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Abstract

Fish-eye cameras, capable of capturing wide areas, en-
able efficient traffic monitoring with only a few cameras.
Nevertheless, it still remains challenging to successfully de-
tect objects in images from such cameras. In this work, we
analyze key reasons why object detectors frequently make
incorrect predictions in such images and propose methods
to address them. More specifically, we address the issues of
objects being represented as smaller at the edges of images
and the distortion of non-target objects (e.g., street signs),
which are recognized as target objects (e.g., vehicles). Fur-
thermore, in this work, we propose a road object detector
capable of achieving high performance by additionally ap-
plying various techniques known to generally enhance de-
tection performance. Our proposed detector achieved sec-
ond place in Track 4 of the 2024 AI City Challenge with
an F1 score of 0.6196. Our code is publicly available at
https://github.com/nota-github/AIC2024_
Track4_Nota.

1. Introduction
Automatic recognition of the locations and categories of key
objects on roads (e.g., vehicles and pedestrians) is essen-
tial for developing applications that enhance convenience in
everyday life, such as smart traffic signal control and real-
time traffic congestion analysis. With recent advancements
in deep learning-based object detection models, the perfor-
mance of object detection in images or videos captured by
conventional road cameras has been significantly improved.
However, despite this progress, there still remains the chal-
lenge of requiring a significant number of cameras to moni-
tor roads that span considerably wide areas. To address this
issue, as shown in Fig. 1, fish-eye cameras can be utilized to
detect road objects in wide areas with fewer cameras. How-
ever, utilizing such cameras also poses the problem of dis-
torting the appearance of certain objects, making accurate
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Figure 1. An example of road object detection using fish-eye cam-
eras. The objective of this task is to detect bus, bike, car, pedes-
trian, and truck objects from images captured by fish-eye cameras.

object detection difficult.
In this work, we discuss various methods for building

high-performance road object detection models for images
or videos captured by fish-eye cameras. Specifically, we fo-
cus on addressing the problems where the state-of-the-art
deep learning-based object detectors fail to detect objects
in the edge regions of images. We observed that objects
are represented smaller at the edge regions of the images.
In cases where objects are small, most state-of-the-art ob-
ject detectors may still fail to detect them. Furthermore, we
observed a problem where non-target objects (e.g., street
signs) exhibit visual distortions at the edges of the images,
resulting in visual similarities with the target objects (e.g.,
vehicles). As a result, it was observed that non-target ob-
jects were frequently detected as target objects.

To address the problem of objects being represented
small at the edges of images, we use the sliced inference
technique [1]. This involves partitioning the original im-
age into specific-sized slices and resizing each slice to the
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model’s input size at the inference step, rather than resiz-
ing the original image directly to the model’s input size.
This approach ensures that objects are either enlarged or not
considerably reduced. Additionally, to prevent non-target
objects from being detected, pseudo labels are assigned to
non-target objects in the training data, enabling the model
to learn to distinguish them from the target objects.

Furthermore, in this work, we also use various tech-
niques known to be effective in improving detection per-
formance, regardless of the types of tasks. Experimental
results show that the two proposed methods to address is-
sues in the edge regions of images are highly effective in
detecting objects on road images captured by fish-eye cam-
eras. Additionally, by applying various techniques together,
known to be effective in general, we achieved second place
in Track 4 of the 2024 AI City Challenge [20], with an F1
score of 0.6196.

In this paper, our contributions are as follows: (1) We
uncover the challenging aspects unique to road object de-
tection tasks based on fish-eye cameras and propose tech-
niques tailored to this task, investigating their effectiveness.
(2) We propose a high-performance model for road object
detection in fish-eye cameras.

2. Related Work

2.1. Object Detection

It is obvious that using deep learning-based object detec-
tors is crucial for accurately detecting road objects. For a
long time, CNN-based networks have been utilized as the
architecture of deep learning-based object detection mod-
els. Faster R-CNN [14] and You Only Look Once (YOLO)
[13] can be considered as conventional examples. Espe-
cially, YOLO has been continuously improved from version
1 [13] to the latest version 9 [18], achieving an unprece-
dented level of high performance, such that it can be used
in real-life situations without significant issues. Recently,
Transformer-based [17] object detection models, such as
DEtection TRansformer (DETR) series [2, 3, 9, 23–25],
have been actively proposed and have achieved unprece-
dented high performance, surpassing CNN-based models.

Conventional CNN-based object detectors predict mul-
tiple candidate bounding boxes for an object in an image
and then select a final bounding box using non-maximum
suppression (NMS). Empirical knowledge is involved in
determining candidate bounding boxes and selecting a fi-
nal bounding box for an object. In contrast, the DETR
model [2] performs end-to-end prediction for one object,
predicting only one bounding box without our prior knowl-
edge. Moreover, it has been shown to achieve higher perfor-
mance than CNN-based object detection models, especially
for large objects, by capturing relationships between distant
pixels through the self-attention mechanism.

Despite various advantages, some weaknesses have been
pointed out in the DETR model [2]. First, instead of fea-
ture maps of various scales, it uses highly abstracted fea-
ture maps, resulting in significant loss of object informa-
tion. Additionally, during training, only one predicted box
per object is considered as a positive bounding box, aiming
to minimize the difference with the ground truth box. This
leads to insufficient supervision for the encoder to recognize
various forms of bounding boxes for one object. Represen-
tative structures proposed to address the former issue in-
clude Deformable DETR [24] and DETR with Improved de-
Noising anchOr boxes (DINO) [23]. Various training meth-
ods have been proposed to address the latter issue, such as
considering diverse positive boxes. Representative models
include H-DETR [9], Group DETR [3], and Co-DETR [25].
In this work, we use Co-DETR as the base detector as it has
shown the best performance in recent diverse benchmarks.

2.2. Road Object Detection

Various datasets containing plain images captured by con-
ventional cameras have been introduced for the road object
detection task [5], and detection techniques tailored to this
task have been proposed for a long time [7, 12, 22]. Re-
cently, with the availability of datasets such as FishEye8K
benchmark dataset [5], which contain images captured by
fish-eye cameras, it has become possible to train and evalu-
ate models for road object detection using images from fish-
eye cameras, enabling the development of high-performing
models capable of detecting wide areas with few cameras.
However, since the datasets have been relatively recently
released, there have been relatively few proposed methods
specifically tailored to road object detection using images
captured by fish-eye cameras. Data augmentation tech-
niques have been introduced to distort plain images to re-
semble those captured by fish-eye cameras [8]. Neverthe-
less, specialized methods for this task are still not exten-
sively studied.

3. Proposed Method

In this section, we discuss various methods to successfully
detect target objects in road images or videos captured by
fish-eye cameras. First, we investigate the task-specific rea-
sons why state-of-the-art deep learning-based detectors fre-
quently make incorrect predictions in this task (§3.1). The
key issues are frequently observed at the edge regions of im-
ages, and we propose methods to address these task-specific
issues. (§3.1). We also discuss various methods known to
be effective in general object detection (§3.2). In this work,
we improve the performance of detection by ensembling
various detectors that combine these individual methods in
different ways. In this section, we also elaborate on how we
ensemble these detectors (§3.3).
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Figure 2. An indoor image captured by a fish-eye camera [21]

3.1. Task-specific Methods

We investigate the reasons why state-of-the-art object de-
tectors frequently make incorrect predictions in images cap-
tured by fish-eye cameras. We observed two key issues in
the edge regions of such images. First, we observed that
in the edge regions of most road images captured by fish-
eye cameras, there are numerous small objects, and detec-
tors often struggle to detect these objects effectively. Due
to the characteristics of fish-eye cameras, objects near the
edges of images are represented relatively smaller in size
compared to those in other areas. As shown in Fig. 2, in
indoor settings, the edges of images typically contain walls,
reducing the likelihood of objects of interest being present.
However, in road environments, where there are no walls
and open spaces, objects of interest may be present near the
edges of images. Additionally, fish-eye cameras installed on
roads cover wider areas compared to indoor settings, lead-
ing to a larger number of objects appearing in a single im-
age. Consequently, as the number of objects increases, there
is a higher likelihood of multiple objects being located near
the edges of the image. Due to these reasons, we observed
the presence of numerous small objects in the most of road
images.

To effectively detect these small objects, we introduce a
sliced inference technique called SAHI (Slicing Aided Hy-
per Inference) [1]. As shown in Fig. 3, the original image
is partitioned into slices of predefined sizes (i.e., the red
box in Fig. 3) and each slice is resized to the input size of
the detection model for inference. SAHI enables effective
object detection for small objects at the inference step for
the following reasons: When the original image is smaller
than the input size of the model, resizing one slice to the
model’s input size can make the object size larger than re-

Figure 3. An example of sliced inference. The region correspond-
ing to the red box in the above image is resized to match the
model’s input size (as shown in the bottom image) before being
inputted. As a result, the small objects within the yellow box are
greatly enlarged, allowing the model to detect the target objects
more accurately.

sizing the entire original image to the model’s input size.
Conversely, when the original image is larger than the input
size of the model, shrinking the entire original image to the
model’s input size is necessary. However, since one slice
is usually smaller than the model’s input size, resizing it to
the model’s input size still enlarges the size of each object.
Even if the size of one slice is larger than the model’s input
size, it does not reduce the size of each object compared to
resizing the original image to the model’s input size. SAHI
performs inference by moving slices in a manner similar to
convolutional operations, both horizontally and vertically,
and aggregates the predicted boxes from each slice. The hy-
perparameters defined by a user in SAHI are the slice size
and the ratio of overlap between each slice (r). In this work,
we set the size of the slice to two-thirds of the height and
width of the original image and r to 0.25.

Another situation where state-of-the-art detectors fre-
quently fail in object detection is mis-classifying distorted
objects. As an example, in plain images, street signs and
cars may have little visual similarity, causing most mod-
ern detectors to rarely confuse them. However, as shown
in Fig. 4 (a), when a street sign is distorted, creating visual
similarity with the outline of a car, detectors occasionally
mis-predict it as a car.

To address the issue of distorted objects, in this work,
we construct a training dataset where pseudo labels are
assigned to the most observed objects, excluding the tar-

7247



Figure 4. (a) depicts a mis-prediction of a distorted non-target
object. After training on these non-target objects, the issue of in-
correct predictions is resolved as shown in (b).

get objects and then train the model using this data (i.e.,
semi-supervised learning). In other words, we enhance the
model’s object discrimination capability by training it not
only on the target detection objects but also on other objects.
To assign pseudo labels to as many object categories as pos-
sible, we leverage the Co-DETR model that are trained with
the large vocabulary instance segmentation (LVIS) dataset
[6]. This dataset includes samples of a total of 1,203 types
of objects. Since the Co-DETR model currently ranks first
for this dataset, we expected to minimize noises in the train-
ing data when the model assigns pseudo labels to all objects.
By training the model with pseudo-labeled training data, we
can prevent issues like street signs being mis-predicted as
cars, as shown in Fig. 4 (b).

3.2. General Methods for Object Detection

In this work, we employ various methods known to gen-
erally improve the performance of detection models. Data
augmentation is known to increase the quantity of data for
training, thereby improving detection performance. We uti-
lize basic augmentation methods such as random flip, re-
size, and random crop, which are commonly used across
various detection tasks. Since images captured by fish-eye
cameras often exhibit rotation, rotation augmentation is also
applied. Data augmentation is applied during the training
process.

We also use histogram equalization technique to trans-
form an input image with a narrow range of pixel values,
resulting in a high-contrast output image with a wider range
of pixel values (see Fig. 5). In other words, it smooths out
the pixel distribution of mostly dark or bright images, mak-
ing them brighter or slightly darker. Histogram equalization
is only used during the inference step.

Finally, we utilize super resolution (SR) technique to
obtain high-resolution images. In this work, we use pre-

Figure 5. Changes in pixel distribution with histogram equaliza-
tion

trained StableSR model [19]1. The SR is applied during
both training and inference steps. In this work, detection
models are trained with 1.5 times up-scaled samples, and
during the inference step, images are 2 times up-scaled.

3.3. Ensembling Detectors

In this work, various techniques introduced in previous sec-
tions are combined in different ways to create various de-
tectors, as shown in Tab. 1. Weighted Boxes Fusion (WBF)
[16] is employed to aggregate the predicted bounding boxes
from different detectors. As shown in Fig. 6, WBF com-
putes the average coordinates of multiple bounding boxes
predicting the same object to generate a single bounding
box. The confidence score for the generated bounding box
is determined by the average confidence score of the bound-
ing boxes used to create it.

4. Experiments
In this section, we first examine the effectiveness of the
task-specific methods that we proposed in this study2. We
also evaluate the performance of our final detector, which is
an ensemble of detectors applied with various methods.

4.1. Datasets and Evaluation Metric

In this work, we utilize the FishEye8k benchmark dataset
to train the detectors. The FishEye8k dataset consists of

1In this work, we use the checkpoint file “stablesr 768v 000139.ckpt”
(https://huggingface.co/Iceclear/StableSR/blob/
main/README.md)

2Due to the limitation on the number of submissions, in this challenge,
we focused solely on evaluating various ensemble combinations, without
separately assessing the effectiveness of the general methods used in our
work. However, since the task-specific methods proposed in this work had
not been validated in previous research, we evaluated their effectiveness
separately. The effectiveness of the general methods has already been val-
idated in other studies.
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No. Used Methods

1 Co-DINO (ViT-L) + SAHI
2 Co-DINO (ViT-L) + basic augmentation + SAHI
3 Co-DINO (ViT-L) + image rotation + SAHI
4 Co-DINO (Swin-L) + image rotation + semi-supervision + SAHI
5 Co-DINO (ViT-L) + SAHI + histogram equalization
6 Co-DINO (ViT-L) + basic augmentation + SAHI + histogram equalization
7 Co-DINO (ViT-L) + image rotation + SAHI + histogram equalization
8 Co-DINO (Swin-L) + image rotation + semi-supervision + SAHI + histogram equalization
9 Co-DINO (ViT-L) + SR + SAHI

Table 1. Ensembled detectors in this work. Swin-L [11], ViT-L [4] indicate backbones of DETR models, DINO [23] is an architecture of
DETR series. Co-DINO (Swin-L) was pretrained with Objects365 [15] and COCO [10] datasets. Co-DINO (ViT-L) was pretrained with
Objects365 [15] and LVIS [6]. All models are fine-tuned with FishEye8K dataset in this work.

Figure 6. Weighted boxes fusion

5,288 training images and 2,712 evaluation images, anno-
tated with a total of 157K bounding boxes, each labeled
with one of the five road object classes (Bus, Bike, Car,
Pedestrian, Truck). We merged the training and evaluation
datasets of FishEye8K to use as training data in this work.
For testing, we employ the FishEye1Keval test set, provided
as the official evaluation set for Challenge Track 4. This
dataset comprises 1,000 images that are not used in creating
the FishEye8k dataset. As an evaluation metric, F1 score is
used.

4.2. Results

The effectiveness of using task-specific methods As de-
scribed in Tab. 2, it can be observed that the problem of

Method F1 Score

Baseline 0.4734
+ Sliced inference 0.5233
+ Semi-supervision 0.5588

Table 2. The results of ablation study on using sliced inference
and semi-supervision, respectively

Rank Team ID Team Name Score

1 9 VNPT AI 0.6406
2 40 NetsPresso (ours) 0.6196
3 5 SKKU-AutoLab 0.6194
4 63 UIT AICLUB 0.6077
5 15 SKKU-NDSU 0.5965
6 33 MCPRL 0.5883
7 156 zzl 0.5828
8 52 DeepDrivePL 0.5825
9 86 NCKU ACVLAB 0.5637
10 13 FRDC-SH 0.5606

Table 3. Public Top 10 leaderboard for the Challenge Track 4

small objects in the edge regions of images can be effec-
tively addressed through sliced inference techniques. Addi-
tionally, by assigning pseudo labels to objects that are not
targets for detection and then training the model, it is possi-
ble to better distinguish between detection targets and non-
detection targets.

Leaderboard As described in Tab. 3, we were able to
achieve high performance by combining task-specific meth-
ods as well as general methods. We achieved 2nd place in
Challenge Track 4.
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5. Conclusion
In this paper, we proposed methods to address performance
issues caused by distorted or small objects at the edges of
images captured by fish-eye cameras. By leveraging vari-
ous general methods together, we were able to rank highly
in Challenge Track 4. However, there are still room for im-
provement. For example, in some images, objects appeared
blurry at the edges, leading to occasional failures in object
detection. In future research, we aim to address additional
challenges that may arise in the edge regions of images. We
will also address the issue of computational complexity in
the future work. We utilized a large number of highly com-
plex models to enhance performance, which is not practi-
cal. To address this problem, we plan to compress ensem-
bled models into a lightweight single model through tech-
niques such as knowledge distillation and network prun-
ing.
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