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Abstract
Analyzing traffic patterns is crucial for enhancing safety

and optimizing flow within urban cities. While urban
cities possess extensive camera networks for monitoring,
the raw video data often lacks the contextual detail nec-
essary for understanding complex traffic incidents and
the behaviors of road users. In this paper, we propose a
novel methodology for generating comprehensive descrip-
tions of traffic scenarios, combining a vision-language
model with rule-based refinements to capture pertinently
pedestrian, vehicle, and environment factors. First, a
captioning model will generate a general description using
processed video as input. Subsequently, this description
is refined sequentially through three primary modules:
pedestrian-aware, vehicle-aware, and context-aware,
enhancing the final description. We evaluate our method
on the Woven Traffic Safety datasets in Track 2 of the
AI City Challenge 2024, obtaining competitive results
with an S2 score of 22.6721. Code will be available at
https://github.com/ToTuanAn/AICityChallenge2024 Track2

1. Introduction
Traffic safety remains a paramount concern in nowadays so-
ciety. The careful monitoring and analysis of traffic patterns
play a crucial role in mitigating accidents and enhancing
the flow of traffic within urban cities. Recent advancements
in urban development have led to the widespread installa-
tion of cameras throughout streets and vehicles, enabling
the capture of unforeseen events that transpire during traffic
participation. Nonetheless, this wealth of video data often
lacks the descriptive elements necessary to dissect traffic

*The first five authors share the equal contribution.
†Corresponding author. Email: tmtriet@fit.hcmus.edu.vn

incidents and evaluate the actions of drivers and pedestri-
ans. To address this challenge, this paper proposes a novel
method that combines a vision-language model with rule-
based refinement to generate detailed descriptions of the
surrounding environment, vehicles, and pedestrians, includ-
ing their perceptions and actions.

In this work, we utilize a vision-language model (VLM)
to generate video descriptions and then enhance these de-
scriptions through the integration of rule-based refinements.
We experiment with three distinct VLM: the single-view
model utilizes single-view video input, the motion-blur
model utilizes an average of multiple continuous images as
input and the multi-view model utilizes input from multiple
videos at varying views. Our rule-based refinement includes
three primary modules: pedestrian-aware, vehicle-aware,
and context-aware. These modules refine the video descrip-
tion from VLM about pedestrian appearance, behavior, and
awareness, as well as vehicle location, speed, actions, and
surrounding environmental factors.

We propose a novel yet efficient method for Traffic
Safety Description and Analysis, the 2nd track in AI City
Challenge 2024 [34]. We train and test all VLMs in this
paper on Woven Traffic Safety Dataset [12]. For testing in
this track, there are 376 external cases and 84 internal cases;
each case contains at least one video and the bounding box
of a pedestrian at the start time of each phase in the corre-
sponding video. The output is the pedestrian and vehicle
caption corresponding to the input video. Our motion-blur
model with rule-based refinement achieves good results in
Track 2 of AI City Challenge 2024 [34] with S2 = 22.6721.

In Section 2, we briefly review existing methods related
to our problem and solution. Then we present our proposed
solution in Section 3. Experiments and evaluation are in
Section 4. Conclusion and future work are in Section 5.
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2. Related Work
Vision Foundation Models Recent works have pro-
posed pretrained video encoders that tackle diverse vision-
understanding tasks. CLIP [25], and ALIGN [8] are
Transformer-based image-text models adept at learning vi-
sual concepts through natural language supervision, em-
ploying contrastive learning on web-scale noisy samples
that have led to robust image-text representations for pow-
erful zero-shot transfer. Building upon CLIP’s framework,
BLIP [14] enhances performance by leveraging synthesized
image captioning data for the pretraining stage, achiev-
ing state-of-the-art on several vision and image-language
benchmarks. Although these image foundation models
show promising performance for video recognition, they
fall short on many other video tasks due to a lack of mo-
tion and temporal information [39]. Some initial works on
developing video foundation models BEVT [33], Masked-
Feat [36], VideoMAE [27], VideoMAE2 [32] directly ex-
tend masked auto-encoding frameworks to spatio-temporal
space. Recent works have shifted to utilize. Notably, All-
in-one [31] trains a single backbone with multiple pre-
training objectives, LAVENDER [18] unifies the tasks as
masked language modeling. MERLOT Reserve [40] learns
the joint video representations on the collected 20M video-
text-audio pairs with contrastive span matching, achieving
leading results across various video tasks.

Large Vision Language Models The evolution of large
language models has spurred the development of large vi-
sion language models by incorporating expansive language
models into VLM architectures. BLIP-2 [16] innovatively
employs large language models as text decoders alongside
a cross-attention module, effectively merging image and
text features. LLaVA [21], combining CLIP as an image
encoder and Vicuna [4] as a text decoder, achieves per-
formance levels approaching GPT-4 on multimodal bench-
marks. Since then, several models have been introduced
with the capability to handle both images and videos with
text, including Video-Llava [19], VideoChat [17], VideoL-
lama [41], Flamingo [2], LanguageBind [43], and Vision
Gemini [26], which have been proposed to handle diverse
forms of multimedia data. However, they are restricted to
single-video/single-view scenarios. This work addresses
this limitation using multiview attention in Section 3.2.3.

Rule base refinement To solve problems related to traf-
fic analysis in particular or lifelog difficulties in general, it
is common to use rule bases to analyze the actions of ob-
jects participating in traffic because it is difficult for vision
models to predict information related to the relative position
(on the left (or right) side, in front of, or behind) and pre-
dict the motion of objects such as “turn left”, “turn right”
or “go straight” because of the variety of angles as well
as the type of camera on the road. Nguyen et al. [22] use
the algebraic area of the polygon generated by n points in

the motion trajectory to categorize a tracked vehicle’s mo-
tion into “turn left”, “turn right” or “go straight”. Le et
al. use the sign of counterclockwise CCW (A1,M 2, B3)
to determine if the vehicle “turn left” or “turn right”. In
our research, many rules were used to refine the results to
increase the accuracy of each description.

3. Proposed Method
3.1. Method Overview

Overall, our proposed method contains two main compo-
nents: Captioning Model, and Rule Engine Refinement.

The primary captioning module is tasked with gener-
ating pseudo captions corresponding to input video data.
We present our design for this main component in Section
3.2. Additionally, the refinement phase 3.3 encompasses
vehicle-aware, pedestrian-aware, and context-aware mod-
ules, which collectively serve to rectify instances of pseudo
caption failure associated with corner cases.

Figures 1 show the overview of our method in both the
training and inference phases. During the training phase,
the provided data undergoes preprocessing to form sets of
tuples denoted as <Caption, Visual Embedding>, which
are utilized to train the captioning model iteratively. In
terms of caption preprocessing, our approach yields two dis-
tinct sets of features: chunked captions and full captions.
Chunked captions are derived from full captions through
a process of text-mining, wherein the latter is divided into
five smaller sentences based on semantic categories, namely
pedestrian/vehicle description, pedestrian/vehicle position,
pedestrian/vehicle action, environment status, and road sta-
tus.

In the inference phase, we extract visual attributes of
the primary pedestrian, primary vehicle, and contextual sur-
roundings from visual data. We input the video track data
into our pre-trained captioning model to obtain a prelimi-
nary pseudo caption for subsequent refinement. The refine-
ment module leverages the extracted attributes to iteratively
reconstruct the final caption result, ensuring coherence and
accuracy in the generated output.

3.2. Captioning Model

3.2.1 Single-view model

We wish to design a single-view model capable of discern-
ing relationships among events using visual cues, facilitat-
ing the accurate localization and description of these events
within untrimmed videos. Inspired by Vid2Seq proposed by
Yang et al. [37], we conceptualize the single-view model as
a sequence-to-sequence problem to address this challenge.

1start point of motion trajectory
2the point at one fifth of motion trajectory
3end point of motion trajectory
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Figure 1. Overview of our proposed methodology. It entails the design of a multiperspective model incorporating three distinct submodels:
namely, single-view, motion-blur, and multi-view. Each submodel is characterized by a pair of visual encoders tasked with embedding
visual representations, alongside a text decoder dedicated to the generation of textual captions. Subsequent to this, a rule-based engine is
employed to iteratively refine the pseudo-captions generated by the submodels, thereby yielding a finalized caption.

In this framework, both the input and output sequences en-
compass semantic details of the events through natural lan-
guage descriptions, along with temporal localization infor-
mation represented by temporal timestamps.

Text and time tokenization. We initialize our text tok-
enizer with a vocabulary size of V and extend it by incorpo-
rating T additional time tokens. This augmentation yields a
tokenizer with a total of V + T tokens. The training videos
consistently maintain a frame rate of 30 frames per second
(fps). Hence, the additional tokens correspond to 30 × D
equally-spaced timestamps, where D measured in seconds
represents the duration of the videos. Specifically, we em-
ploy the SentencePiece tokenizer [13] and T = 30×D
to facilitate this process.

Figure 2. Single-view model architecture.

Visual encoder. The visual encoder learned from a se-
quence of f frames x ∈ Rf×h×w×c where c, h, and w de-
note the channels, height, and width of every frame. Ini-
tially, a visual backbone encodes each frame individually
and yields frame embeddings. In the challenge, we use the
visual backbone ViT-L/14@336px [25] at the resolution of
336 × 336 pixels. Using a contrastive loss function, this
backbone is pre-trained to map images to textual descrip-
tions. To ensure computational efficiency, we maintain the
backbone in a frozen state.

Text decoder. The output sequence z is generated by the
text decoder, utilizing the visual embeddings from the en-
coder. During each autoregressive step k, the text decoder
cross-attends to the encoder outputs and self-attends to pre-
viously generated tokens to produce a contextualized repre-
sentation. Subsequently, a large language model forecasts
a probability distribution across the comprehensive vocab-
ulary of text and time tokens, foreseeing the subsequent to-
ken in the event sequence. We next explain the construc-
tion of our output event sequence z. In the challenge, each
phase k is characterized by a textual caption, a start time,
and an end time. We first construct for each phase k a se-
quence by concatenating its start time token tstart , its end
time token tend and its text tokens [z0, z1, ..., zk, ..., zn]. Fi-
nally, the event sequence is derived by adding a BOS and
an EOS token at the beginning and end of the sequence, re-
spectively, to mark the start and conclusion of the sequence
i.e., z = [BOS, tstart, tend, z0, z1, . . . , EOS].

3.2.2 Motion-blur model

After chunking the description into several parts mentioned
in Section 3.1, we use images in the same phase as the
description to train the Image Captioning model. The
start time frame only tells the model how the situation
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Phase 0 Phase 1 Phase 2

Phase 3 Phase 4

Figure 3. Example of Motion Blur Image of Vehicle View

started, and the end time frame only tells how the sce-
nario ends. Therefore, combining all the frames in the video
is necessary to give the model the most overview with just
one image. To do that, we accumulate a sequence of im-
ages with the weight wi (see Equation 2) to create a mo-
tion blur image in Equation 1. The closer the image is to
start time, the smaller the weight is. Using weights
here helps the image keep the temporal order of each frame.
Figure 3 is an example of using motion blur images across
a sequence of frames of vehicle view.

motion blue image =

n frames∑
i=1

wi ∗ framei (1)

where wi =
i∑n
j=1 j

(2)

In this section, we are mainly finetuning pretrained im-
age captioning models such as BEiT-3 [35] or BLIP-2 [15].

3.2.3 Multi-view model

Rather than relying solely on a single video view, the sys-
tem adopts a more comprehensive approach by incorporat-
ing multiple video views via a vision encoder. These views
are then processed through a Multiview Ensembler, which
aggregates the video features along the time axis before
feeding them into the large language model (see Figure 4).

Figure 4. Multiview Model with Multiview Ensembler to combine
features from various views before feeding into the LLM.

Muti-Head
 Attention

Add & Norm

Add & Norm

Feed
Forward 

Aggregated view features

...

Frame positional
embedding

View positional
embedding

View Features nView Features 1 View Features 2

Figure 5. Mutliview Ensembler module with frame positional em-
bedding and view positional embedding. Inputs are sequences of
features from multiple views, while output is a single aggregated
sequence of frame features.

The architecture resembles Vaswani et al.’s Transformer
block [29] but replaces the multihead attention with the
multiview attention (see Figure 5). Utilizing the multiview
attention module, numerous sequences of features are con-
solidated into a unified sequence of features. First, the as-
semblage of view features undergoes augmentation with
view positional embedding and frame positional embed-
ding. Incorporating view positional embedding is crucial
due to the necessity of computing attention scores across
all frames across all videos. This enables the multiview at-
tention mechanism to evaluate the interplay of each frame
in each video concerning all other frames across all views,
facilitating the model’s capacity to discern cross-view pat-
terns along the timestamp axis.

Subsequently, the output of the Multiview Ensembler
is concatenated with the text embedding before being pro-
cessed through the transformer blocks. This combined in-
put configuration aids the model in predicting descriptions
based on inputs from multiple videos, enhancing its capabil-
ity to generate contextually relevant descriptions. The text
decoder is a generative pre-trained language model, such as
Llama [28], Vicuna [4], Phi [7], and Mistral [9]. The text
decoder receives the aggregated view features. It creates
detailed captions to describe the scenario through multiple
video view features, similar to the text decoder of the single-
view model in Section 3.2.1.
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3.3. Rule Engine Refinement

3.3.1 Pedestrian-aware module.

Pedestrian description color. For each video and each
phase in videos, we extract the bounding box image
of the target pedestrian in the caption as pbbox =
[bboxp0

v1 , bboxp1
v1 , bboxp2

v1
, bboxp3

v1 , bboxp4
v1 ...bboxp4

vn ], where
bboxpj

vi is the bounding box image in video i-th at phase
j-th, j ∈ [0, 4]. The bounding boxes are divided horizon-
tally into two halves for cloth color detection. We use the
first half to detect the top clothing color and the second half
to detect the clothing color at the bottom.

We sequentially fit all pixels of the first half bboxpj
vi in

pbbox with K-mean clustering at k = 15 (limit to max-
imum 15 color clustering), calculate the histogram of all
clusters and their centroid pixels to format human-readable
color. We select the color with the maximum frequency in
the histogram as the detected color. After applying K-mean
clustering for each bounding box image in pbbox, we will
have a list of possible detected colors. We then apply ma-
jority voting to determine the top clothing color with the
highest frequency within this list. We repeat the same pro-
cess to determine the bottom clothing color.

Pedestrian awareness. Intuitively, to detect whether
the pedestrian is aware of the approaching vehicle, it is
necessary to know where the pedestrian is looking. In-
spired by this, we estimate the pedestrian’s gaze vector, and
the pedestrian notices the vehicle if the gaze vector inter-
sects the vehicle bounding box; otherwise. For gaze es-
timation, we take advantage of the off-the-shelf GazeNet
[23] that allows us to calculate the gaze direction without
needing eyes’ visual features, which is an advantage com-
pared with the existing methods. Besides the mentioned
advantage, this method also has a sophisticated preprocess-
ing step. Specifically, it requires the head position, the
whole body image, and the body velocity vector. There-
fore, we employ the BoT-SORT [1] to track all pedestri-
ans and vehicles. CLIP [25] is used to extract the tracks
that contain the target pedestrians and cars by retrieving the
highest similarity score between the candidate tracks and
the annotated bounding boxes since the provided bounding
boxes are missing for some phases in each video and con-
tain errors. After obtaining visible bounding boxes of the
pedestrian across frames, we employ the AlphaPose [6] to
detect 26 full-body keypoints. The head, neck, nose, left
and right of both ears and eyes coordinates corresponding
to the 0, 1, 2, 3, 4, 17, 18-th keypoints are collected and ex-
panded to create a head bounding box. The other keypoints
are used to get the body bounding boxes; assume that the
body bounding box at the i-th frame is [ti, li, hi, wi], the
center of the body at this frame would be [xi, yi] where
xi = li + wi/2 and yi = ti + hi/2. The body velocity
vector of a frame would be the vector between 2 body cen-

ters of the current frame and its consecutive frame, which is
calculated by v⃗ = [yi+1 − yi, xi+1 − xi]. During inference,
ten frames are taken from each video’s camera view from
each phase. If a frame exists where the pedestrian’s gaze
vector intersects with the vehicle’s bounding box, then the
pedestrian is aware of the approaching vehicle at that phase.

Figure 6. Example of the pedestrian is not aware (left) and aware
(right)

3.3.2 Vehicle-aware module

In this section, the rules we apply to refine the vehicle de-
scription are described in detail.

Vehicle Position Rule. Mainly, to consider the relative
position between two objects on the road, we have four
main positions: “on the left side,” “on the right side,” “in
front of,” and “behind.” The most important thing that af-
fects the relative position of two objects is the viewing di-
rection of the landmark object. We determine the viewing
direction of the object here, which is the vehicle, by iden-
tifying 2 points as the centers of 2 bounding boxes of 2
consecutive phases. With the current-phase vehicle point
A(xA, yA) and next-phase vehicle point B(xB , yB), we
define P (xP , yP ) is the pedestrian point in current phase.
We then rely on the sign and value of counterclockwise
CCW (A,M,B). We consider that whether a human is on
the right or left side of the car when the value of CCW falls
outside the overlap value between the two cases, a thresh-
old of 0 cannot be selected because there can be no guar-
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Figure 7. An example of utilizing the algebraic area to identify
vehicle action using overhead view.

antee that the car will go extremely straight. After anal-
ysis, we choose αL = 7208.9652 for the left side and
αR = −6419.8733 for the right side.

side =

{
”left”, ccw ≥ αL

”right”, ccw ≤ αR

(3)

Vehicle motion. In the vehicle motion analysis task, the
target predicts the vehicle’s speed for a video sequence.

The speed corresponding to each video segment is ex-
tracted from the vehicle captions using regular expression
(regex) techniques to achieve this. These speeds are catego-
rized into seven distinct labels: {0, 5, 10, 15, 20, 25, 30}.

The preprocessing phase entails using sliding window
methodology and motion blur imaging to construct the in-
put for the speed prediction model. Initially, a sequence
of frames is isolated for each segment, after which sliding
windows are employed to generate numerous 5-frame seg-
ments. Subsequently, a motion blur image is generated for
each segment by averaging the frames.

Following this preprocessing, a pretrained Vision Trans-
former model [5] is finetuned with the data extracted from
the training subset. The model’s efficacy is then evaluated
on the validation subset of the competition dataset.

Vehicle action. For vehicle action detection, we repli-
cate research proposed by Nguyen et al. [22], which is used
only on overhead view. We exploit a series of bounding box
centers created by tracking the target vehicle. The move-
ment behaviors of the car (turning left, turning right, or go-
ing straight) are described by the sign and magnitude of the
algebraic area of the polygon formed from these sequences
of bounding box centers. Figure 7 shows how the algebraic
area is applied.

3.3.3 Context-aware module

The context-aware module is precisely engineered to recon-
struct pseudo captions by incorporating external contextual

factors beyond pedestrian and vehicle objects. These fac-
tors encompass environmental variables such as brightness
levels, weather conditions, and the state of the road surface.

Context brightness. Our approach involves randomly
cropping shots from training videos and analyzing the op-
timal lowest threshold for average color intensity across
width, height, and RGB channels. This threshold distin-
guishes “dark” from “bright” scenes. Following an analysis
of the training set, in instances where the average color in-
tensity of an image registers below 60, all occurrences of the
critical phrase “bright” are systematically substituted with
“dark.”

Context weather. We employ a straightforward method
based on the number of detected umbrellas to classify the
context as “sunny” or “rainy.” Using YOLOv8 [10], we de-
tect umbrellas within entire videos, focusing solely on the
umbrella class. If the count of detected umbrellas exceeds
two (accounting for occasional use by pedestrians on sunny
days), we classify the context as “rainy.”

Context road surface. Initially, we employ random
shot cropping followed by applying the Segment-Anything
- SAM [11] technique to delineate the main road within the
videos. Subsequently, a pretrained PSPNet [42] model is
utilized to segment water puddles from the main road. If
the ratio of the water puddle area to the image area exceeds
0.3, we modify the descriptions of the road surface from
“dry” to “wet.”

4. Experiment and Evaluation
This section presents our proposed method’s experimental
findings and evaluations, employing quantitative and quali-
tative methodologies. In Section 4.1, we delineate the con-
figurations within various modules of our captioning and
refinement methodologies. Additionally, we conduct a pre-
liminary ablation study, examining the impact of diverse
configuration strategies on the performance outcomes. We
offer illustrative examples for qualitative assessment in Sec-
tion 4.2, providing insightful analyses of specific cases to
supplement the quantitative results.

4.1. Experiment Results

In Track 2 of the AI City Challenge 2024 [34], our method-
ology meticulously adheres to the stipulated guidelines,
limiting our utilization exclusively to the training data sup-
plied by the competition organizers. Both the training and
test sets encompass proprietary internal data - WTS [12]
dataset and externally sourced data - BDD PC 5K [38]
dataset. Our model undergoes training on the entirety of
the training dataset, and predictions are made across the en-
tirety of the test set to ascertain the model’s capacity for
generalization across a spectrum of scenarios.

The evaluation process for the generated captions will
be conducted based on four distinct metrics: BLEU 4 [24],
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METEOR [3], ROUGE L [20], and CIDEr [30]. These met-
rics gauge the textual overlap and semantic correspondence
between the generated and ground truth captions. Sub-
sequently, the challenge will employ a weighted sum to
amalgamate these metrics, thereby deriving the S2 score.
This score will be further refined by computing the average
S2 score across both the internal WTS [12] and external
BDD PC 5K [38] datasets for ranking purposes.

Table 1 presents the initial ablation analysis concern-
ing various configuration methodologies aimed at assess-
ing the individual contributions of each element within our
proposed framework. In Version V1, we adopt a multi-
view architecture trained from scratch in conjunction with a
rule engine, yielding an S2 score of 18.9794 across the en-
tire test dataset. Initiating training of the multi-view model
from scratch, devoid of any pretraining, may incur minimal
generalization costs during the evaluation on the test set.
However, upon integrating motion-blur (BEiT) [35] with
the rule engine in Version V2, the S2 score demonstrates
a notable enhancement, reaching 21.5941, particularly ex-
hibiting efficacy within the interval test subset, with a score
of 13.0185. Remarkably, Version V3, incorporating motion
blur (BLIP2) [16], demonstrates superior performance com-
pared to all other model versions with the highest score of
22.6721.

Furthermore, we anticipate further enhancement in re-
sults by incorporating a pretrained single-view model. Con-
sequently, we examine Versions V4 and V5, where we de-
ploy a single-view architecture equipped with a pretrained
T5 decoder. In Version V3, lacking refinement, the S2
score reaches 21.8448. In contrast, Version V5, incorpo-
rating refinement techniques, achieves a higher S2 score of
22.6630. Despite the improved performance observed in
both versions, whether with or without the rules engine, in
comparison to Versions 1 and 2, they still fall short of the
exceptional performance exhibited by Version V3.

Table 1. Ablation experiment on different configuration strategies

No. Configuration S2[i] S2[e] S2
V1 Multi-view (scratch) + RE 11.3999 26.5590 18.9794
V2 Motion-blur (BEiT3) + RE 13.0185 30.1698 21.5941
V3 Motion-blur (BLIP2) + RE 12.8885 32.4557 22.6721
V4 Single-view (T5 3B) + No RE 12.4882 31.2015 21.8448
V5 Single-view (T5 3B) + RE 12.9084 32.4176 22.6630

4.2. Case Study

In this section, we offer illustrative examples generated by
various versions of our model, facilitating an in-depth abla-
tion study.

In Figure 8, we present a comparative analysis of our
model’s performance with and without action refinement
during the post-processing phase. Our findings reveal in-
stances where the captioning model exhibits limitations in

accurately describing crucial textual elements. By incorpo-
rating refinement techniques, discernible enhancements are
observed, particularly in the fidelity of captioned content
about pedestrian awareness, vehicle dynamics, and environ-
mental contextualization.

In Figure 9, we present a comparative analysis of var-
ious architectural models focusing on their respective per-
formance metrics. The multi-view model demonstrates pro-
ficiency in capturing overarching environmental features
such as weather conditions and road surfaces; however,
it exhibits significant limitations in delineating the precise
spatial relationship between pedestrians and vehicles. Con-
versely, the single-view and motion-blur-image models ac-
curately describe pedestrian and vehicle attributes. Eval-
uation across precision, comprehensiveness, semantic fi-
delity, and overall quality consistently places the motion-
blur model as the highest-performing model.

5. Conclusion
In conclusion, this research paper introduces a solution for
Track 2 in the AI City Challenge 2024 [34] for the Traf-
fic Safety Description and Analysis task. The proposed ap-
proach provides various multimodal techniques to increase
the video visual features effectively, therefore unlocking the
potential of linking the motion information with visual fea-
tures by the motion blur model, as well as the comprehen-
sive relationship across multiple frames and camera views
with the multiview ensembler. A rule-based refinement en-
gine was seamlessly integrated to rectify the final descrip-
tion based on multi-contextual attribute information. Our
proposed approach achieves a competitive result of 22.6721
S2 score, demonstrating its promising performance in de-
scribing and analyzing the real-world traffic safety scenar-
ios.
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