural Networks (CNNs),
has marked a transformative shift. CNNs possess the unique
ability to autonomously extract features from any given in-
put data, thereby achieving superior accuracy in both the
detection and classification processes. This evolution has
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spurred extensive research, yielding several CNN models
like ResNet50 [12], AlexNet [13], and InceptionV3 [22],
among others, that stand out for their enhanced performance
in image classification tasks. Consequently, these mod-
els often serve as foundational or baseline models for re-
searchers embarking on image classification or detection
projects tailored to their respective projects’ specific re-
quirements and constraints.

Parallel to these technological advances, the field has
seen an uptick in naturalistic driving studies (NDS), aimed
at examining distracted driver behavior within a realis-
tic driving environment. Such studies are invaluable, as
the data garnered can shed light on various aspects of the
driver’s state, including drowsiness, alertness, and distrac-
tion, thus providing deep behavioral insights. Notably,
the Second Strategic Highway Research Program Natural-
istic Driving Study (SHRP 2) [23], undertaken by the Vir-
ginia Tech Transportation Institute (VTTI), stands out as
the largest of its kind, amassing a staggering 2 Petabytes of
driving data. Analysis of the SHRP 2 data revealed that the
majority of crashes are closely associated with factors at-
tributed to the driver (such as error, impairment, fatigue, and
distraction), constituting nearly 90 of all recorded incidents
[9]. However, the utility of NDS is not without challenges,
primarily due to susceptibility to noise and other data qual-
ity issues. To address these concerns, the introduction of
SynDD2 [21] in the 7th AI City Challenge [18] represents a
notable effort to mitigate such data quality problems, paving
the way for more accurate and reliable analysis of driver be-
havior.

Determining the driver’s behavior involves recognizing
the driver’s behavior (activity recognition) and finding the
duration of such behavior (TAL- Temporal Activity Local-
ization). The CNN-based models [10, 11, 27] are used
for the former, and for the latter various approaches have
been explored such as Graph Convolutional Networks [32],
1D temporal segments [4], sliding window [26]. Although
there has been various research for TAL, using a change
point algorithm has not been explored. Hence, we pro-
pose an approach combining a Graph-Based Change-Point
Detection [6, 7] for temporal action localization and video
LLM model [17] for classification.

The contributions of our work are as follows:
1. Exploring a novel approach for finding the start and end

times of an activity. Our approach doesn’t require any
training, the algorithm only needs the key points to find
action proposals.

2. The overall framework is novel from generating action
proposals to action classification. It is lightweight which
is optimized for consumer-grade GPUs.
The rest of the paper is organized as follows: Section

2 reviews the existing literature. Sections 3 and 4 detail
our methodology and introduce our proposed approach with

results. Finally, in Section 5, we discuss our findings and
suggest avenues for future research.

2. Related Works
In the past few years, there has been a significant increase
in research on driver action recognition. The main objective
of this research is to identify and predict risky driving be-
haviors that lead to accidents caused by distracted driving.
Many researchers are developing models and exploring dif-
ferent methods to achieve this goal, significantly focusing
on using supervised learning techniques.

Temporal Action Localization: Temporal Action Lo-
calization (TAL) is a dynamic field that identifies the pre-
cise start and end times of actions within video segments.
This process typically involves the initial generation of nu-
merous candidate segments as action proposals, followed
by the classification of these proposals into their respective
action categories. To enhance the precision of action lo-
calization, previous studies have adopted a variety of strate-
gies, such as refining detection boundaries [15, 33], creating
frame-wise action labels to delineate the temporal limits of
actions [30], using graphs structures [28, 31] and improv-
ing the quality of action proposals through the aggregation
of context at both the boundary and proposal levels [5]. De-
spite the broad application of these methods across differ-
ent research areas, there has been limited exploration into
the use of graph-based change point detection algorithms
for generating action proposals. The innovative work pre-
sented in [7] showcases the application of such an algorithm
to identify intervals within data where there is a significant
shift in distribution, a technique that has shown promise in
the context of action proposal identification in videos.

Video recognition using LLM: The integration of vi-
sual models with Large Language Models (LLMs) has gar-
nered significant attention following the success of Chat-
GPT. This emerging field has seen remarkable advance-
ments, notably the pioneering work demonstrated by Yuan
et al. [29], which laid the groundwork for subsequent in-
novations. Among these, the Querying Transformer pro-
posed by Li et al. [14] stands out for its innovative approach
to mapping images into the text embedding space, enhanc-
ing the interaction between visual data and language mod-
els. Further developments by Liu et al. [16] and Dai et al.
[8] have introduced methods that facilitate visual conversa-
tion, expanding the capabilities of LLMs in understanding
and generating responses based on visual inputs. In our re-
search, we have chosen to focus on the work by Maaz et
al. [17] for activity recognition within video data. This
approach is distinguished by its adapted LLM framework,
incorporating the visual encoder from CLIP [19] alongside
the Vicuna language decoder [34]. This combination not
only leverages the strengths of both models but also ad-
dresses the challenge of capturing temporal dynamics and
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ensuring video-to-frame coherence. Consequently, it offers
an optimal solution for analyzing activities in video con-
tent, especially in scenarios where the duration of activities
varies unpredictably across the dataset.

Figure 1. Showing camera positions [20]

(a) Dashboard (b) Rear-view (c) Right-side window

Figure 2. Showing different camera views

3. Methodology
Our goal is to predict various distracted driver behaviors
with their start and end times using the data from in-vehicle
cameras positioned at the Dashboard, near the rearview
mirror, and on the top right-side window corner (Figure 1
shows the camera positions while Figure 2 shows the im-
ages from the three camera views). To achieve this goal,
we have subdivided it into two sub-tasks: Temporal Ac-
tion Recognition (TAL), which identifies the start and end
times of activities, and Activity Recognition, which recog-
nizes the type of activity like texting, yawning, and more.
Therefore, we propose an architectural framework to render
these tasks.

As shown in Figure 3, our proposed framework consists
of two major modules: Event detection and event classifi-
cation. The Event Detection module extracts the key points
related to the drivers’ heads, hands, and bodies for each data
frame. Using these key points, the gseg2 [6] algorithm finds
an interval where their underlying distribution differs from
the rest of the sequence. This interval serves as the start and
end time of an activity performed by the driver, which is
then fed as input to the event classification module to iden-
tify the type of that event. The proposed framework pipeline
works as follows: feed the different intervals/events (TAL)
from the first module as input to the second module for clas-
sifying those events.

We have utilized deep learning models for each module

to effectively carry out the specific tasks. For the first mod-
ule, we have employed YOLOv7 [25], a pre-trained model
recognized for its robust object detection capabilities and
pose estimation for the key-point extraction. For the sub-
sequent module, we have used the VideoChatGPT model
[17].

3.1. Event detection

This module performs two major tasks: First, it extracts the
key points from the video for each frame. Secondly, us-
ing these extracted key points, the change point detection
algorithm finds an interval in the video data frames that is
different from the rest of the sequence of data frames.

3.1.1 Key-Point Extraction

We have utilized YOLO (You Only Look Once) [25], a
renowned real-time object detection and image segmenta-
tion model, to extract the key points. Specifically, we have
used yolov7 pose estimation model to identify the location
of key points in each frame, along with their respective con-
fidence scores. The locations of these points represented a
set of 2D [x, y] coordinates, with confidence scores decid-
ing their visibility. We only selected points which had confi-
dence scores greater than 50%. Moreover,these points were
normalized as discussed in section 4.1. These key points
are obtained from each frame, focusing on individuals’ fa-
cial, hand, and body within the video. They play a vital role
in providing essential information to the Interval Selection
module, which employs these key points to find a statisti-
cally significant interval different from the given data se-
quence. As shown in Figure 4, the key points are generated
for each camera view.

Figure 4. Showing key points extraction
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Figure 3. Showing framework pipeline

3.1.2 Interval Selection

We have executed Graph-Based Change-Point Detection
for Changed Interval algorithm (gseg2) [2] to find inter-
vals from the given data set. This algorithm is a part of
the R package and has the following usage: gseg2(n, E,
statistics=c(”all”,”o”,”w”,”g”,”m”), l0=0.05*n, l1=0.95*n,
pval.appr=TRUE, skew.corr=TRUE, pval.perm=FALSE,
B=100) where ’n’ is the number of observations in the se-
quence, ’E’ is the edge matrix (a ”number of edges” by
two matrices) for the similarity graph. Each row contains
the node indices of an edge, ’l0’ is the minimum length of
the interval to be considered as a changed interval, ’l1’ is
the maximum length of the interval to be considered as a
changed interval, ’pval.appr’ if it is TRUE, the function out-
puts p-value approximation based on asymptotic properties,
’skew.corr’ is applicable only when ’pval.appr’=TURE. If
skew.corr is TRUE, the p-value approximation will incor-
porate skewness correction, ’pval.perm’ if it is TRUE, the
function outputs p-value from doing B permutations, ’B’ is
useful only when pval.perm=TRUE. The default value for
B is 100.

The algorithm needed data in a specific format which is
explained in section 4.2. We experimented with different
values of n, l0, and l1 for our case and left others as de-
fault. We have presented the results corresponding to the
best combinations. The algorithm outputs results for four
statistics: Original edge-count scan statistic (”o”), Weighted
edge-count statistic (”w”), Generalized edge-count statistic
(”g”), and Max-type edge-count statistic (”m”). We have
used Max-type edge-count statistics for finding the interval
as we have key points corresponding to human posture that
change with time. After getting the proposed intervals from
all the camera views, we applied post-processing to select
common intervals among the camera views.

3.2. Event Classification

Video-LLM showcases the impressive capabilities of learn-
ing a wide range of visual concepts and exhibits excep-
tional performance on different few-shot tasks using a pre-
trained model. We have selected VideoChatGPT, a ver-
sion of Video-LLM, as our fundamental model for detect-
ing distracted behaviors in video clips. We chose this
model because of its ability to be pretty accurate with lim-
ited resources and its proven superior performance over
other Video-LLMs, mainly when resources are scarce.
Our strategy involves redefining event classification into a
video question-answering (VQA). We trained VideoChat-
GPT with a comprehensive question covering all sixteen
identified events to ensure the model is efficiently tailored
to our needs. We also recognize the challenge posed by
the small size of our dataset on distracted behaviors. It is
another reason to use a pre-trained Video-LLM, which re-
duces the risk of overfitting during the VQA process. These
strategies aim to avoid overfitting and catastrophic forget-
ting, maintaining the model’s robustness and generalization
ability. In summary, our objective is to leverage VideoChat-
GPT’s capabilities for video understanding tasks, focusing
on classifying distracted actions while effectively navigat-
ing the hurdles of limited resources and the risk of overfit-
ting.

4. Experiments

4.1. SynDD2

This dataset was introduced in the 7th AI City Challenge
[18]. It contains videos of distracted driving activities
recorded from three in-vehicle cameras in synchronization
positioned at the Dashboard, Rearview, and Right-side win-
dow. The dataset has data from participants who performed
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ID Activity Classes
1 Normal Forward Driving
2 Drinking
3 Phone Call(right)
4 Phone Call(left)
5 Eating
6 Text (Right)
7 Text (Left)
8 Reaching behind
9 Adjust control panel

10 Pick up from floor (Driver)
11 Pick up from floor (Passenger)
12 Talk to passenger at the right
13 Talk to passenger at backseat
14 Yawning
15 Hand on head
16 Singing and dancing with music

Table 1. Showing SynDD2: Activity classes

16 distracted driving activities, as listed in Table 1. These
16 activities have a random order, and each of them lasts for
a random duration of time. Thus, classifying each activity
with its start and end times (localization) becomes challeng-
ing.

Each video in the dataset has a frame rate of 30 FPS and a
resolution of 1920*1080. Each video has its corresponding
annotation files (for the training data set), which contain in-
formation such as activity type, start and end times of each
activity type, participant’s appearance, etc.

4.2. Experimentation: Event Detection

Figure 3 shows our overall approach. First, we extracted the
key points of the videos of the Dashboard, Rearview, and
Right-side camera views by using the Yolov7 pose estima-
tion model [25]. The model provides 17 crucial key points
along with their associated confidence scores, representing
the visibility of these key points related to the human pos-
ture, spanning from the head to the toes. These key points
include the nose, eyes, ears, and joints (shoulders, wrists,
elbows, knees, etc). For our specific case, not all key points
prove valuable; hence, we opted for a subset of key points
relevant to the hands and head.

4.2.1 Data Preprocessing

We preprocessed the data by normalizing the key points to
maintain consistency across multiple videos. This involved
dividing each key point by the frame size and standardizing
their scale. This was done during the key point extraction
step.

4.2.2 Data Preparation for gseg2

The gseg2 algorithm required an edge matrix as input, and
to create that we have used KMST (K-Means Spanning

Tree) algorithm. This algorithm takes the input data in ma-
trix format and calculates the distance. We have applied Eu-
clidean distance to compute the distance of each key point
from the other. For the given points p = (x1, y1) and
q = (x2, y2) the Euclidean distance is given by:

d(p,q) =
√

(x1 − x2)2 + (y1 − y2)2

Since our data sets contain multiple key points, we have
calculated the pairwise Euclidean distances between each
pair of points in the dataset. This resulted in a distance ma-
trix where each element represented the Euclidean distance
between the corresponding pair of points in the dataset.
Moreover, to find the optimal k-value for KMST, we exper-
imented with multiple k-values and concluded that making
the graph denser (higher k-value) gave better results. Table
2 shows results corresponding to various k-values. In the
table, actual-start and actual-end are the ground truth times
in seconds while p-start and p-end are predicted times inter-
vals predicted by gseg2 algorithm.

K value actual-start actual-end p-start p-end
10 236 241 233.9 236.067
12 236 241 233.9 236.067
15 236 241 233.9 236.067
17 236 241 233.9 236.067
19 236 241 233.9 236.067
20 236 241 233.9 236.067
23 236 241 233.9 236.067
25 236 241 233.9 236.067
26 236 241 237.3 240
27 236 241 237.3 240
28 236 241 237.3 240
30 236 241 237.3 240

Table 2. Showing k-values with predicted intervals

Finally, this matrix is fed to the gseg2 algorithm, which
outputs the statistically significant change point interval.
Subsequently, the interval serves as a distracted activity’s
start and end time, which is classified by the next module.

4.3. Experimentation: Event Classification

For VQA, using prompt engineering, we have found the fol-
lowing question works the best for our task. In this process,
we have crafted three questions, and they are :

1. ”Based on the following activities: Normal Forward
Driving, Drinking, Phone Call (right), Phone Call (left),
Eating, Text (Right), Text (Left), Reaching behind, Adjust-
ing control panel, Pick up from floor (Driver), Pick up from
floor (Passenger), Talk to passenger at the right, Talk to pas-
senger at backseat, Yawning, Hand on head, and Singing or
dancing with music, which activity is being performed in
the video?”

2.”Is the driver simulating any of the following activi-
ties? 1. Normal Forward Driving, 2. Pretending to drink
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a beverage, 3. Simulating a phone call with the right hand,
4. Simulating a phone call with the left hand, 5. Pretend-
ing to eat food, 6. Simulating texting with the right hand,
7. Simulating texting with the left hand, 8. Pretending to
reach behind the seat, 9. Simulating adjusting the control
panel, 10. Pretending to pick up an object from the floor on
the driver’s side, 11. Pretending to pick up an object from
the floor on the passenger’s side, 12. Simulating talking to a
passenger seated on the right side, 13. Simulating talking to
a passenger seated in the backseat, 14. Simulating yawning,
15. Pretending to place a hand on the head, 16. Simulating
singing or dancing to music. Please provide a ’yes’ or ’no’
response for each activity.”

3.”Is the driver simulating any of the following activi-
ties? 1. Normal Forward Driving, 2. Pretending to drink
a beverage, 3. Simulating a phone call with the right hand,
4. Simulating a phone call with the left hand, 5. Pretend-
ing to eat food, 6. Simulating texting with the right hand,
7. Simulating texting with the left hand, 8. Pretending to
reach behind the seat, 9. Simulating adjusting the control
panel, 10. Pretending to pick up an object from the floor on
the driver’s side, 11. Pretending to pick up an object from
the floor on the passenger’s side, 12. Simulating talking to a
passenger seated on the right side, 13. Simulating talking to
a passenger seated in the backseat, 14. Simulating yawning,
15. Pretending to place a hand on the head, 16. Simulating
singing or dancing to music. Please provide the activity the
driver is doing.”

We utilized this question for all the videos we trimmed
based on the start and end time calculated from our Key
Point Change Detection process. The testing dataset has 30
videos comprising 450 activities, comprising 15 activities
per video. The model answered every activity based on the
start and end time. If the model detects no activity from the
list provided in the question, it responds with ”no.” We ver-
ified the accuracy of each question using the ground truth.

4.4. Evaluation metric.

We have evaluated our approach using the AICITY CHAL-
LENGE evaluation [1]. The AICITY evaluation is de-
fined as follows: Given a ground-truth activity g with start
time gs and end time ge, the aim is to find its closest pre-
dicted activity match as that predicted activity p belonging
to the same class as g with the highest overlap score os.
Additional condition is imposed that start time ps and end
time pe fall within the range [gs – 10s, gs + 10s] and [ge –
10s, ge + 10s], respectively. The overlap between g and p is
calculated as the ratio between the time intersection and the
time union of the two activities, i.e.,

Figure 5. showing overlap score

5. Results

5.1. Performance of event detection

This module’s main objective is to predict an activity’s in-
tervals, start and end times. We experimented with the
gseg2 algorithm for different values of n (number of data
samples), l0, and l1, as shown in Table 3. The results are
displayed for 30 video samples, which had a total of 450
activity intervals.

n-data samples Accurate predictions Accuracy % L0, L1
1 minute 242 51 0.1, 0.90
2 minutes 235 49 0.1, 0.90
3 minutes 228 47 0.1, 0.90
4 minutes 176 42 0.1, 0.90

Table 3. Showing results for different n

We have used the data samples from 1, 2, 3, and 4 min-
utes, and to address scenarios where activities extend be-
yond these time intervals, such as an activity commenc-
ing just before the 1-minute and continuing into the next
minute, we re-executed the algorithm using data samples
starting from 30 seconds for 1 minute. Similar approaches
were applied for other duration’s to accommodate boundary
conditions.

We have evaluated our approach using the AICITY
CHALLENGE evaluation [1]. Although the AICITY
CHALLENGE evaluation is designed for final results (ac-
tivity recognition with start and end times), we have lever-
aged it to assess the accuracy of intervals. This unconven-
tional use of the evaluation metric aims to ensure our ap-
proach’s robustness. We reasoned that if our approach ac-
curately predicted start and end times, it would likely also
enable the activity recognition algorithm to identify activity
types effectively.

We have specifically used the condition which states that
start time ps and end time pe are in the range [gs – 10s, gs +
10s] and [ge – 10s, ge + 10s], respectively, to find the ac-
curacy of the predicted intervals. We used this approach to
find the accuracy of action proposals of the last years top
performing team, the results are shown in Table 4.

Approach Accuracy %
Meituan-IoTCV [35] 40

change-point-detection (ours) 51

Table 4. Showing action proposal prediction accuracy
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(a) Hand on Head (b) Phone call-left (c) Picking from floor (d) Phone call-right

Figure 6. Showing few classes where the change-point detection produced correct action proposals

(a) Yawning (b) Text left (c) Talking (d) Text right

Figure 7. Showing few classes where the change-point detection could not produced correct action proposals

5.1.1 Error Analysis of the change point algorithm

The algorithm have worked better for few classes while
it failed for others. Specifically, the algorithm picks the
classes that involves movements of hands or body by a large
amount. For example the classes ”Hand on head” ,”phone
calls”, ”picking from floor” is mostly predicted by the algo-
rithm while ”texting” ”yawning”, ”singing”,”talking” is not
predicted most of the time. One of the reason for this is the
presence of noise in the data (key points) which makes it
difficult to differentiate anomaly from normal.

Figure 6 shows the classes where the algorithm per-
formed well. The changes in key points are visible for the
left hand and the right hand. Similarly, Figure 7 shows
classes where the model didn’t perform well because of
the noise in the data or because the activity didn’t involve
much movement of hand or head. For example, ”talking”,
”singing” and ”yawning” do not involve any movements.

Overall, the change point algorithm worked well because
it was able to locate the activity start and times given that
there was noise in the data and some of the activities did not
cause any changes in the key points.

5.2. Performance of event classification

We conducted experiments to evaluate the performance
of our event classification module using VideoChatGPT,
which is a tailored version of Video-LLM. VideoChatGPT
is designed to detect distracted behaviors in video clips and
followed the exact same way it is in the official repository.
To assess the accuracy of the model for classifying the iden-
tified distracted driving activities, we crafted three compre-

hensive questions using prompt engineering in previous sec-
tion. The questions cover all sixteen activities and are de-
signed to evaluate the model’s ability to classify the activi-
ties accurately based on start and end times determined by
the Key Point Change Detection process. AS we mentioned
before, the testing dataset consisting of 30 videos, each con-
taining 15 activities, resulting in a total of 450 activities.
For each activity, the model provided a response based on
the specified time intervals. If the model was unable to de-
tect any activity from the provided list, it responded with
”no.” We verified the accuracy of each question against the
ground truth.

Question Number Accurate Predictions Accuracy(%)
1 223 49.5
2 249 55.3
3 259 57.5

Table 5. Showing Model Performance on three questions

In Table 5, it is clear that the accuracy peak was
reached with the third question, achieving an impressive
57.5%. This milestone underscores the substantial impact
of our refined prompt engineering technique on bolstering
VideoChatGPT’s classification capabilities. The discernible
upward trend in accuracy rates from the initial to the third
question highlights the model’s enhanced comprehension
of the tasks at hand, thanks to the iterative refinement of
the prompts. These findings underscore VideoChatGPT’s
promising utility in accurately classifying distracted driv-
ing behaviors, showcasing its potential in real-world appli-
cations. To the best of our knowledge, this is the first time
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Video-LLMs have been used for this task. Therefore, we
did not report a baseline score.

5.3. Conclusion
Our DeepLocalization model is an effective solution for de-
tecting and locating distracted driver behavior in real time.
The approach we use involves key-point extraction, change-
point detection, and video language modeling to precisely
identify and temporally localize a wide range of driver ac-
tivities. Our experimental results on the SynDD2 dataset
demonstrate the effectiveness of our approach in address-
ing the complex problem of distracted driving with limited
resources. In the future, to improve the accuracy of event
detection and classification, we plan to introduce a more ro-
bust key point detection algorithm, which is currently the
bottleneck in achieving better accuracy. Additionally, fine-
tuning for one or two epochs is a viable way to improve ac-
curacy even on a consumer-grade GPU.
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