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Abstract

This paper introduces our solution for Track 2 in Al
City Challenge 2024. The task aims to solve traffic safety
description and analysis with the dataset of Woven Traf-
fic Safety (WTS), a real-world Pedestrian-Centric Traffic
Video Dataset for Fine-grained Spatial-Temporal Under-
standing. Our solution mainly focuses on the following
points: 1) To solve dense video captioning, we leverage the
framework of dense video captioning with parallel decoding
(PDVC) to model visual-language sequences and generate
dense caption by chapters for video. 2) Our work leverages
CLIP to extract visual features to more efficiently perform
cross-modality training between visual and textual repre-
sentations. 3) We conduct domain-specific model adapta-
tion to mitigate domain shift problem that poses recogni-
tion challenge in video understanding. 4) Moreover, we
leverage BDD-5K captioned videos to conduct knowledge

transfer for better understanding WTS videos and more ac-
curate captioning. Our solution has yielded on the test
set, achieving 6th place in the competition. The open-
source code will be available at https://github.com/UCF-
SST-Lab/AICity2024CVPRW

1. Introduction

Traffic video captioning, an emergent field of video under-
standing, has received increased attention in recent years
due to its capacity to articulate video content through de-
scriptive sentences. This study introduces a dense video-
captioning framework, that integrates Parallel Decoding for
Video Captioning (PDVC) [32] with CLIP [20] visual fea-
tures to improve dense captioning of traffic safety videos
particularly in scenarios involving pedestrian and vehicle
interactions.

Historically, video captioning has been constrained by
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methodologies that produce overly simplistic and contextu-
ally sparse narratives, especially in prolonged and complex
traffic videos. Dense Video Captioning (DVC) emerged as a
methodological evolution to address these challenges, aim-
ing to provide a comprehensive and detailed narrative of the
multifaceted events within traffic scenes [42], [41]. Yet, the
conventional two-stage approaches to DVC have encoun-
tered limitations, primarily due to their segmented process
of event localization and subsequent captioning, which of-
ten results in a loss of contextual richness and event-specific
detail.

In response to this inadequacy, the concept of Parallel
Dense Video Captioning (PDVC) has emerged to gener-
ate a more coherent narrative by identifying and describing
multiple events within a video. PDVC involves two pri-
mary tasks: event localization and subsequent event cap-
tioning. Traditional approaches to PDVC have adhered to a
sequential ’localize-then-describe” methodology, initiating
with the separation of event boundaries followed by the gen-
eration of detailed descriptions. However, this sequential
approach has been critiqued for its dependency on the accu-
racy of event proposal generation, which in turn influences
the quality of the captioning. Moreover, the reliance on an-
chor designs and post-processing techniques for proposal
selection has introduced a plethora of hyper-parameters,
complicating the transition to an end-to-end captioning so-
lution.

Addressing these challenges, our research introduces a
solution for the AI City Challenge 2024 [30] by integrating
PDVC with CLIP visual features to improve dense caption-
ing of traffic safety scenario videos, an end-to-end approach
that integrates the localization and captioning processes.
PDVC leverages these tasks at the feature level, enabling
a more nuanced and accurate event depiction. By employ-
ing CLIP to extract frame features, PDVC concurrently de-
codes these into a set of events with corresponding loca-
tions and captions, facilitated by parallel prediction heads.
This methodology is enhanced by using an event counter,
which refines the prediction of event quantity, thereby mit-
igating caption redundancy and ensuring a comprehensive
video narrative. Therefore, the main contributions of our
paper are stated as follows:

* Our study introduces a solution by integrating PDVC with
CLIP visual features to improve dense captioning of traf-
fic safety scenario videos.

e Given domain shift challenge, we conduct domain-
specific model adaptation by domain-specific training and
knowledge transfer to alleviate domain shift in video con-
text.

» This solution examines different impact factors for per-
formance variation.

* Experiments show that our proposed solution achieves
6th place on the testing set of the challenge.

Our empirical evaluations, conducted the WTS dataset
developed by Woven by Toyota, Inc., and BDD-5K dataset,
demonstrate PDVC’s capacity in Traffic Safety Description
and Analysis which underscore the framework’s efficacy in
generating precise and meaningful video captions, fostering
a deeper understanding of the video content. Hence, this
study contributes to the field of video captioning by pre-
senting PDVC as a streamlined, effective, and end-to-end
solution to addressing real-world challenges encountered in
dense traffic video captioning tasks.

2. Related Works
2.1. Dense Video Captioning

Dense video captioning is a complex task involving both
event localization and captioning. One pioneering work
by [12] introduced a dense video captioning model fea-
turing a multi-scale proposal module for localization and
an attention-based LSTM for context-aware caption gener-
ation. Subsequent studies have aimed to improve event rep-
resentations through context modeling [29, 37], event-level
relationships [31], and multi-modal feature fusion [9, 10].
Further research endeavors focus on enhancing the integra-
tion between localization and captioning modules [14, 44],
with proposals like [17] aiming to boost the efficiency of
proposal generation to enhance the coherence of generated
captions. An efficient solution to this problem is PDVC[32],
which parallelizes localization, selection, and captioning
tasks within a single end-to-end framework. PDVC sim-
plifies the pipeline while ensuring the generation of accu-
rate and coherent captions. Leveraging the Detection Trans-
former [4], PDVC enhances object detection by attending to
sparse spatial locations of images and incorporating multi-
scale feature representation. We adopted PDVC as a back-
bone model to solve dense video caption generation.

2.2. Domain-specific Learning

Domain-specific learning, encompassing domain model-
ing [43] and transfer learning [18], has emerged as a cru-
cial strategy to address the challenge of effectively train-
ing models amidst internal data shifts. Often, collected
data lacks careful curation, leading to significant varia-
tions in features across different segments of the training
dataset. This internal shift impedes efficient training and
convergence, resulting in degraded model performance on
generalized tasks [21, 43]. To overcome this challenge,
one approach involves segmenting the data and deriving
domain-specific models [5], which helps mitigate domain
shift issues. Another approach is transfer learning that fa-
cilitates knowledge transfer through pre-training and fine-
tuning [18]. The effectiveness of transfer learning depends
on the correlation between the source and target domains.
Higher similarity between domains leads to greater transfer
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efficiency, resulting in improved model performance. By
leveraging domain-specific knowledge and transferable fea-
tures, these approaches contribute to more effective model
training and improved performance across various domains.
We leverage both domain modeling and knowledge transfer
to address efficient dense video captioning.

2.3. Traffic Safety Description and Analysis

Traffic safety video captioning can be classified into two
main categories: those addressing traffic scenarios and
those focusing on driver behaviors [16],[38]. For traffic sce-
narios, traditional analytic frameworks have concentrated
on sub-tasks such as class detection [27] and semantic seg-
mentation [19], [1], accident identification [6], risk evalua-
tion [13], lane detection [7], driver attention monitoring [2],
and traffic flow analysis [24],[22]. While some methodolo-
gies are capable of annotating or captioning traffic scenes
within static images [15], [25], they fall short in capturing
the dynamic evolution of traffic scenarios over time, lack-
ing the ability to detail incidents with spatial-temporal at-
tributes. Furthermore, there exist methodologies targeting
distinct aspects, like polarization feature-based perception
[3] and action recognition [35],[23], yet these are not di-
rectly applicable for spatial-temporal scenario comprehen-
sion.

Recent advancements in video captioning are catego-
rized into template-based and neural network-based meth-
ods. Template-based captioning [36], [8], an earlier ap-
proach, employs manually defined templates into which
video elements are classified and detected to generate de-
scriptive sentences. Despite their efficiency with smaller
datasets, these methods often produce rigid and inflexible
sentences. In contrast, neural network-based captioning
[28] benefits from deep learning’s progression, enabling
complex spatio-temporal feature extraction from both im-
ages and videos, and translating these directly into narra-
tive text. The role of attention mechanisms in video cap-
tioning is crucial, balancing the local and global features
within videos to identify the most relevant temporal seg-
ments for narration. Innovations in attention mechanisms
have not only improved traditional applications but also
shown promise in addressing traffic scenario-specific chal-
lenges [33], [34], [26], [39].

Our method differentiates itself by distinctly addressing
different elements in the traffic environment where, sepa-
rate training is conducted for vehicle and pedestrian models
within each domain-specific framework. To ensure consis-
tent caption generation over time, video synchronization is
achieved through video trimming. Furthermore, a knowl-
edge transfer process is implemented, significantly improv-
ing the video understanding and caption generation capa-
bilities. These models are then applied to generate captions
for videos, with a subsequent post-processing phase aimed

at enhancing the textual fluency of the generated captions.

3. Methodology

Problem Formulation. In this task, we explore the
solution s(v;, ¢;), aiming to minimize semantic disparities
between generated captions (gc;) and actual captions (c;)
corresponding to event clips (v;) and text captions (c;)
respectively, within a video dataset (/). The optimization
process involves maximizing the probability P(c;|v;) while
ensuring temporal alignment, guaranteeing that each cap-
tion is appropriately synchronized with its corresponding
event window. Notably, the probability P(c;|v;) is deter-
mined through a generative process, where each word (w,,)
in the caption sentence (c;) is inferred sequentially. This in-
ference follows a sequential probability chain: P(c;|v;) =
P(wy |wp—1,Wn—2, ...0;) P(wp_1|wWn—2, ...0;)... P(w1]v;).
This approach enables the systematic examination of cap-
tion generation in video contexts, ensuring coherence and
alignment between generated and ground truth captions.

3.1. Overview

This section introduces our proposed solution for dense
video captioning in traffic safety scenario analysis, com-
prising four core components. These include data pre-
processing, image-text feature preparation, domain-specific
model adaptation, and context post-processing. In domain-
specific model adaptation, we utilize domain-specific train-
ing and knowledge transfer methods to mitigate domain
shift across video contexts. By integrating these compo-
nents, our solution aims to effectively generate descriptive
captions that accurately depict traffic safety scenarios.

3.2. Pre-processing

All raw data undergo a thorough sanity check and align-
ment between images and context. We utilize tokenization
to prepare text features and employ video trimming to en-
sure multi-camera synchronization.

Tokenization. Utilizing all textual descriptions, we con-
structed a vocabulary comprising a collection of tokens tai-
lored for streamlined tokenization processes. Through ex-
perimentation, we observed that vocabulary pruning sig-
nificantly improves the efficiency of context comprehen-
sion and model training. By selectively removing less in-
formative or redundant tokens from the vocabulary, we
optimize the tokenization process, thereby enhancing the
overall performance of the model. This refined vocabu-
lary enables more effective representation learning, facili-
tating better understanding of contextual nuances and im-
proving the model’s ability to capture relevant information
from textual inputs. The pruning process utilizes domain-
specific caption datasets. For instance, the Woven Traffic
Safety (WTS) dataset relies on a vocabulary consisting of
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Figure 1. Overview of our proposed solution. Domain modeling is performed with domain-specific tokenizations for WTS-event, WTS-
Normal, and BDD-5K. Caption vehicle (Veh) and caption pedestrian (Ped) models are separately trained with each domain-specific model.
To facilitate the caption generation consistency over time, video synchronization is conducted by video trimming. Knowledge transfer
from the BDD-5K model to WTS data modeling is conducted to enhance video understanding and caption generation. Subsequently, the
models are utilized to infer captions for videos, followed by post-processing that enhances text fluency.

the unique words from all captions, while BDD-5K utilizes challenge in ensuring accurate representation of events
its own dictionary for this purpose. across different camera perspectives. To resolve this issue,
we implement a video trimming approach guided by caption

Vid hronization. Th bl f misali t
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between vehicle-view and overhead-view videos poses a
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tamps specified in the caption files, we synchronize scenar-
ios depicted in the footage captured from various camera
angles. This synchronization process ensures consistency in
the portrayal of events across different viewpoints, enhanc-
ing the overall coherence and accuracy of the video data.
Through meticulous alignment of video segments based on
caption-guided trimming, we aim to mitigate discrepancies
and discrepancies in the depiction of scenes, facilitating
modeling on the captured footage across multiple camera
views.

3.3. Feature extraction

We leverage CLIP [20] to extract video features to align
with caption text features for video captioning training. The
CLIP model represents a state-of-the-art approach for ex-
tracting video features, leveraging vision and language rep-
resentations to understand video content comprehensively.
It leverages Convolutional Neural Networks (CNNs) and
Transformer-based architectures to encode both visual and
textual information effectively. By jointly pre-training on
large-scale image-text pairs, CLIP model can more effec-
tively associate visual concepts with their corresponding
textual descriptions, enabling it to understand the content
of images and videos in a semantically rich manner.

3.4. PDVC-equipped dense captioning model

Preliminary: PDVC. The model of PDVC [32] stands as
a potent solution for generating dense captions in stream-
ing videos. The methodology revolves around crafting a
model architecture featuring a sequential image feature en-
coder and a parallel textual segment decoder. Central to its
operation is the integration of the Deformable Transformer
[4], which facilitates deformable attention mechanisms in
both the encoder and decoder modules. The encoder stage
capitalizes on a combination of CNNs and Transformer lay-
ers to process multi-scale frame features, which are then
combined with positional embeddings. These enhanced
features undergo multi-scale frame-frame relationship ex-
traction within the deformable transformer encoder. Mean-
while, the decoding network consists of a deformable trans-
former decoder alongside three parallel heads: a caption-
ing head responsible for generating captions, a localization
head dedicated to predicting event boundaries and confi-
dence scores, and an event counter tasked with estimating
the appropriate event count. The localization head under-
takes box prediction and binary classification for each event
query, while the event counter utilizes a max-pooling layer
and a fully connected layer with softmax activation to pre-
dict the event number. Final outputs are determined by
selecting the top N events based on accurate boundaries
and favorable caption scores from N event queries. Dur-
ing training, the loss function comprises a weighted combi-
nation of segment IOU loss, classification loss, countering

loss, and caption loss (as shown in equation 1). The over-
all loss is computed as the sum of training losses across all
decoder components. In our inference process, we use the
proposals’ centers as reference points to automate the final
event detection selection. We select the closest segments
based on proximity, which are then outputted as captions.

L= BgiouLgiou + ﬁclchls + BecLec + 5cachapa (1)

where Lg;0, represents the generalized 10U between
predicted temporal segments and gournd-truth segments,
L.;s represents the focal loss between the predicted clas-
sification score and the ground-truth label, L.. represents
the cross-entropy loss between predicted count distribution
and the ground truth, and L., represents the cross-entropy
between the predicted word probability and the ground truth
normalized by the caption length.

3.5. Post-processing

Post-processing was conducted on the generated text to ad-
dress units such as km/h, which were not present in the vo-
cabulary. This formatting step aimed to enhance the clar-
ity of the text by reducing the occurrence of unknown to-
kens, thereby improving the overall understanding and in-
terpretability of the generated content. Through handling of
units and minimizing unknown tokens, the processed text
gains coherence and semantic clarity, aligning more closely
with the intended meaning and enhancing the human-like
fluency performance.

4. Experiments
4.1. Dataset

The WTS Dataset, developed by Woven by Toyota, Inc.,
captures detailed behaviors of vehicles and pedestrians in
staged traffic events, including accidents [11]. With over
1.2k video events spanning 130 distinct traffic scenarios,
WTS integrates multiple perspectives from vehicle ego and
fixed overhead cameras. Each event includes comprehen-
sive textual descriptions of observed behaviors and con-
texts. Additionally, detailed textual description annotations
for approximately Sk publicly sourced pedestrian-related
traffic videos from BDD100OK [40], i.e., BDD-5K are pro-
vided for diverse experimental purposes, serving as valu-
able training and testing resources.

4.2. Evaluation Metrics

In this solution, we introduce four metrics—BLEU,
ROUGE, METEOR, and CIDEr—for evaluating model per-
formance. These metrics provide comprehensive assess-
ments of the solution’s effectiveness across various natural
language processing tasks, including machine translation,
text summarization, and image captioning.
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BLEU Score. The BLEU score (Bilingual Evaluation
Understudy) is a metric used to evaluate the quality of
machine-translated text by comparing it to one or more ref-
erence translations. It measures the similarity between the
candidate translation and the reference translations based on
n-grams. The BLEU score is calculated using the following
formula:

N
1
BLEU = BP x exp (Z + los pn> : )

n=1

where BP is the brevity penalty and p,, is the modified preci-
sion for n-grams. We adopted BLEU-4 referring to the use
of 4-grams, that indicates the metric evaluates the precision
of the generated translation in terms of matching 4-word
sequences with those found in the reference translations.

ROUGE Score. The ROUGE score (Recall-Oriented
Understudy for Gisting Evaluation) is a set of metrics used
to evaluate the quality of text summaries by comparing them
to reference summaries. It measures the overlap between
the candidate summary and the reference summaries in
terms of n-grams, word sequences, and sentence-level struc-
tures. We employ ROUGE-L, where L stands for “Longest
Common Subsequence”, to assess the quality of the sum-
mary by considering the longest sequence of words that ap-
pear in both the generated summary and the reference sum-
maries.

METEOR Score. METEOR (Metric for Evaluation of
Translation with Explicit Ordering) is a metric used to eval-
uate machine translation output by considering both the pre-
cision and recall of matching words between the candidate
translation and reference translations. The METEOR score
is calculated using the following formula:

METEOR — _ Precision x Recall 3)
Precision + « x Recall + (1 — «)

CIDEr Score. CIDEr (Consensus-based Image Descrip-
tion Evaluation) is a metric specifically designed for eval-
uating the quality of image descriptions generated by im-
age captioning models. It measures the consensus between
the generated descriptions and human reference descrip-
tions using n-grams and term frequency-inverse document
frequency (TF-IDF) weighting.

4.3. Implementation Details

General Configuration. All the training images are resized
to 224x224 and normalized. In PDVC, the deformable
transformer uses a hidden size of 512 in MSDALtt layers and
2048 in feed-forward layers. The number of event queries
is 10. The caption generation module is the vanilla LSTM
captioner where hidden dimension in captioning heads is
512. For the event counter, we choose the maximum count
as 10. The generated caption length is set to 200 words. We

use Adam as the optimizer with initial learning rate set to
le-3. We train the model with 30 epochs with a batch size
of 4 for WTS and 8 for BDD-5K . All models are trained on
one GPU Titan RTX.

Domain Modeling. In domain modeling, we partition
the WTS Normal and WTS Event training sets to develop
distinct domain-specific language models.We tokenize the
provided captions accordingly. For the caption vehicle,
Normal captions require 732 words, while Event captions
need 1039 words. For the caption pedestrian, the difference
is more significant, with Event captions containing 1397
words compared to 974 words for Normal captions. This
variance underscores the significance of domain modeling
across these scenarios. Moreover, the video feature differ-
ence will further increase this disparity. For BDD-5K, all
captions are utilized for model training, with 2448 words
required for the caption vehicle and 3499 words for caption
pedestrian.

Knowledge Transfer. To harness the superior features
of BDD-5k due to its larger dataset, we employ knowledge
transfer to enhance the domain models of WTS. We lever-
age model pretraining with BDD-5K and fine-tune the pre-
trained model with WTS Normal and Event datasets. To
ensure effective transfer, we align the vocabulary sets of
BDD-5K and WTS. During the fine-tuning stage, we de-
crease the learning rate for WTS Normal and Event to 5e-4
for better tuning results. Other training settings follow gen-
eral configuration.

4.4. Challenge Results

We conduct video captioning separately for pedestrian and
vehicle captions. The BDD-5K model is trained exclusively
on BDD-5K datasets, whereas the WTS model is initially
pretrained using BDD-5K datasets and then fine-tuned us-
ing WTS datasets. The top-performing model achieves an
average performance score of 29.0084, with contributions
of 30.2821 from external data of BDD-5K and 27.7347
from internal data of WTS. Additional details regarding the
performance breakdown are provided in the Table 1. As
shown in Table 2, the final score of our proposed solution
(Team ID 219) on the whole test set is 29.0084. Our team
achieved rank 6 on Track 2 Traffic Safety Description and
Analysis of Al City Challenge 2024. We also illustrate one
example video presentation result in Figure 2

Data |BLEU-4 METEOR ROUGE-L CIDEr  S2
WTS | 0.2005 0.4115 0.4416 0.5573 27.7347
BDD-5K| 0.2102  0.4435 0.4705 0.8698 30.2821

Table 1. Performance on trafffic safety description and analysis
task.
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Pedestrian

7.233-11.604 4%

Figure 2. A video captioned with the proposed solution. The video is divided into five segments based on event and time, and the best
proposal captions are matched to each segment’s time frame. Due to space limit, only first two sentences are shown. The time is segmented

by seconds.

Rank|Team ID Team Name  Score
1 208 AliOpenTrek 33.4308
2 28 AIO-ISC 32.8877
3 68 Lighthouse  32.3006
4 87 VAI 32.2778
5 184 Santa Claude 29.7838
6 219 UCF-SST-NLP 29.0084

Table 2. Leaderboard of Traffic Safety Description and Analysis.

4.5. Ablation Study

We performed an ablation study to assess the impact of var-
ious components on performance variability. Specifically,
we evaluated the effectiveness of CLIP feature extraction,
domain-specific modeling, knowledge transfer, and post-
processing techniques. The results of this analysis are de-
tailed in Table 3 and 4, showcasing the influence of each
component on overall performance. Our thorough examina-
tion revealed that domain modeling and knowledge transfer
are the primary drivers of performance improvement, with
post-processing providing a moderate boost to all scores.
There is a trade-off between CIDEr and the other three
scores. Notably, we observed greater improvement in cap-
tioning vehicle scenarios (Table 4) compared to captioning
pedestrian scenarios (Table 3), particularly when incorpo-
rating knowledge transfer. This can be attributed to the sim-
ilarities in camera views between the BDD-5K and WTS
vehicle-view datasets, which both prioritize descriptions of
vehicular scenarios.

CLIP Domain Knowledge Post BLEU MET ROUGE CIDE

feature modeling transfer -processing| -4  -ERO -L -r
v v v v 0.1989 0.2701 0.2835 0.1770
v v v 0.1960 0.2667 0.2793 0.1864
v v 0.1161 0.2014 0.2247 0.1193
v 0.1090 0.1506 0.1749 0.1005

Table 3. Ablation study on caption pedestrian of WTS validation
set on the proposed method.

CLIP Domain Knowledge  Post BLEU MET ROUGE CIDE

feature modeling transfer -processing| -4  -ERO -L -r
v v v v 0.3189 0.4731 0.3221 0.3342
v v v 0.3146 0.4681 0.3172 0.3423
v v 0.1876 0.2261 0.2397 0.2220
v 0.1369 0.1867 0.2292 0.1310

Table 4. Ablation study on caption vehicle of WTS validation set
on the proposed method.

4.6. Significance of Model Configuration

We explored the influence of various configurations on per-
formance outcomes. Our investigation revealed that differ-
ent depths of transformer decoder layers have varying ef-
fects on WTS training performance. Optimal performance
was attained with a layer depth of 4, with negligible per-
formance gains observed beyond this point. Similarly, for
BDD-5K, the best performance was achieved when the
layer depth was 6, with minimal performance gains beyond
this point. Setting the LSTM layer to a single layer yielded
the best results, as multiple layers led to repetitive sentence
generation due to training inefficiency. Regarding batch
size, WTS training achieved optimal results with a batch
size of 4, whereas BDD-5K performed best with a batch
size of 8. This observation may be attributed to the differ-
ences in data size and distribution, with larger batch sizes
potentially benefiting datasets with larger data sizes such as
BDD-5K.

5. Conclusions

In summary, this paper introduces a solution tailored for
Track 2 of the AI City Challenge 2024, focusing on Traf-
fic Safety Description and Analysis. The solution tackles
various challenges, including efficient tokenization, CLIP-
based feature extraction, domain-specific model training to
mitigate domain shift, and the implementation of a post-
processing technique to enhance human-like fluency. With
these strategies, the proposed framework achieved a com-
mendable performance score of 29.0084 on the test set,
achieving the 6th position in the competition. The success
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of this solution underscores its efficacy in effectively ad-
dressing real-world challenges encountered in dense video
captioning tasks.
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