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Abstract

The implementation of multi-target multi-camera track-
ing systems in indoor environments, including shops and
warehouses, facilitates strategic product positioning and
the improvement of operational workflows. This pa-
per presents the online multi-target multi-camera track-
ing framework OCMCTrack, which tracks the 3D positions
of people in the world. The proposed framework intro-
duces a novel matching cascade to re-evaluate track as-
signments dynamically, thus minimizing false positive as-
sociations often made by online trackers. Additionally, this
work presents three effective methods to enhance the trans-
formation of a person’s position in the image to world co-
ordinates, thereby addressing common inaccuracies in po-
sitional reference points. The proposed methodology is able
to achieve competitive performance in Track 1 of the 2024
AI City Challenge, demonstrating the effectiveness of the
framework.

1. Introduction

The objective of multi-target multi-camera tracking
(MTMCT) is to determine the trajectories of multiple enti-
ties, such as people, vehicles, or other objects, within an en-
vironment monitored by an array of cameras. The growing
interest in MTMCT in indoor environments [15] is driven
by its potential to significantly impact various domains, in-
cluding security, retail, industrial, and logistic sectors. The
ability to track multiple entities, such as humans or objects,
across several camera views allows for a comprehensive un-
derstanding of movement patterns and interactions within
the monitored area. In retail, MTMCT systems facilitate the
analysis of consumer behavior, enabling the optimization
of shop layouts and product placement. Within industry,
MTMCT can improve logistic operations, streamline man-
ufacturing, and enhance the safety of workers.

The task of MTMCT can be conceptually divided
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Figure 1. Framework Overview – First, single-camera process-
ing components generate tracks within camera views separately
for each camera. These single-camera tracks are then projected
into world coordinates. Cross-camera association is performed in
world coordinates to allow single-camera processing on the edge
and flexible integration of new cameras without changes to the
multi-camera tracker.

into two main components: tracking within single-camera
views, also referred to as multi-object tracking (MOT), and
cross-camera association, as visualized in Fig. 1. Track-
ing within a camera view involves the detection of individ-
uals within the camera’s field of view, and the subsequent
linking of these detections across successive frames to cre-
ate single-camera tracks. Afterward, cross-camera associa-
tion merges these single-camera tracks captured by differ-
ent cameras to construct multi-camera trajectories that en-
compass an individual’s movement across the entire array
of cameras.

This work aims to accurately locate subjects within a
global world coordinate system, rather than tracking indi-
viduals in local image coordinate systems. This introduces
additional complexities to the already challenging MTMCT
task. Varying lighting conditions, occlusions, and the com-
plex nature of human motion are classical challenges in
MTMCT. These challenges are extended by the need of ac-
curate transformation of person detections into the world
coordinate system.

The proposed online MTMCT system OCMCTrack,
which stands for online corrective matching cascade track-
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ing, is designed with modularity, flexibility, and scalability
in mind to ensure the system can adapt to various real-world
environments and to allow upgrades by recent research ad-
vancements. The framework separates image-based pro-
cessing components from cross-camera association entirely,
prioritizing privacy as a major concern when deploying
MTMCT systems. As shown in Fig. 1, cross-camera as-
sociation is executed exclusively on non-image data, such
as global coordinates and visual appearance features, al-
lowing image-based processing on the edge. Thus, stor-
ing or transferring image data through the network is not
required, embedding privacy-by-design into the system ar-
chitecture. Furthermore, network communication is limited
to lightweight positional information and feature vectors,
which is expected to significantly reduce latency.

Online tracking methods have a major drawback com-
pared to offline methods: they might lack sufficient infor-
mation when making across-camera association decisions.
To close the gap between the accuracy of online and of-
fline trackers, this work proposes to re-evaluate the assign-
ment of single-camera tracks to multi-camera tracks in each
time step, thus, reducing false positive associations. Fur-
thermore, this work presents three effective methods for
improving the accuracy of bounding box to world position
transformations and compensating for inaccurate reference
points during transformation.

The primary contributions of this work are summarized
as follows:

• The introduction of a modular, flexible, and efficient
online MTMCT framework that is designed to serve as
a baseline for subsequent research

• A novel matching cascade that incorporates a mecha-
nism to correct erroneous associations from previous
time steps

• Three efficient approaches aimed at resolving the chal-
lenge of determining plausible world coordinates from
bounding boxes within video frames

• Competitive results in Track 1 of the 2024 AI City
Challenge [27]

2. Related Work

In the field of MTMCT, modern methods adopt a two-
staged approach: single-camera tracking to monitor the
routes of individuals within a single camera’s field of view,
followed by inter-camera tracking to match the resulting
tracklets across the camera network [7, 8, 11, 13, 19, 22, 24,
26, 30]. The two-stage procedure has become a widely ac-
cepted paradigm due to its effectiveness in disentangling
the complexity of MTMCT. The first stage, single-camera

tracking, has been extensively studied, with the tracking-
by-detection paradigm prevailing as the predominant fo-
cus [1, 4, 10, 28, 34]. This approach detects individuals in
each camera frame first and then links the detections over
time to maintain their identity across frames.

Similar to single-camera tracking algorithms, multi-
camera tracking approaches can be broadly classified into
online [6,20,21,33] and offline methodologies [7,11,13,22,
24,30]. Online methods [6,20,33] address the tracking chal-
lenge in a sequential frame-by-frame manner, thereby facil-
itating the potential for real-time processing and immediate
tracking results, which is highly desirable in real-world ap-
plications. In contrast, offline approaches use the entirety of
data output from single-camera tracking algorithms to find
the best association across cameras [7,11,13,22,24,30]. Of-
fline methods are preferred in competitive contexts, such as
the AI City Challenge [15,16], due to their higher accuracy.
This is because they can leverage comprehensive temporal
information to resolve ambiguities in track associations.

Recent developments in the field emphasize the crucial
role of scene-specific prior knowledge in MTMCT [7,8,11,
18, 20, 22, 24]. Knowing camera positions and orientations
is essential to prevent unrealistic track associations between
camera views, particularly when dealing with overlapping
fields of view or when aiming at determining the position
of objects in a global world coordinate system. A number
of studies have also proposed the use of spatial projections
onto a ground plane as a method to enhance tracking preci-
sion [3, 17, 25, 29].

The approach presented in this research aligns with con-
temporary findings. It adopts a two-stage online strategy
and the tracking-by-detection scheme. Furthermore, ge-
ometric transformations are leveragedto project bounding
boxes to the ground plane to get global positions in the
world coordinate system.

3. Methodology
The fundamental principle of the proposed online multi-

camera tracking framework is shown in Fig. 1. It com-
prises three main processing steps: single-camera process-
ing, bounding box projection, and cross-camera association.
This design is chosen due to multiple reasons. First, this
allows computation of video streams on the edge, which
has several advantages. There is no need to transfer large
amounts of video data to the centralized cross-camera as-
sociation module but only lightweight global positions with
corresponding visual feature vectors instead. As a result,
latency for online tracking is greatly reduced. Furthermore,
this procedure is more privacy-friendly as video data show-
ing persons is only available on the edge and is deleted
directly after the processing stopped. Last, the proposed
framework offers flexibility and modularity as new cam-
eras can be added without any changes to the cross-camera
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Figure 2. Single-camera Tracking – First, a detector localizes the persons in the frames. The feature extractor generates visual embeddings
of the detected persons’ appearances. Finally, the single-camera tracker ConfTrack [10] is applied to associate the detections over time to
produce single-camera tracks.

component even during runtime. Similarly, single-camera
processing modules can be updated without effects to the
cross-camera tracking.

The following sections elaborate on the three main com-
ponents in detail.

3.1. Single-Camera Processing

As depicted in Fig. 2, the single-camera processing mod-
ule receives a video stream Vc captured by the c-th cam-
era as input and produces a set of single-camera tracks Tc.
The processing pipeline follows the tracking-by-detection
paradigm and consists of separate detection, appearance
feature extraction, and single-camera tracking stages. The
detection stage localizes persons in the video frames and
creates a set of bounding boxes Dc that are enriched with
appearance feature vectors Fc extracted using a person re-
identification model. This information is provided as input
to an online single-camera tracking method to produce the
final single-camera tracks.

3.1.1 Detection

Due to its favorable trade-off between computation time,
accuracy, and generalization ability [5, 21, 23], the single-
stage YOLOv8x detection model [9] was selected as the
default person detector in OCMCTrack. The model is ini-
tialized with COCO pre-trained weights and fine-tuned us-
ing the adapted bounding boxes described in Sec. 3.2. The
input videos are processed in their original resolution, i.e.
1920×1080 pixels. Except for the learning rate, which is
reduced to 0.001, the default parameters give the best per-
formance.

3.1.2 Feature extraction

The feature extraction step computes visual embeddings
Fc for bounding boxes included in Dc. Typically, person
re-identification models are applied for this task that are
trained to learn a feature space in which embeddings of the
same individual seen from different views are close while
embeddings of distinct persons are far away. Recent ad-
vancements in computer vision demonstrated great poten-
tial of unsupervised pre-training and transformer architec-
tures. Therefore, SOLIDER [2] serves as appearance fea-
ture extractor in this work. The model uses the Swin [12]

transformer as backbone and is pre-trained in an unsuper-
vised manner using diverse imagery from the internet. Fine-
tuning is performed on the AI City Challenge 2024 dataset
with the original parameter setting, except for the batch size
(128) and the number of individuals within a batch (8). The
Base variant of the Swin transformer is utilized as the back-
bone model.

3.1.3 Single-Camera Tracking

Many tracking-by-detection algorithms are proposed re-
cently that add incremental improvements to their prede-
cessors. Thus, one of the most current methods, con-
cretely ConfTrack [10], builds the basis for the single-
camera tracking stage in the proposed framework. Conf-
Track contributes multiple advancements, out of which only
three proved beneficial. On the one hand, the noise scale
adaptive Kalman filter update amplifies the measurement
noise of the detected box dependent on the predicted confi-
dence score. As a result, the Kalman update focuses more
on the predicted bounding box than on noisy ones from
the detector and the tracking accuracy improves. More-
over, the authors propose to predict the size of bounding
boxes constantly after a track is lost. Furthermore, Conf-
Track also exploits the confidence scores from the detec-
tor to adjust the matching cost. The lower the confidence
of a detected bounding box, the higher the cost for match-
ing with an existing track. This procedure prefers matches
with certainly recognized boxes and avoids false positive as-
signments. However, the confidence-weighted Kalman up-
date (CWKU) and the additional low-confidence stage in
the matching cascade (LCTM) are removed based on em-
pirical observations.

3.2. Projection

The goal of the challenge is to determine global positions
of persons in the scene. To achieve this, person detections in
the camera views need to be projected into the world coordi-
nate system. Given the homography matrix Hc for camera
c, the 2D world position [x, y]T of the image coordinates
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(a) Original boxes (b) Adjusted boxes

Figure 3. Adjustment of Bounding Boxes – The original bound-
ing box annotations (Fig. 3a) are adapted (Fig. 3b) to improve the
accuracy of bounding box transformation into world coordinates.

[u, v]T are computed as follows:x̂ŷ
ẑ

 = H−1
c

uv
1

 (1)

xy
1

 =

x̂ŷ
ẑ

÷ ẑ (2)

However, this requires the selection of an appropriate refer-
ence point for each person detection in a video frame. The
straightforward approach is to use the horizontally centered
point at the bottom of a bounding box. While this results
in high accuracy for standing persons that are entirely vis-
ible, localization accuracy drops when the lower-body is
occluded and thus not detected or when persons walk to-
wards or away from the camera. Possible solutions include
leveraging pose estimation to exactly determine the point of
contact with the floor, or extend the detector to additionally
predict this position. However, these methods introduce fur-
ther computational complexity, which harms efficiency and
therefore real-time capability. Moreover, modularity suffers
since state-of-the-art algorithms may not be applied off-the-
shelf and specific models need to be developed.

Based on these considerations, a lightweight yet accu-
rate approach is followed. The training bounding boxes are
simply adjusted to span not only over the visible parts of the
person, but to have their bottom where the person is located
in the world coordinate system. This point is determined us-
ing the projection matrix and the global positions of persons
provided in the dataset annotations. Original and adjusted
bounding boxes are compared in Fig. 3. As can be seen for
the bald man in the upper right of Fig. 3b, adapted train-
ing bounding box include the entire body even if parts are
invisible. In contrast, the original annotation, visualized in
Fig. 3a, only spans over the visible part.

However, one error case for inaccurate world position
estimates is still not fixed by this. Some detectors such as

T t
SC

Update active tracks

Track spliting

Assign by position

Match with
adapted position

Rematch lost tracks

Initialize new tracks

T t
MC

Figure 4. Cross-camera Association – Overview of the cross-
camera association processing steps.

YOLOv8 are restricted to predicting bounding boxes within
the image boundaries. As a result, reference points of partly
visible persons at the bottom of frames are not reliable.
Therefore, such cases are handled separately by expand-
ing border bounding boxes to determine the reference points
for projection. Concretely, bounding boxes are extended to
have 2.5 times the height as the width. The enlargement
factor correlates with the mean ratio of annotated bound-
ing boxes in the training and validation set of the AI City
Challenge 2024 dataset.

3.3. Cross-Camera Association

The cross-camera association module links the single-
camera tracks based on the projected world positions. In-
puts to the processing pipeline are current single-camera
tracks T t

SC in time step t and multi-camera tracks T t−1
MC

from the previous time step t − 1. The proposed multi-
camera tracker distinguishes between two track states: ac-
tive and lost. Active multi-camera tracks are currently vis-
ible in at least on camera view, while lost tracks belong
to individuals that are currently out of the cameras’ fields
of view. The two sets of tracks are forward through the
processing pipeline provided in Fig. 4. First, multi-camera
tracks included in T t−1

MC are updated using the new posi-
tions of the associated single-camera tracks. Subsequently,
single-camera tracks that do not sufficiently match the as-
signed multi-camera track after the update are disassociated
and considered matching candidates to other multi-camera
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tracks in the following processing stages. Afterward, pre-
viously unmatched single-camera tracks and existing multi-
camera tracks are linked by position in two different man-
ners. Next, lost multi-camera tracks are rematched. Fi-
nally, remaining unmatched single-camera tracks are spa-
tially clustered to form new multi-camera tracks. The result
is the new set of multi-camera tracks T t

MC. The remainder
of this section provides details about the separate stages.

Update active multi-camera tracks. Existing multi-
camera tracks are updated by extracting the world positions
of associated single-camera tracks. The current track posi-
tion is set to the median position of the single-camera tracks.
Similarly, current appearance features are retrieved and up-
dated. If all linked single-camera tracks are finished, multi-
camera tracks switch to the lost state.

Track splitting. The major drawback of online trackers
is that association decisions must be made with limited in-
formation available. As a result, the risk of false positive
or missed links is increased. To alleviate their impact on
the tracking results, the track splitting stage examines the
single-camera tracks included in a multi-camera track con-
cerning their similarity. Similarity is measured by posi-
tion and visual appearance. If respective thresholds τp or
τv are exceeded, outlier single-camera tracks are removed
from the multi-camera track to correct faulty association de-
cisions from previous time steps. Rejected single-camera
tracks are eligible to be matched with other multi-camera
tracks in subsequent stages.

Assign by position. This stage assigns single-camera
tracks to multi-camera tracks based on their positions in the
world. Unmatched single-camera tracks’ and active multi-
camera tracks’ positions are clustered in a hierarchical man-
ner until the distance criterion τd is met. As an additional
constraint, it is enforced that only one active single-camera
track per camera can be clustered, since the same individual
cannot appear at multiple locations in the same video frame.

Match with adapted position. Analogous to the previ-
ous processing step, association is performed based on the
global positions. But in contrast, the positions of single-
camera tracks are adjusted to compensate for inaccurate ref-
erence points for projection into world coordinates. In de-
tail, a straight line of world positions is computed which
corresponds to increasing the height of a bounding box.
Then, the shortest distances of the multi-camera tracks’ po-
sitions to this straight line, i.e. possibly more accurate world
positions are computed to perform the association. The em-
ployed distance threshold is referred to as τa.

Rematch lost tracks. Unlike the previous stages, this
processing stage considers lost multi-camera tracks. The
goal is to recover the tracks of persons who re-enter the
captured scene and camera views after having been invis-
ible for some time. Since the movements and thus the po-
sitions of persons in such cases are hardly predictable, the
visual appearance is leveraged as the main cue for matching.
The distance between the visual embeddings of single- and
multi-camera tracks are calculated and these are matched
if the distances are below the threshold τr. Additionally, a
time-dependent constraint is applied. The shorter the multi-
camera track was invisible, the closer the last position of the
multi-camera track and the position of the matching candi-
date must be. Rematched multi-camera tracks change their
state to active.

Initialize new tracks. Single-camera tracks that were not
associated with a multi-camera track during the previous
stages are utilized to initialize new multi-camera tracks. To
do this, world positions are clustered hierarchically with the
distance threshold τn. Each resulting cluster forms a new
multi-camera tracks. Analogous to the assign by position
procedure, only one active single-camera track per camera
is allowed within a multi-camera track.

4. Experiments
This section describes the experimental framework and

presents the empirical findings. First, we describe the
dataset used in this study. Then, we present the hyperparam-
eters and provide a comprehensive analysis of the obtained
results.

4.1. Dataset

The dataset provided for Track 1 of the 2024 AI
City Challenge [27] constitutes a comprehensive, synthetic
multi-target multi-camera tracking dataset, generated via
the NVIDIA Omniverse Platform. The dataset includes a
total of 90 distinct indoor environments, each monitored by
multiple strategically positioned cameras. These cameras
capture both overlapping and isolated fields of view, pro-
viding a diverse range of perspectives.

The video data has a Full HD resolution with a capture
rate of 30 frames per second. Samples from various scenar-
ios within the dataset are presented in Figure Fig. 5. The
dataset is partitioned into separate subsets for training (40
scenarios), validation (initially 20, reduced to 12 scenarios),
and testing (30 scenarios). To increase the amount of train-
ing data, scenes originally designated for validation, specif-
ically scenes 49 to 60, are reassigned to the training subset.

For the development and evaluation of detection algo-
rithms, a subset of the frames, specifically every 60th frame,
is utilized. In the context of person re-identification, unique
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(a) Scene 1

(b) Scene 61

(c) Scene 71

(d) Scene 81

Figure 5. AI City Challenge 2024 Dataset – Selected camera
views of four multi-camera scenes of the challenge dataset are
shown. The dataset comprises various synthetic scenarios.

τp τv τd τa τr τn

1.8 0.1 1.4 1.5 0.18 1.3

Table 1. Hyperparameter – Overview of hyperparameter values
chosen for the proposed online tracking framework.

identities are sparse relative to their frequency of appear-
ance, so individuals are extracted solely from every 128th
frame to maintain data diversity. A single bounding box per
individual and video is sampled to serve as a query. Multi-
camera tracking experiments are evaluated on scenes 49 to
51.

4.2. Hyperparameters

To mimic a real-world scenario in which it is hardly pos-
sible to choose camera-specific parameters for large num-
bers of cameras and scenarios, a unique set of hyperparam-
eters is selected based on the validation results. The hyper-
parameter values are summarized in Tab. 1.

Model Size mAP50 mAP50-95

DINO [32] Swin-Tiny 1920px 98.6 90.4
DINO [32] Swin-Base 1920px 98.8 92.2

YOLOv8x [9] 1280px 99.3 96.6
YOLOv8x [9] 1920px 99.3 97.1

Table 2. Detection Results – Comparison of YOLOv8x models
trained with difference image resolutions and DINO models.

4.3. Results & Discussion

This section presents and discusses experimental find-
ings and thorough ablation studies to justify the proposed
methodology. Besides, it provides the results of track 1
of the 2024 AI City Challenge. Detection and person re-
identification are evaluated based on well-established met-
rics, while multi-camera tracking is assessed using the of-
ficial challenge metric. It is an adapted version of the
Higher Order Tracking Accuracy (HOTA) metric [14] for
the multi-camera setup and 2D global positions. This met-
ric can be decomposed into three subparts: detection accu-
racy (DetA), association accuracy (AssA), and localization
accuracy (LocA)

Detection. The results of the detection algorithms are sys-
tematically presented in Tab. 2. It is worth noting that the
YOLO architecture clearly outperformed the DINO mod-
els, which was unexpected. This could be due to the ex-
tensive data augmentation applied during the YOLO train-
ing process, which may have helped to prevent overfitting.
Further analysis shows a positive correlation between im-
age resolution and detection accuracy, especially in terms
of mean Average Precision (mAP) across a range of In-
tersection over Union (IoU) thresholds from 0.50 to 0.95.
This indicates that higher image resolution significantly im-
proves the accuracy of bounding box localization. Given the
importance of precise bounding box localization for sub-
sequent transformations into world coordinate space, the
YOLOv8x model, which uses Full HD resolution images
as input, has been determined to be the optimal standard
configuration for the tracking framework.

Person re-identification. A comparative analysis was
conducted between the established AGW baseline and
the novel SOLIDER methodology concerning person re-
identification. The experimental results consistently indi-
cate that all configurations of SOLIDER outperform the
AGW baseline across the metrics. Notably, the use of a
larger Swin-Base backbone model as part of the SOLIDER
framework is associated with significant improvements in
both Rank-1 Accuracy (R-1) and Mean Average Precision
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Approach Backbone R-1 mAP

AGW [31] ResNet-50 65.2 54.1
AGW [31] ConvNeXt-Base 65.0 52.7

SOLIDER [2] Swin-Tiny 67.5 61.4
SOLIDER [2] Swin-Base 70.0 63.0
SOLIDER [2] + BS128i8 Swin-Base 70.0 65.6

Table 3. Person Re-identification Results – Person re-id results
achieved on the validation split of the AI City Challenge dataset.

Approach HOTA DetA AssA LocA

ByteTrack [34] 89.4 90.8 87.9 94.1
ConfTrack [10] 89.9 90.9 88.9 94.1

Ours (adapted ConfTrack [10]) 90.8 91.0 90.6 94.2
w/ CWKU 90.5 91.1 89.9 94.2
w/ LCTM 89.9 90.9 89.0 94.1

Table 4. Single-Camera Tracking Ablation Study – Multi-
camera tracking results for different variants of single-camera
tracking algorithms. Our approach uses ConfTrack without
CWKU and LCTM.

(mAP). These metrics indicate the model’s ability to accu-
rately identify individuals on the first attempt and its preci-
sion across all attempts. Additionally, optimizing the train-
ing process by increasing the batch size from 64 to 128 and
doubling the number of unique identities sampled per batch
from 4 to 8 has resulted in further performance improve-
ments (BS128i8). The results suggest that the SOLIDER
approach benefits from larger batch sizes and a greater di-
versity of individuals within each batch. This likely con-
tributes to a more robust feature learning and generalization
capability of the model. Based on this empirical evidence,
the SOLIDER approach with a Swin-Base backbone and
optimized batch sampling parameters is selected as a supe-
rior configuration for person re-identification tasks within
the scope of the tracking framework.

Single-Camera Tracking. Tab. 4 evaluates and compares
the performance of different single-camera tracking meth-
ods. The analyzed data shows that ConfTrack [10] out-
performs ByteTrack [34] in terms of tracking accuracy.
Comparing ConfTrack algorithm variants reveals that the
original ConfTrack algorithm, which includes CWKU and
LCTM, is less effective than its adapted version that ex-
cludes these components. The experiments confirm that in-
tegrating either CWKU or LCTM independently results in a
degradation in tracking performance. Therefore, to achieve
optimal tracking results, both CWKU and LCTM are ex-
cluded from the ConfTrack algorithm in this work.

Approach HOTA DetA AssA LocA

Ours 90.8 91.0 90.6 94.2

w/o adjusted detection boxes 84.6 86.3 83.1 91.0
w/o enlarged border boxes 87.8 88.8 86.7 93.8
w/o match with adapted position 90.1 90.7 89.5 94.2

w/o track splitting 45.7 80.9 26.5 93.8
w/o track splitting (visual) 49.4 85.9 29.0 94.0
w/o track splitting (position) 90.7 91.1 90.2 94.2

Table 5. Multi-camera Tracking Ablation Study – The pro-
posed components for projection and multi-camera tracking are
evaluated concerning their influence on multi-camera tracking per-
formance.

Cross-Camera Association. An evaluation of the pro-
posed modules and their impact on multi-camera tracking
accuracy is presented in Tab. 5. The first block of ablation
results examines the influence of the developed methods for
deriving accurate world coordinates from bounding boxes.
A notable observation is that using the original bounding
box annotations for detector training, as opposed to the ad-
justed ones, results in a remarkable decrease in all perfor-
mance metrics. A similar observation is made when the
strategy of enlarging bounding boxes at image boundaries
is excluded. The least pronounced impact on accuracy met-
rics is associated with omitting the match with adapted po-
sition stage from the matching cascade. The only modest
decrease can be attributed to the fact that this stage only af-
fects a few cases. This is mainly due to the effectiveness of
the two aforementioned measurements, which greatly miti-
gate the problem of inaccurate reference points for position
transformation.

The experimental analysis focused on track splitting
shows that excluding it completely leads to a significant re-
duction in HOTA. This is predominantly caused by a strong
decrease in association accuracy AssA, which drops from
90.6% to only 26.5%. The finding highlights the importance
of the track splitting algorithm in maintaining high tracking
accuracy. Incorporating this mechanism effectively reduces
the impact of false positive associations, making them ac-
ceptable within certain limits. As a result, more links can
be allowed by loosening the matching thresholds to increase
the association recall without negative influence by also in-
creased false positives. To delve deeper into track splitting,
results for omitting each of the two splitting criteria individ-
ually are investigated. The findings clearly demonstrate that
the use of visual information for track splitting is essential
for accurate tracking. When only position-based splitting
was used, the AssA and HOTA scores dropped significantly
to 29.0% and 49.4%, respectively. Excluding positional
splitting had a negligible effect on the results. The HOTA
metric only experienced a marginal decline of 0.1 percent-
age points. Visual features tend to become more robust over
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Rank Team HOTA Rank Team HOTA

1 RIIPS 71.9 9 Asilla 40.3
2 SJTU-Lenovo 67.2 10 TryThis 33.5
3 NetsPresso 60.9 11 Graph@FIT+Comenius 31.5
4 Ours 60.9 12 Deeper 27.7
5 UWIPL-ETRI 57.1 13 JRZ Vision2Move 23.4
6 ARV RETERIU 51.1 14 lab511 13.2
7 SKKU-AutoLab 45.2 15 SCU Anastasiu 6.6
8 STCHD 40.6 16 Tahakom 5.2

Table 6. Challenge results – Challenge results on the official test
set. Online methods, such as the proposed framework, will receive
a bonus of 10 percentage points for the final ranking. These points
are not included.

time, making them a valuable indicator over time whether
a correct or false positive matching was performed. Con-
trary to that, global position data is highly reliable at initial
stage. Therefore, fewer errors occur and splitting based on
this criterion is less important.

Challenge Results. Tab. 6 presents the results of the chal-
lenge [27]. It is important to note that the scores displayed
do not account for the 10 percentage point bonus rewarded
to online tracking methods, which includes the proposed
framework. The methodology introduced in this work has
accomplished a HOTA score of 60.9%. This score has po-
sitioned the framework at the fourth rank within Track 1 of
the 2024 AI City Challenge.

5. Conclusion
In conclusion, this work presents a novel online

MTMCT framework, named OCMCTrack. The frame-
work’s design is intended to serve as a robust baseline for
future research in the field of MTMCT. A key innovation
within this framework is the introduction of a matching cas-
cade with a correction mechanism, which effectively ad-
dresses the challenge of erroneous associations from pre-
vious time steps. Moreover, the work has successfully in-
tegrated three efficient approaches for determining plau-
sible world coordinates from bounding box annotations,
demonstrating the practical implications of these method-
ologies for enhancing real-time tracking accuracy. The
competitive results achieved in Track 1 of the 2024 AI City
Challenge [27] underscore the framework’s potential and
validate its performance against other online and offline
MTMCT algorithms.
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