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Abstract

Multi-camera tracking (MCT) plays a crucial role in
various computer vision applications. However, accurate
tracking of individuals across multiple cameras faces chal-
lenges, particularly with identity switches. In this paper, we
present an efficient online MCT system that tackles these
challenges through online processing. Our system leverages
memory-efficient accumulated appearance features to pro-
vide stable representations of individuals across cameras
and time. By incorporating trajectory validation using hi-
erarchical agglomerative clustering (HAC) in overlapping
regions, ID transfers are identified and rectified. Evalua-
tion on the 2024 AI City Challenge Track 1 dataset [39]
demonstrates the competitive performance of our system,
achieving accurate tracking in both overlapping and non-
overlapping camera networks. With a 40.3% HOTA score
[29], our system ranked 9th in the challenge. The integra-
tion of trajectory validation enhances performance by 8%
over the baseline, and the accumulated appearance features
further contribute to a 17% improvement.

1. Introduction
Multi-camera tracking (MCT) focuses on detecting and
tracking individuals across a multi-camera network, which
can have overlapping or non-overlapping fields of view.
MCT plays an important role in the research community
because it facilitates real-world applications in monitoring
public spaces, managing crowds, analyzing human behav-
ior, and detecting anomalous activities.

A typical MCT system consists of two primary compo-
nents: single-camera tracking (SCT) and cross-camera as-
sociation (CCA). Most SCT approaches adopt the tracking-
by-detection method. Initially, an object detector local-
izes individuals within the camera frames, and a person re-
identification (Re-ID) module extracts distinctive appear-
ance features for these detections. Consecutive frame de-
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tections are then associated to form single-camera tracklets
if they are predicted to belong to the same person. Next,
the CCA step links tracklets observed across different cam-
eras to create multi-camera tracks that represent individu-
als’ movement throughout the camera network. This as-
sociation process typically utilizes motion and appearance
cues.

MCT poses significant challenges from both an accuracy
and implementation perspective. In terms of accuracy, MCT
systems often suffer from identity (ID) switches where the
IDs of tracked objects are incorrectly assigned or swapped.
Two specific types of ID switches can occur: ID transfer and
ID ascension. In an ID transfer, the ID of an object is trans-
ferred from one tracked object to another. By contrast, in an
ID ascension, the ID of an object is incorrectly incremented
to a higher ID value, leading the tracker to falsely predict
the appearance of a new object. Typically, a dissimilarity
threshold balances ID transfer and ID ascension, where a
lower threshold reduces ID transfer but may promote ID as-
cension. This trade-off arises because factors like camera
viewpoint, occlusion, brightness variations, and calibration
errors can cause high dissimilarity between detections of
the same person while exhibiting low dissimilarity between
different individuals.

To address these challenges, many recent MCT algo-
rithms adopt a batch-based approach, utilizing information
from successive frames to predict the current frame’s re-
sults. However, despite improved performance, batch-based
algorithms require extensive computations, making them
unsuitable for real-world systems that demand online and
real-time processing. Consequently, online tracking algo-
rithms that rely solely on past frames’ information are ac-
tively being researched.

In this study, we propose an efficient online MCT sys-
tem designed for both overlapping and non-overlapping
camera networks. Our system can effectively detect and
handle ID switch issues. At each time instance, our sys-
tem first employs an online SCT module to detect indi-
viduals and associate detections within a single camera
view. Then, for the same time instance, we link these
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single-camera tracks across different cameras into a global
track representing a unique identity by using a hierarchi-
cal logic that incorporates appearance and spatio-temporal
cues. To address ID switches, our system introduces the
use of memory-efficient, high-quality accumulated appear-
ance features, and trajectory validation in overlapping ar-
eas. Specifically, to prevent ID transfers, we accumulate
appearance features from all previous frames for each track
and use this accumulated representation to build the dissim-
ilarity matrix before association. Compared to exponential
moving average features or averages from limited feature
banks, our accumulated features are more generalized and
stable for each person across cameras and time, allowing the
use of smaller dissimilarity thresholds without a significant
increase in ID ascension errors. Additionally, we propose
a trajectory validation step using Hierarchical Agglomera-
tive Clustering (HAC) in overlapping regions to identify and
correct already occurred ID transfers.

We evaluated our online system on the 2024 AI City
Challenge Track 1 dataset [39], achieving the 9th place
with a 40.3% HOTA score on the test set, where trajec-
tory validation contributed an improvement of 8% and ac-
cumulated appearance feature contributed an improvement
of 17% over our baseline version regarding Association Ac-
curacy. Our key contributions are:
1. An online MCT system performing well on overlapping

and non-overlapping cameras.
2. Using memory-efficient accumulated appearance fea-

tures with smaller dissimilarity thresholds to prevent ID
transfers.

3. A trajectory validation method based on HAC to spot
and fix occurred ID transfers.

2. Related Works
2.1. Object Detection

Object detection models play a crucial role in the tracking-
by-detection paradigm by localizing humans in image
frames. Several state-of-the-art models have been proposed,
including YOLOv5 [20], YOLOv6 [26], YOLOv7 [37], and
YOLOv8 [21]. In recent years, there has been growing in-
terest in exploring the application of transformer-based ar-
chitectures, which have achieved remarkable success in nat-
ural language processing, to object detection. This has led
to the development of models like DETR [4], Deformable-
DETR [58], DN-DETR [28], YOLOS [12], and DINO-
DETR [49].

2.2. Image-based Person Re-Identification

Image-based person Re-ID aims to retrieve people with the
same person across different images. It involves construct-
ing a gallery that stores samples of identities observed pre-
viously, which serves as a reference for comparison with

future queries. Deep feature learning has been a promi-
nent focus in person Re-ID research. Various approaches
[2, 3, 9, 14, 30, 36, 56] have been proposed to learn more
discriminative features for person Re-ID. Additionally, re-
searchers have explored different loss functions to guide
feature learning, with works by [10, 17, 31], among oth-
ers, contributing to this area. To optimize the ranking or-
der of results, ranking optimization techniques have been
employed. These techniques aim to improve the order-
ing of ranked lists through approaches such as re-ranking
[38, 54, 55] and rank fusion [47, 53] methods.

2.3. Single-camera Tracking

Single-camera tracking (SCT) can be classified into two
main types: tracking-by-detection and joint-detection track-
ing. The tracking-by-detection paradigm involves de-
tecting objects in each frame and then associating them
across frames to form tracks. Several effective tracking-
by-detection methods have been developed, including Bot-
SORT [1], DeepSORT [43], Bytetrack [52], and Strong-
SORT [11]. These methods utilize object detection outputs
to track objects over time, employing techniques such as
Kalman filters and data association algorithms.

Joint-detection tracking integrates object detection and
person Re-ID into a unified framework. By jointly learn-
ing both tasks, these methods aim to improve tracking per-
formance. SiamMOT [33], JDE [41], FairMOT [51], and
CenterTrack [57] are examples of joint-detection tracking
methods. They leverage the complementary information
from object detection and Re-ID to enhance the accuracy
and robustness of tracking.

2.4. Multi-camera Tracking

Multi-camera tracking (MCT) approaches can be broadly
classified into online and offline methods. Online ap-
proaches [13, 34, 50] handle the task frame-by-frame, while
offline trackers perform the task as a post-processing step
using the outputs of single-camera tracking [15, 23, 35, 46].
In MCT, appearance similarity plays a significant role in
matching tracklets. Many approaches [18, 19, 25, 32, 48]
leverage embedding feature vectors to compute appearance
similarity. However, relying solely on appearance features
may lead to identity switches. To enhance performance, re-
cent works [5, 8, 15, 27, 44, 45] have incorporated addi-
tional constraints, such as camera topology, temporal infor-
mation, and motion rules. Additionally, graph-based ap-
proaches have been employed, where associations across
frames and cameras are determined using graph structures
[6, 7, 16, 42].

3. Method
Figure 1 provides an overview of our proposed online sys-
tem.
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Figure 1. An overview of our proposed online MCT system. Our system employs a state-of-the-art object detector, Re-ID model, and
online SCT method while developing a CCA module that works ”online”. Regarding the CCA module, at each time instance and after the
SCT step, our system predicts which tracklets belong to the same person in order to merge them into a single track. In the overlapping
merge step, our system considers tracklets that are moving in close proximity to each other for the merge. In the updated-missed track
merge step, our system considers a pair of tracklets from which one is present (illustrated by a solid line) and the other is missed (illustrated
by a dashed line).

Incoming frames go through a sequence of steps in our
system: person detection, feature extraction, single-camera
tracking, map-view projection, global track update, global
track merge, and removal of long-lost global tracks. First,
we employ a person detector to obtain person bounding
boxes from each camera view. The location of the per-
son on the image frame is represented by a point, which
can be either the midpoint of the bottom edge for rectan-
gle bounding boxes or a foot point for human pose. For
each detected bounding box, we extract discriminative ap-
pearance features using a ReID model and normalize them
to have a norm of 1. This visual feature is used in both
the single-camera tracking (SCT) and the cross-camera as-
sociation (CCA) steps. For each time instance, we employ
a tracking-by-detection SCT module to update existing (or
create new) local tracks with new detections for each cam-
era. Using homography matrices, we project the current
location of every local track from all cameras onto a shared
map-view perspective.

The CCA module maintains a list of global tracks, each
containing one or several local tracks on the map. Local
tracks belonging to the same global track are expected to
represent the same person but from different camera views.
At each time instance, the CCA module starts by observing
the state of local tracks after the SCT step to update the rep-
resentative state for each global track. Importantly, global
tracks are then merged with each other if they are expected

to represent the same person. Further details about the CCA
module are presented in Section 3.1.

3.1. Cross-camera Association

At each time instance t, this module maintains a list of Mt

global tracks Gt = {gt,i|i = 1 . . .Mt} and Nt local tracks
Lt = {l(k)t,j |j = 1 . . . Nt} where k = 1 . . .Mt is the in-
dex of a global track. Mt and Nt change over time. A
local track l

(k)
t,j can be assigned to one and only one global

track, while a global track gt,i can contain one or many local
tracks, which means gt,i = {l(k)t,j |j = 1 . . . Nt and k = i}.
At each time instance, there are three sequential steps in-
volved: global track update, global track merge, and re-
moval of long-lost tracks.

3.1.1 Global Track Update

At each time instance t, a local track returned by SCT can
fall into one of three categories:
• Newly created local track: If a local track is newly created

by the SCT, our system will create a new global track,
mark it as updated, and assign the local track to this global
track. The newly created global track becomes a candi-
date for merging with other global tracks in the global
track merge steps.

• Updated local track: If an existing local track is updated
with detection at the current time instance, the corre-
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sponding global track that it’s assigned to is also marked
as updated.

• Missed local track: If an existing local track misses de-
tection at the current time instance, and every local track
assigned to the corresponding global track belongs to this
category, the global track is marked as missed.
The states of global tracks defined in this step are used

to determine candidate tracks to be merged in the next step.
Additionally, for each global track gt,i, a representative lo-
cation pgt,i on the map is extrapolated by averaging the lo-
cations plt,j of its assigned local tracks:

pgt,i =

∑
j

p
l
(i)
t,j

|gt,i|

3.1.2 Overlapping Merge

In a camera system with overlapping fields of view, it is pos-
sible for a person to be present in multiple cameras simul-
taneously, resulting in multiple tracks on the shared map.
The overlapping merge step aims to group these tracks into
a single track.

At each time instance, our online system retrieves a list
of global tracks that are not marked as missed within a short
time window (e.g., a few seconds). A pairwise dissimilarity
matrix is then constructed among these global tracks. The
dissimilarity between two global tracks is calculated based
on both the appearance distance and the trajectory distance
between the tracks as follows.

The appearance distance between two global tracks is
computed by aggregating the appearance distances among
their respective local tracks. Cosine dissimilarity is used for
this purpose. Assume the appearance feature of a local track
is Flt,j , then the appearance distance ∆APgt,x,gt,y between
two global track gt,x and gt,y is computed:

∆APgt,x,gt,y =

∑
j

∑
q
1− cosine similarity(

F
l
(x)
t,j

∥F
l
(x)
t,j

∥ ,
F

l
(y)
t,q

∥F
l
(y)
t,q

∥ )

|gt,x| × |gt,y|

The trajectory distance between two global tracks gt,x
and gt,y is determined based on the representative locations
pgt,x and pgt,y obtained in the global track update step, as
described in Section 3.1.1. The discrete Fréchet distance
is employed in our online system to measure the trajectory
distance, considering the locations from the 10 most recent
detections of each local track.

∆TRgt,x,gt,y = discrete Frechet({pgt−i,x
|i = 0 . . . 9},

{pgt−i,y
|i = 0 . . . 9})

Algorithm 1 Overlapping merge

Input: Global track list Gt.
Output: Some gt,i in Gt are merged together.

1: construct cost matrix CMt×Mt =∞
2: for each gt,x in Gt do
3: for each gt,y in Gt do
4: if gt,x is gt,y then
5: continue
6: end if
7: if is missed(gt,x) or is missed(gt,y) then
8: continue
9: end if

10: C[x, y]← ∆OLgt,x,gt,y

11: end for
12: end for
13: clusters← AgglomerativeClustering(C, θOL)
14: for each cluster in clusters do
15: oldest← get oldest global track from cluster
16: for each gt,x in cluster do
17: merge gt,x to oldest
18: remove gt,x from Gt

19: end for
20: end for

Subsequently, a dissimilarity matrix is constructed using
a fusion of the appearance distance and the trajectory dis-
tance.

∆OLgt,x,gt,y = αOL·∆APgt,x,gt,y+(1−αOL)·σ1(∆TRgt,x,gt,y )

where σ1(x) =
1

1 + e−
x
15
− 0.5 is a compression function.

The Hierarchical Agglomerative Clustering algorithm
(HAC) is applied to this dissimilarity matrix, with a pre-
defined dissimilarity threshold θOL, to identify clusters of
related global tracks. HAC is a bottom-up hierarchical clus-
tering approach that begins by considering each data point
as a separate cluster. The algorithm then iteratively merges
the most similar clusters based on the pair-wise dissimilar-
ity between clusters, continuing this process until all data
points or clusters are merged into a single cluster or un-
til the dissimilarity between any two clusters exceeds the
predefined threshold. The use of HAC with a predefined
threshold is suitable for online multi-camera tracking sys-
tems, as the number of clusters is typically not known in
advance. We demonstrate our algorithm in Algorithm 1.

Finally, the system merges the global tracks within each
cluster. A new global track is created, incorporating all
the local tracks associated with the original global tracks
in the cluster. The presence of the original global tracks is
replaced by the presence of the newly created global track.
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3.1.3 Updated-Missed Tracks Merge

The updated-missed tracks merge step addresses cases
where a person is missed in tracking but then reappears with
a new global ID. This situation often occurs when a per-
son moves between disjoint cameras in a network or when
a person temporarily disappears and reappears in the same
camera.

Based on the global track status determined in the global
track update step (Section 3.1.1), the system retrieves two
lists: the updated global tracks and the missed global tracks.
For each pair of an updated global track and a missed global
track, the system calculates four values to build dissimilar-
ity matrices: appearance distance, spatial distance, speed
distance, and fusion distance. The spatial distance ∆ST is
computed as the Euclidean distance between the location of
the first detection of the updated global track gt,x and the
location on the map estimated by Kalman filter [22] of the
missed global track gt,y:

∆STgt,x,gt,y = euclid(pgtx,first,x
,Kalman(pgty,last,y

))

where tx,first and tx,last are the time instances when global
track x is seen for the first and last time.

The speed distance ∆SP represents the ratio between the
speed required to travel from the last detection of the missed
global track gt,y to the first detection of the updated global
track gt,x and the average speed of the missed global track
gt,y during its tracking period:

∆SPgt,x,gt,y =
euclid(pgtx,first,x

, pgty,last,y
)

(tx,first − ty,last)× average speed(gt,y)

The fusion distance ∆FU is the fusion of the appearance
feature distance and the spatial distance:

∆FUgt,x,gt,y = αUM·∆APgt,x,gt,y+(1−αUM)·σ2(∆STgt,x,gt,y )

where σ2(x) =
1

1 + e−
x
30
− 0.5 is a compression function.

As indicated in Algorithm 2, in our online system, we
employ a 2-round matching scheme to handle different sce-
narios and improve the accuracy of the tracking process.
Each round serves a specific purpose and utilizes different
criteria for matching. In the first round, the Hungarian al-
gorithm [24] is applied using the fusion distance ∆FU to
merge pairs of matched global tracks, while filtering out
pairs with an appearance distance ∆AP exceeding a pre-
defined appearance dissimilarity threshold θAP. This round
is particularly effective for tracking individuals who have
been lost for a relatively short period, where a short-term
Kalman prediction [22] is still reliable. This idea is simi-
lar to the SORT-like approaches, which also adopt Kalman
filter [22] for the short-term association.

Algorithm 2 Updated-missed tracks merge

Input: Global track list Gt.
Output: Some gt,i in Gt are merged together.

1: construct cost matrix CAP =∞, CST =∞, CSP =∞
2: for each gt,x in Gt do
3: for each gt,y in Gt do
4: if !is missed(gt,x) and is missed(gt,y) then
5: CAP[x, y]←∆APgt,x,gt,y

6: CST[x, y]← ∆STgt,x,gt,y

7: CSP[x, y]←∆SPgt,x,gt,y

8: end if
9: end for

10: end for
11: CFU ← αUM·CAP + (1 - αUM) · σ2(CST)
12: matches← Hungarian(CFU)
13: matches 1← filter(matches, CAP, θAP)
14: matches← Hungarian(CAP)
15: matches 2← filter(matches, CSP, θSP)
16: matches← matches 1 ∪ matches 2
17: for each (updated gt,x, missed gt,y) in matches do
18: merge gt,x to gt,y
19: remove gt,x from Gt

20: end for

In the second round, the Hungarian algorithm [24] is
applied again, but this time using the appearance distance
∆AP as the matching criterion, while filtering out pairs with
speed distance ∆SP exceeding a predefined speed dissimi-
larity threshold θSP. This round aims to track individuals
who have been lost for a long time by relying primarily on
appearance information. During extended periods of loss,
appearance information becomes crucial for re-establishing
track associations.

3.1.4 Removal of Long-Lost Tracks

In an open-world scenario, individuals may exit the camera
network and not revisit for a long time. The long-lost tracks
removal step aims to remove global tracks that have been
inactive for a long period, indicating that the corresponding
person is no longer present in the scene. This step helps pre-
vent the ID transfer and reduces computational overhead.

For each global track marked as missed in the global
track update step (Section 3.1.1), the system checks the
number of consecutive missed detections. If this number
exceeds a max frame skipped period, the global track
is removed from the system.

3.2. Accumulated Appearance Feature

In Section 3.1.2 we mentioned the appearance feature of a
local track Flt,j , which is used to compute the appearance
distance between two global tracks, without going into de-
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tails how this appearance feature is computed. A local track
is presented by a sequence of detections. There are several
possible options to compute the appearance feature of a lo-
cal track using the appearance features of its detections:
• Each local track maintains a single vector of exponential

moving average (EMA) appearance feature, and this sin-
gle vector is used to calculate the appearance distance.
This is also the approach used in StrongSORT [11].

• Each local track maintains a bank of feature vectors, and
the appearance distance is computed by obtaining the av-
erage of the feature bank. This is also the approach used
in DeepSORT [43].
However, neither of these strategies is suitable for

long-term tracking. The EMA appearance feature, while
memory-efficient by requiring the maintenance of a single
vector over time, is particularly sensitive to recent environ-
mental changes. In practice, most failures in appearance
matching occur due to appearance misrepresentation caused
by factors like occlusion and illumination variations. For
instance, the EMA appearance features of the same person
may differ significantly when they move from a partially
occluded or dark area in one camera to an unobstructed or
brighter area in another camera. Conversely, two different
people may have similar EMA appearance features if they
both recently stayed in a dark area.

On the other hand, maintaining a bank of appearance fea-
tures throughout time and averaging them results in a more
generalized and robust feature that is less sensitive to noise.
However, storing such a feature bank is impractical due to
memory limitations. For example, a single feature bank for
1 hour of video at 30 frames per second, using a float32 fea-
ture vector of 512 dimensions, would occupy more than 200
megabytes.

To address these challenges, we propose a memory-
efficient accumulated appearance feature for each local
track lt,j at time instance t, as follows:

Flt,j = Flt−1,j
+

flt,j
∥flt,j∥

where flt,j is the appearance feature of the detection at time
t of lt,j . By normalizing the appearance feature vectors be-
fore adding them up, we can eliminate the concern about
overflow error.

Figure 2 demonstrates the comparison of appearance dis-
tance in a pair of a positive pair and a negative pair extracted
from the 2024 AI City Challenge Track 1 dataset, using the
3 mentioned methods.

Moreover, to improve the quality of the appearance fea-
ture, we suggest filtering the person detections to retain
only high-quality detections that are minimally influenced
by factors like lighting conditions or significant occlusion.
Several techniques can be employed for this purpose, in-
cluding utilizing a pose estimation model to ensure the visi-

Figure 2. Comparison of appearance distances in a positive pair
and a negative pair, extracted from the 2024 AI City Challenge
Track 1 dataset. The appearance distance is measured using cosine
dissimilarity. In the figure, acc represents our proposed method
using accumulated features. ema represents the method using ex-
ponential moving average features with a smoothing factor of 0.1.
bank represents the method using a feature bank with a size of
500. Our proposed method provides better separation and allows
a stricter dissimilarity threshold.

bility of discriminative body parts, evaluating the contrast of
the cropped image, or simply selecting detections with high
confidence scores from the detection model. In our online
system, we adopt the approach of selecting detections with
high confidence scores.

By obtaining high-quality and memory-efficient appear-
ance features for each local track, we reduce noise in the
appearance feature over time, resulting in more distinct vi-
sual clusters for different identities. Consequently, we can
choose a smaller appearance dissimilarity threshold to ef-
fectively eliminate ID transfers without increasing the oc-
currence of ID ascension. Experimental results supporting
this assumption are provided in Section 4.4.

3.3. Trajectory validation

To detect and address the issue of ID transfer, our system
proposes an approach that leverages the overlapping areas
between cameras. As shown in Figure 1, prior to updating
global tracks with new results from the SCT, our system
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Algorithm 3 Trajectory validation

Input: global track gt,i = {l(k)t,j |j = 1 . . . Nt, k = i}
Output: some lt,j are detached from gt,i

1: construct cost matrix C|gt,i|×|gt,i|
2: for each lt,j in gt,i do
3: for each lt,q in gt,i do
4: if lt,j != lt,q then
5: C[j, q]←∆OLlt,j ,lt,q

6: end if
7: end for
8: end for
9: clusters← AgglomerativeClustering(C, θOL)

10: if |clusters| > 1 then
11: main cluster← cluster of argminj (∆OLgt,i,lt,j )
12: for lt,j in gt,i do
13: if (cluster of lt,j) != main cluster then
14: gt,i← gt,i \lt,j
15: create new gt,Mt+1 = {lt,j}
16: end if
17: end for
18: end if

performs a trajectory validation step.
At each time instance, for each global track, we employ

HAC with dissimilarity threshold θOL (as described in Sec-
tion 3.1.2) on its local tracks. If any local track is separated
from the main cluster, our system creates a new global track
for that local track. Subsequently, the new global track joins
the global track merge block, similar to any other global
track, and is merged with its true identity as indicated in
Algorithm 3.

To determine the main cluster, especially in cases where
HAC clusters the local tracks into multiple clusters of equal
cardinality, our system calculates the average dissimilarity
scores between the global track and the local tracks within
each cluster based on appearance and trajectory distance.
The cluster with the smallest dissimilarity score is selected
as the main cluster.

In Section 4.4, we provide experimental results that
demonstrate the effectiveness of this strategy.

4. Experiments
4.1. Dataset and setting

We evaluated our online MCT system using the 2024 AI
City Challenge Track 1 dataset [39]. The dataset consists
of approximately 1000 cameras divided into 90 scenes. All
videos in the dataset have a resolution of 1080p, 30 FPS,
and a duration of 13 minutes. Camera matrices are pro-
vided. The training set includes 40 scenes, the validation
set includes 20 scenes, and the test set includes 30 scenes.
The test set is more challenging than the validation set due

to factors such as a higher number of cameras per scene,
the presence of private rooms and corridors, and a narrower
camera network coverage.

4.2. Evaluation Metrics

We used the mean Average Precision (mAP) to evaluate
the performance of both the detection model and the Re-ID
model. For multi-camera tracking, we employed the HOTA
metrics [29], which provide a unified metric that balances
detection accuracy, association accuracy, and localization
accuracy.

4.3. Implementation Details

For the detection model, we utilized YOLOv8 [21] and
trained it from scratch on the training set. The input size
was set to 640 × 360, and the model achieved a validation
mAP@50 of 0.96. During testing, we employed a high con-
fidence threshold of 0.4 to ensure high-quality detection (as
discussed in Section 3.2). The midpoint of the bottom edge
of the bounding box was used to project the person’s loca-
tion onto the map. For the Re-ID model, we employed Tran-
sReID base [14] and trained it from scratch on the training
set. The input size was 128 × 256, and the feature dimen-
sion was set to 768. The model achieved a validation mAP
of 0.6. The balanced threshold for the Re-ID task, deter-
mined by GOM [40], was determined to be 0.2. We utilized
StrongSORT [11] for SCT. The IoU dissimilarity threshold
was set to 0.54. A probationary period of 0.3 seconds was
applied to create a local track, and a track was deleted if it
was missed for 5 seconds.

In Section 4.4, we demonstrated the effectiveness of the
accumulated appearance feature. Initially, we set the ap-
pearance dissimilarity threshold θAP = 0.12 with a feature
bank size of 15. Subsequently, we reduced the threshold to
0.1 and evaluated the performance change. This appear-
ance dissimilarity threshold was applied in both Strong-
SORT [11] and the global track merge steps.

In the overlapping merge step, we used a fusion weight
αOL = 0.8. In the updated-missed tracks merge, the fu-
sion weight was set αUM = 0.9, and the speed dissimilar-
ity threshold was set θSP = 2. This choice was motivated
by the high-quality detection and appearance features’ ef-
fectiveness in handling spatial location noise, particularly
when people move in close proximity to each other.

Specifically for the 2024 AI City Challenge Track 1 [39],
we set max frame skipped equal to the length of the
videos because of the in-house nature of the dataset.

4.4. Results

We present the experimental results on the 100% test set of
the 2024 AI City Challenge Track 1 [39] in Table 1. The
inclusion of trajectory validation significantly improved the
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Method HOTA (%) DetA (%) AssA (%) LocA (%)

Baseline 16.4 46.7 6.0 89.2
+ Trajectory validation (θAP = 0.12, feature bank) 27.7 54.8 14.7 89.5
+ Trajectory validation, θAP = 0.1, accumulated feature 40.3 53.8 32.5 89.6

Table 1. Experimental results on the 100% test set of the 2024 AI City Challenge Track 1 [39]. Note that in our baseline version, scene
071 was excluded from our submission due to corruption issues caused by camera 649, which may result in a slight shift in the baseline
version’s score due to detection loss. In the two improved versions, this scene is included back.

Ranking Team ID HOTA

. . .
7 5 45.1575
8 124 40.3361
9 162 40.3361

10 21 33.4879
11 90 31.5208

. . .

Table 2. Leaderboard of the 2024 AI City Challenge Track 1 [39].
Our proposed online system achieved a rank of 9th with a HOTA
score [29] of 40.3%.

Association Accuracy by 8%, leading to an improved over-
all HOTA score [29]. Additionally, incorporating the accu-
mulated appearance feature with a smaller appearance dis-
similarity threshold further improved the Association Accu-
racy by 17%.

With our best-improved version achieving a HOTA score
[29] of 40.3% on the test set, our online system ranked 9th
out of 17 teams on the AI City Challenge 2024 Track 1 [39]
leaderboard, as shown in Table 2.

5. Conclusion

In this study, we have presented an efficient online multi-
camera tracking (MCT) system that overcomes the chal-
lenges of identity switches and achieves accurate track-
ing in both overlapping and non-overlapping camera net-
works. Our system incorporates appearance and spatio-
temporal cues, along with memory-efficient accumulated
appearance features and trajectory validation using hierar-
chical agglomerative clustering (HAC) in overlapping re-
gions. Experimental evaluations on the 2024 AI City Chal-
lenge Track 1 dataset [39] have demonstrated the effec-
tiveness of our system, achieving competitive performance.
The proposed system provides a valuable contribution to
the field of MCT, offering a real-time and online solution
for tracking individuals across multiple cameras in various
real-world scenarios. Future work can explore further en-
hancements and optimizations to improve the system’s per-
formance and extend its applicability to other tracking do-

mains.
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