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Abstract

This study addresses the evolving challenges in urban
traffic monitoring detection systems based on fisheye lens
cameras by proposing a framework that improves the ef-
ficacy and accuracy of these systems. In the context of
urban infrastructure and transportation management, ad-
vanced traffic monitoring systems have become critical for
managing the complexities of urbanization and increasing
vehicle density. Traditional monitoring methods, which rely
on static cameras with narrow fields of view, are ineffec-
tive in dynamic urban environments, necessitating the in-
stallation of multiple cameras, which raises costs. Fisheye
lenses, which were recently introduced, provide wide and
omnidirectional coverage in a single frame, making them
a transformative solution. However, issues such as dis-
torted views and blurriness arise, preventing accurate ob-
ject detection on these images. Motivated by these chal-
lenges, this study proposes a novel approach that combines
a transformer-based image enhancement framework and
ensemble learning technique to address these challenges
and improve traffic monitoring accuracy, making significant
contributions to the future of intelligent traffic management
systems. Our proposed methodological framework won 5th
place in the 2024 AI City Challenge, Track 4, with an F1
score of 0.5965 on experimental validation data. The ex-
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perimental results demonstrate the effectiveness, efficiency,
and robustness of the proposed system. Our code is pub-
licly available at https://github.com/daitranskku/AIC2024-
TRACK4-TEAM15.

1. Introduction
In the field of urban infrastructure and transportation man-
agement, the development of advanced traffic monitor-
ing systems has become a crucial solution to the grow-
ing challenges posed by urbanization and increasing ve-
hicular density[6, 10, 19, 31]. These systems, utilizing
state-of-the-art technologies such as computer vision, ma-
chine learning, and data analytics, are tasked with ensur-
ing not only the smooth flow of traffic but also enhancing
safety[2, 15, 38, 39] and efficiency on busy roadways[25].
As cities grow in size and population, there is an increas-
ing need for advanced traffic monitoring and management
solutions that surpass traditional strategies.

Traditional traffic monitoring methods, which rely on
static cameras with limited fields of view (FoV) [11, 18, 46],
have proven insufficient in dealing with the dynamic and
complex nature of modern urban environments. These cam-
eras typically provide narrow perspectives of roadways and
intersections, requiring the deployment of multiple cam-
eras to achieve comprehensive coverage[13]. This not only
raises the cost and complexity of surveillance infrastructure
but also creates blind spots and gaps in monitoring, particu-
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larly in areas with complex road layouts or high traffic vol-
umes. The need for real-time insights, comprehensive cov-
erage, and adaptive response mechanisms has highlighted
the importance of more advanced and versatile surveillance
techniques.

In recent years, the introduction of fisheye lenses has rev-
olutionized surveillance and traffic monitoring systems due
to their ability to provide natural, wide, and omnidirectional
coverage[13]. This unique feature addresses a significant
limitation of traditional cameras with narrow fields of view
(FoV), allowing for the capture of large scenes in a single
frame—an accomplishment not possible with conventional
counterparts. Fisheye lenses in traffic monitoring systems
have proven particularly advantageous in reducing the num-
ber of required cameras, offering a cost-effective solution to
cover broader views of streets and intersections [7]. How-
ever, this innovation comes with its own set of challenges,
as fisheye cameras inherently present distorted views, which
require sophisticated design approaches for image undis-
tortion and unwarping [13]. Additionally, objects at the
edges or far ends of the captured scenes appear small and
blurry. This makes it difficulty for object detection sys-
tems to accurately identify important elements such as cars,
pedestrians, and road signs during traffic monitoring[13].
These challenges underscore the need for dedicated strate-
gies to address distortions and blurriness during image pro-
cessing, and that is what this study seeks to do.

Inspired by these challenges, the overarching goal of this
study is to develop a robust framework for traffic monitoring
using data from fisheye lens cameras. To achieve this goal,
we propose a Low-Light Image Enhancement Framework
to enhance image quality, resulting in improved object de-
tection accuracy for fisheye images. The proposed image
enhancement framework aims to improve image clarity and
accuracy in object detection by addressing poor visibility at
night and blurriness in video-generated images. To achieve
a robust objection detection model, the study incorporates
the principle of ensemble learning, drawing upon diverse
state-of-the-art object detection models for this task. By
using the ensemble learning technique, we mitigate the lim-
itations associated with using individual models for object
detection tasks. The models utilized in this study include
collaborative detection transformer (Co-DETR), You Only
Look Once (YOLOv8x), and YOLOv9.

To this end, the study’s main contributions can be sum-
marized as follows:
1. We propose a unique data preprocessing framework

called the Low-Light Image Enhancement Framework.
This framework utilizes a transformer-based image en-
hancement technique, NAFNET [10], to improve im-
age clarity by removing blurriness, and GSAD [14] to
convert nighttime images (low illumination) to daytime
images (high illumination) to improve object detection

accuracy in fisheye images during model training. To
enhance object detection accuracy during inference, the
study used a super-resolution postprocessing technique
to increase image pixels, as well as an ensemble model
technique for robust detection.

2. We performed a detailed comparative analysis of our
proposed ensembled model to other state-of-the-art
object detection models (Co-DETR, YOLOv8x, and
YOLOv9e). By evaluating their performance in detect-
ing objects from fisheye lens-captured images, we aimed
to demonstrate the superiority of our proposed model
over the current state-of-the-art models. In addition,
we demonstrate that our pre- and post-processing tech-
niques are effective in leading to improved object detec-
tion.

3. Our proposed approach showed its robustness in AICity
Challenge Track 4, placing 5th out of 52 teams.

The experimental results of this study hold paramount
importance in shaping the future of intelligent traffic moni-
toring systems, particularly those utilizing fisheye lens cam-
eras. The proposed robust framework, anchored by the
transformer-based image enhancement technique and en-
riched by ensemble learning, represents a significant stride
towards overcoming the challenges posed by fisheye distor-
tions in urban environments. These results offer valuable
insights into the feasibility and real-world applicability of
our approach, providing a tangible foundation for the ad-
vancement of traffic monitoring technology.

The remainder of the paper is structured as follows: In
section 2, we present a discussion of related works. Section
3 discusses our methodological framework. In section 4, we
present our data and experimental findings, which demon-
strate the efficacy of our proposed method in detecting ob-
jects in fisheye lens cameras. In section 5, we discuss the
implications of our findings and make suggestions for future
research in this field.

2. Related Work

Traffic surveillance has advanced significantly in recent
years as a result of the convergence of computer vision,
machine learning, and data analytics. Our ability to accu-
rately detect and track vehicles, pedestrians, and motorists
in surveillance videos is critical for ensuring road safety,
optimizing traffic flow, and improving overall transporta-
tion efficiency. Object detection, a critical task in traffic
surveillance systems, has advanced dramatically as new al-
gorithms and techniques emerge. This literature review fo-
cuses on three techniques or algorithms of object detec-
tion: multiple/two-stage detectors, single-stage detectors,
and transformer-based models.
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2.1. Multiple/Two-stage detectors

A variety of studies have investigated the utilization of two-
stage detection algorithms in transportation systems[27, 32,
43]. Shirpour et al. developed a real-time traffic object
detection system, achieving 91% accuracy by employing a
combination of multi-scale HOG-SVM and Faster R-CNN
models[27]. Also, Nizar et al. utilized HOG and SVM
for feature extraction and KLT for object counting, achiev-
ing an average accuracy of 95.15% [18]. Wang & Zhang
proposed a hybrid method for vehicle detection, integrat-
ing shadow area search with ROI, HOG, and SVM algo-
rithms, along with K-means clustering[43]. Gavrila intro-
duced a two-step approach for pedestrian detection, lever-
aging contour features and hierarchical template matching
in the first step, and intensity features and pattern classifica-
tion in the second step[12]. Additionally, Zhang proposed a
vision-based method for vehicle detection, featuring an im-
proved common region algorithm for background subtrac-
tion and a threshold segmentation method for object extrac-
tion, achieving enhanced accuracy and stability compared
to existing algorithms[44]. Collectively, these studies un-
derscore the potential of two-stage detection algorithms in
enhancing the accuracy and robustness of object detection
in transportation systems.

2.2. Single-stage detectors

Recent advancements in object detection have witnessed
the emergence of single-stage detection algorithms, offer-
ing simpler and faster alternatives to traditional two-stage
methods. Ye et al introduced the feature-enhanced single-
shot detector (FE-SSD) for railway traffic, significantly im-
proving feature discrimination and robustness[47]. Alvarez
et al proposed a monocular target detection system for trans-
port infrastructures, incorporating vanishing point extrac-
tion for automatic camera calibration and a background sub-
traction method for object segmentation [7]. Stuparu et al
presented a one-stage object detection model for vehicle
detection in overhead satellite images, achieving high ac-
curacy and low detection time[37]. Qiu et al., further en-
hanced vehicle detection in intelligent transportation sys-
tems with a deep learning-based algorithm, achieving a
99.82% recognition rate in real traffic scenes[23]. Redmon
et al. introduced YOLO, a novel approach to object detec-
tion that significantly revolutionizes single-stage object de-
tection frameworks[3–5, 24, 30, 35]. YOLO utilizes a sin-
gle neural network to directly forecast bounding boxes and
class probabilities from complete images in one assessment,
enabling end-to-end optimization for detection efficacy.

2.3. Transformer-based detectors

Transformers have recently emerged as a significant ad-
vancement in computer vision, particularly in the realm of
object detection. These models have introduced end-to-end

learning systems and have been integrated into various ar-
chitectures to enhance detection performance. Recent ad-
vancements in object detection have witnessed the emer-
gence of transformer-based algorithms, which have demon-
strated promising results in enhancing both accuracy and
convergence time[40]. A comprehensive review of object
detection algorithms, encompassing transformer-based de-
tectors, has highlighted substantial progress in the field, par-
ticularly in the era of deep learning [36]. The integration of
Vision and Detection Transformers (ViDT) has further en-
hanced the efficiency and effectiveness of object detection,
with ViDT+ achieving high scalability for large models[24].
Carion et al present a novel approach named DEtection
TRansformer (DETR), which conceptualizes object detec-
tion as a direct set prediction problem. DETR simplifies
the detection pipeline by eliminating the necessity for hand-
designed components such as non-maximum suppression or
anchor generation[22]. Shou et al used the MS Transformer
model to enhance object detection in medical images by
addressing challenges such as low resolution, high noise,
and small object size[33]. It surpasses existing methods on
benchmark datasets like DeepLesion and BCDD, demon-
strating superior performance in medical image analysis.
extend ViDT to ViDT+ to facilitate joint-task learning for
object detection and instance segmentation [33].

3. Methodology

Figure 1 and Algorithm 1 illustrated our proposed approach.
Our approach consists of three major stages: 1) an effective
data pre-processing step, 2) model training, and 3) a robust
post-processing strategy.

3.1. Effective Data Pre-processing Strategy

In order to address the data challenges such as blurriness,
small object detection at image edges, and low illumina-
tion in nighttime images, we proposed an effective pre-
processing strategy called Low-Light Image Enhancement
Framework. The proposed framework consists of 3 key
steps, namely image enhancement, clustering by illumina-
tion, and night-to-day image conversion.

NAFNet-based Image Enhancement. The initial phase
involves enhancing the raw fisheye images (Iraw) to rec-
tify issues related to low light and noise, common in such
datasets. Utilizing the NAFNet image enhancement model,
each raw image i is processed to yield an enhanced version
E(i), forming a set of enhanced images, Ienh. This step not
only improves the visual quality of the images but also pre-
pares them for more accurate object detection by reducing
noise and enhancing details. As shown in Figure 2, by using
NAFNet[8], objects are enhanced and show clearer quality
compared to the original image.
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Figure 1. The proposed approach has three stages. 1) effective data preprocessing strategy (NAFNET [8]; GSAD [14]), 2) detection models
for training ( Co-DETR [49];YOLOv8[4];YOLOv9[42] ), and 3) robust post-processing strategy (DAT [9]; WBF [34])

Raw - Bike SIDD - Bike GoPro - Bike REDS - Bike

Raw - Car SIDD - Car GoPro - Car REDS - Car

Raw - Car SIDD - Car GoPro - Car REDS - Car

Raw - Pedestrian SIDD - Pedestrian GoPro - Pedestrian REDS - Pedestrian

Raw - Pedestrian SIDD - Pedestrian GoPro - Pedestrian REDS - Pedestrian

Figure 2. Compare NAFNet [8] image enhancement algorithm
with different trained dataset.

To achieve the best image enhancement on our training
images, three pre-trained NAFNet models were considered,
as illustrated in Figure 2. They are NAFNet trained on
SIDD[1], GoPro[20], and REDS[21]. Each pre-train model
demonstrated the capacity of the NAFNet algorithm to im-
prove image clarity, sharpness, and overall visibility of de-
tails. For example, the Bike images in Figure 2 show less
noise and clearer contours after enhancement. The Car im-
ages also show more defined shapes and textures, while the
Pedestrian images show more details and contrast, making
features easier to see. In this research, NAFNet network that

was pre-trained on REDS was utilized for improving image
quality.

Clustering by illumination condition. Post-
enhancement, the images are clustered into two subsets
based on their mean values, distinguishing between
night-time and other time-of-the-day images. This step is
crucial for tailoring subsequent processing to the specific
challenges associated with low-light conditions. Night-
time images, Inight, are identified through a predefined
threshold, Tnight, whereas the remaining images are
categorized as Iother. Figure 3 provided 3D scatter plot
of the mean color values in RGB color space under four
different illumination conditions of the FishEye8K dataset:
Morning, Afternoon, Evening, and Night. Clearly, there
is a distinct shift towards the lower end of the RGB value
spectrum from Night condition.

Figure 3. Compare mean value from all scenario images.
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Algorithm 1 Object Detection in Fisheye Datasets

1: Input: Iraw - Set of raw fisheye images.
2: Output: O - Object detection results.

3: procedure ENHANCEIMAGES(Iraw)
4: Initialize Ienh as an empty set
5: for each image i in Iraw do
6: E(i)← Apply enhancement model E to i
7: Add E(i) to Ienh
8: end for
9: end procedure

10: procedure CLUSTERINGBYILLUMINATIONCONDI-
TION(Ienh)

11: Initialize Inight, Iother as empty sets
12: for each image i in Ienh do
13: if L(i) < Tnight then
14: Add i to Inight
15: else
16: Add i to Iother
17: end if
18: end for
19: end procedure

20: procedure CONVERTNIGHTTODAY(Inight)
21: Initialize Iday−like as an empty set
22: for each image i in Inight do
23: G(i)← Apply GSAD model G to i
24: Add G(i) to Iday−like

25: end for
26: end procedure

27: procedure PREPAREDATASETFORTRAINING
28: Ifinal ← Iother ∪ Iday−like

29: end procedure

30: procedure TRAINANDENSEMBLEMODELS(Ifinal)
31: Train multiple object detection models on Ifinal
32: Apply ensemble method to integrate models into F
33: end procedure

34: procedure APPLYSUPERRESOLUTION(Ifinal)
35: Initialize Isr as an empty set
36: for each image i in Ifinal do
37: SR(i)← Apply DAT model to i
38: Add SR(i) to Isr
39: end for
40: end procedure

41: procedure GENERATEDETECTIONRESULTS(Isr)
42: for each image i in Isr do
43: F (i)← Apply unified model F to i
44: Add F (i) to O
45: end for
46: return O
47: end procedure

Night-to-day conversion. The night-time images un-
dergo a transformation process using a GSAD model, G,
designed to convert night scenes into day-like scenes. This
step, producing Iday−like, aims to normalize the lighting
conditions across the dataset, thereby reducing the variabil-
ity in illumination that can negatively impact object de-
tection performance. In this study, we utilized the GSAD
model pre-trained on the LOLv2 Synthetic dataset for the
experiment. Mainly because this pre-trained model demon-
strates superior performance with significant improvements
in brightness, contrast, and color saturation, as shown in
Figure 4.

Original Image Day-like Image

Figure 4. Converting night time image to day-like image using
GSAD model.

3.2. Detection Models for Training

After the data preprocessing step, a unified dataset, Ifinal,
is prepared by combining the other time-of-the-day images,
Iother, with the day-like images, Iday−like. This process
ensures that the training dataset exhibits a consistent light-
ing condition, mimicking daytime scenes and thus facilitat-
ing more effective learning by the object detection models.
The models used in this study are YOLOv8x, YOLOv9e,
and Co-DETR.

YOLOv8. YOLOv8 [4], like YOLOv5 [2, 28, 30], con-
sists of the backbone, head, and neck. Significant advance-
ments have been made to the YOLOv8 architecture, includ-
ing a complete redesign of the architecture, improved con-
volutional layers in the backbone, and a more advanced de-
tection head. Because of these updates, it is now the pre-
ferred method for real-time object detection. The model
uses the Darknet-53 backbone network, which is known
for its faster and more accurate performance compared to
its predecessor, the YOLOv7 network [3, 29, 41]. The
YOLOv8 model uses an anchor-free detection head to pre-
dict bounding boxes. This approach is remarkably effective
due to its improved feature map and convolutional network,
which result in increased precision and speed.

YOLOv9 [42] represents a significant advancement in
real-time object detection, introducing innovative tech-
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niques such as Programmable Gradient Information (PGI)
and the Generalized Efficient Layer Aggregation Network
(GELAN). The architecture was designed in a manner to
fundamentally overcome the challenges of information loss
in deep neural networks. The YOLOv9 uses innovative Re-
versible Functions that are central to its architecture, ensur-
ing its high efficiency and accuracy. Furthermore, the intro-
duction of PGI aimed at alleviating the information bottle-
neck problem and preserving critical data across deep net-
work layers. This preservation allows for the generation of
dependable gradients, which facilitates precise model up-
dates and improves overall model performance.

Co-DETR. Co-DETR[49] stands out in its structure with
a unique collaborative training scheme that tackles limita-
tions in the DETR architecture. It achieves this by intro-
ducing auxiliary heads alongside the main decoder. These
auxiliary heads train with a one-to-many object assignment
approach, unlike the decoder’s attention mechanism. This
strengthens the encoder’s ability to learn discriminative fea-
tures for objects. Furthermore, Co-DETR leverages these
auxiliary heads to create more high-quality training data
specifically for the decoder, improving its focus and per-
formance.

3.3. Robust Post-processing Strategy

The postprocessing technique employed in this stage in-
cludes super-resolution of test images and our proposed en-
semble model for detection.

Super-resolution. Before performing inference on our
validation dataset or on the experimental test data, the im-
ages are processed through a Dual Aggregation Transformer
(DAT) [9] model. This model upscales the images by a fac-
tor of four, as shown in Figure 5, significantly enhancing
the resolution and detail available for object detection.

1 23
4

5 1 23
4

5

a) Raw Image b) Super resolution

Figure 5. Using super-resolution to increase image size by a factor
of four. a) raw image, b) super-resolution image

Additionally, Figure 6 compares the raw image with the
super-resolution image at the object level. From the Figure,
we observed an enhanced image quality, allowing better de-
tection by the object detection model during inference.

Raw Image

Super Resolution

Figure 6. Using super-resolution to increase image size by a factor
of four. a) raw image, b) super-resolution image

Ensemble of detection models. The trained detection
models were ensembled into one model, leveraging their re-
spective strengths to detect various objects from the fisheye
lens camera images. To achieve this, an ensemble method,
weighted box fusion (WBF) [34], is then applied to inte-
grate these models into a single, comprehensive detection
model, F , enhancing the overall detection accuracy and ro-
bustness.

4. Experiments

4.1. Dataset

Challenge of the given dataset. As shown in Figure 7, the
labeled objects are: Bus, Bike, Car, Pedestrian, and Truck.
The majority of the objects are labeled with small area pix-
els less than 64×64. Additionally, the quality of the dataset
is affected by noise and blur due to the extraction process
from recorded videos. Furthermore, fisheye lenses cause
significant distortion, especially at the edges of the images,
which can alter the appearance of objects, making it harder
for detection algorithms to accurately identify and classify
them. Some objects may be partially obscured by others
or overlap, particularly in crowded urban scenes, making
it difficult to distinguish one object from another. That is,
differentiating between similar-shaped objects, such as cars
and trucks or bikes and motorcycles, can be difficult, espe-
cially in low-resolution images.

Implementation detailed. The proposed approach is
inferenced on Intel Core i9, and NVIDIA 4090 24GB
and 64GB RAM. Models are trained on Intel Xeon Sil-
ver 4210R, and 2 NVIDIA RTX A6000 48GB and 126GB
RAM. Here is the list of models that are utilized for train-
ing:
• YOLOv8: YOLOv8x are used for training models for

comparison, multiple image scales such as 640, and 1280
are trained and validated. Other hyperparameters re-
mained the same in the original model.
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Bus Bike Car Pedestrian Truck

Figure 7. Sample cropped objects from the FishEye8K dataset.

• YOLOv9: At the time of writing this paper, YOLOv9e
is claimed that achieved better performance compared to
other YOLO variants. Therefore, the strongest YOLOv9-
E with image size 1280 is used for the training model.

• Co-DETR: For the large detection model like Co-DETR.
The pre-trained model on foundation datasets such as
COCO[17] or Objects365[26] is important for improving
fine-tuning model accuracy. In this research, the model
is trained with image size 1024 and a fine-tuned model
trained on Objects365 pre-trained + COCO dataset (Co-
DETR-O365). Other hyperparameters and augmentation
processes are utilized from the default model[48].

4.2. Evaluation Metrics

In the challenge, the evaluation of object detection models
was anchored on two main metrics: the mean Average Pre-
cision (mAP) and the F1 Score. The mAP can be expressed
as the mean of the AP values across all classes, where AP
is calculated using the area under the precision-recall curve.
The mAP can be expressed as the mean of the AP values
across all classes, where AP is calculated using the area un-
der the precision-recall curve. In a setting with C classes,
the mAP is defined as:

mAP =
1

C

C∑
c=1

APc (1)

The F1 Score is defined as the balance mean of precision
(P) and recall (R):

F1 = 2× P ×R

P +R
(2)

5. Results and Discusion
5.1. Comparative analysis on validation set

Table 1 provides a comparative analysis of object detection
models trained and tested on the raw FishEye8K dataset.
The models are evaluated based on their Average Precision
(AP) from a threshold of 0.5 to 0.95, offering a rigorous
metric for detection accuracy across different levels of in-
tersection over union (IoU).

In detailed. A baseline model referenced as [13], which
sets the initial benchmark with an AP of 0.4029. Two iter-
ations of the YOLOv8X model with different input resolu-
tions (640 and 1280), show APs of 0.33 and 0.36 respec-
tively. The Co-DETR model demonstrates a competitive
AP of 0.39. This comparison establishes the performance
standards before the application of our proposed image en-
hancement techniques.

ID Method AP0.5−0.95

1 Baseline [13] 0.4029
2 Yolov8X-640 [16] 0.33
3 Yolov8X-1280 [16] 0.36
4 Co-DETR [48] 0.39

Table 1. Model comparison, training, and testing on raw Fish-
Eye8K dataset.

In Table 2, we extend our comparison to models trained
on the image-enhanced FishEye8K dataset. The enhance-
ments are presumed to improve model training by providing
clearer and more accurate representations of objects. The
models in this table include YOLOv9e-1280, achieving an
AP of 0.399. The Co-DETR model, this time reaching an
AP of 0.409. The Co-DETR-O365, shows a marked im-
provement with an AP of 0.485. Our proposed approaches,
referred to as Our-1 and Our-2, surpass the others with APs
of 0.486 and 0.489, respectively. The advancement of our
models is indicated by the higher precision rates, demon-
strating the effectiveness of our methods in handling the
unique challenges of fisheye lens distortions and low-light
conditions.

Figure 8 illustrates the trend in model performance as
measured by mAP across the range of 0.5 to 0.95 IoU. The
baseline AP is indicated by a dashed green line, against
which subsequent model performances are measured. The
red line denotes the mAP trend, clearly showing a signifi-
cant improvement in AP values with the introduction of im-
age enhancement, marked by a dashed vertical line. Mod-
els 1 through 4, which are trained on raw images, show
lower mAP values. Beginning with model 5 and extending
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ID Method AP0.5−0.95

5 YOLOv9e-1280 [42] 0.399
6 Co-DETR [48] 0.409
7 Co-DETR-O365 [48] 0.485
8 Our-1 0.486
9 Our-2 0.489

Table 2. Model comparison, training, and testing on image en-
hancement FishEye8K dataset. Our-1: Co-DETR-O365 test on
validation set contains day-like images. Our-2: Co-DETR-O365
train on training set contains day-like images and tests on high-
resolution images.

1 2 3 4 5 6 7 8 9
Model

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

m
AP

.5
-.9

5

0.4029

0.3300

0.3600

0.3900
0.3990

0.4090

0.4850 0.4860 0.4890
mAP Trend
Baseline
Image enhancement starts

Figure 8. Model performance comparison.

to model 9, there is a notable uptick in mAP, underscoring
the beneficial impact of image enhancement on model ac-
curacy. Our proposed methods (Our-1 and Our-2) stand out
with the highest AP values, affirming the superiority of the
advancements we have implemented over existing models.

5.2. Model performance on CVPR challenge set

Table 3 presents the standings from the public leaderboard
of AIC24 Track 4[45], evaluating the performance of vari-
ous teams on the full test set as measured by the F1 Score.
In the competition, our team achieved a ranking of 5th out
of 52 teams with an F1 Score of 0.5965. Figure 9 presents
a qualitative comparison between ground truth annotations
and the results achieved using our image enhancement and
detection framework. Our approach not only matches the
ground truth but also reveals additional objects, highlighting
the potential of our method to improve resolution and de-
tection capabilities beyond the limitations of original low-
resolution annotations.

Table 3. Public leaderboard of AIC24 Track 4 on the full test set.

Rank Team ID Team Name F1 Score

1 9 VNPT AI 0.6406
2 40 NetsPresso 0.6196
3 5 SKKU-AutoLab 0.6194
4 63 UIT-AICLUB 0.6077
5 15 SKKU-NDSU (Our) 0.5965
6 33 MCPRL 0.5883
7 156 zzl 0.5828
8 52 DeepDrivePL 0.5825
9 86 NCKU-ACVLAB 0.5764

10 13 FRDC-SH 0.5637

a) Ground Truth b) Our Approach Results

Figure 9. Qualitative Result

6. Conclusion
We developed an efficient object detection system that is
robust to varying lighting conditions and times of the day.
To achieve this goal, we proposed a unique data process-
ing strategy referred to as the “low-light image enhance-
ment framework” and utilized an ensemble of YOLOv8,
YOLOv9, and Co-DETR as our objection detection model.
Our experimental results demonstrated the effectiveness
and robustness of the proposed system in detecting objects
from fisheye lens camera images.
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