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Abstract

The detection and recognition of distracted driving be-
haviors has emerged as a new vision task with the rapid
development of computer vision, which is considered as a
challenging temporal action localization (TAL) problem in
computer vision. The primary goal of temporal localiza-
tion is to determine the start and end time of actions in
untrimmed videos. Currently, most state-of-the-art tem-
poral localization methods adopt complex architectures,
which are cumbersome and time-consuming. In this paper,
we propose a robust and efficient two-stage framework for
distracted behavior classification-localization based on the
sliding window approach, which is suitable for untrimmed
naturalistic driving videos. To address the issues of high
similarity among different behaviors and interference from
background classes, we propose a multi-view fusion and
adaptive thresholding algorithm, which effectively reduces
missing detections. To address the problem of fuzzy be-
havior boundary localization, we design a post-processing
procedure that achieves fine localization from coarse lo-
calization through post connection and candidate behav-
ior merging criteria. In the AICITY2024 Task3 TestA, our
method performs well, achieving Average Intersection over
Union(AIOU) of 0.6080 and ranking eighth in AICITY2024
Task3. Our code will be released in the near future.

1. Introduction

Distracted driving is highly dangerous for human life.
At present, naturalistic driving studies and computer vision
techniques provide the much needed solution to identify and
eliminate distracting driving behavior on the road [25]. Its
key technologies mainly involved action recognition and
temporal action localization methods in computer vision.
Temporal action localization is aimed at identifying the start
and end time of actions in untrimmed videos.

*These authors contributed equally to this work.
†Corresponding author

Figure 1. An challengeing example of the synthetic naturalistic
data of the AI City Challenge 2024.

However, lack of labels, poor data quality and low res-
olution have created obstacles for deriving insights from
data pertaining to the driver in the real world. Fortunately,
2024 AI City challenge Track 3, as shown in Fig. 1, pro-
vides high-quality datasets collected from multiple cameras
at different positions inside the vehicle, which has facili-
tated further research in natural driving behavior. Techni-
cally, this task can be categorized as a temporal localiza-
tion problem. The main challenge is to require the system
to accurately detect and identify behaviors in untrimmed
videos, which may contain multiple segments of behav-
iors, and output behavior labels, start and end times in
untrimmed videos. While the similarity of different be-
haviors is high, which makes it difficult to distinguish; The
boundaries of behavior are blurred and the duration varies,
making it difficult to determine when the behavior begins
and ends.Previously, researchers have tackled these chal-
lenges with various approaches. Some have utilized com-
plex models to improve behavior classification accuracy
[1, 29], while others have focused on refining temporal lo-
calization techniques [6,21]. However, these methods often
suffer from high computational costs, scalability issues, or
reliance on extensive training data. These challenges under-
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score the need for a more effective and efficient approach to
temporal behavior localization in driving scenarios. In this
work, we propose a novel method that addresses these chal-
lenges, which aims to improve behavior detection and lo-
calization accuracy while minimizing computational com-
plexity, making it a promising solution for real-world appli-
cations in driver behavior analysis.

A two-stage method based on the sliding window is pro-
posed to address the aforementioned challenges. Specifi-
cally, the approach uses the following strategies: 1) defin-
ing a fixed-duration sliding window that slides along the
time axis of the video and sequentially identifies the specific
behavior category within each time interval corresponding
to the sliding window; 2) utilizing post connection and an
adaptive thresholding scheme. The prediction results on the
sliding window are determined by the information provided
by three views, while the adaptive thresholding method is
applied to filter out repeated false detections and make up
for missed detections; 3) utilizing a candidate behavior in-
terval splicing criterion to detect behaviors and determine
their start and end times in the untrimmed video. A post
connection strategy is employed to further refine the be-
havior boundaries from coarse localization to precise local-
ization, thereby improving the overall performance of the
model.

In summary, this paper contributes in the following as-
pects:

• In the natural driving action recognition task of 2024
AI City Challenge, we propose a two-stage approach
based on the sliding window for the detection of dis-
tracted driving behaviors. This approach is efficient
and effective, and performs well in the evaluation of
2024 AI City Challenge Track 3.

• To address the challenge of high similarity among
different behaviors and interference from background
classes, we introduce multi-view fusion and adaptive
thresholding strategy, which effectively filters out false
detections and improves missed detections.

• To address the fuzzy problem of behavior boundary
positioning, we design a post-processing procedure,
which further improves the overall performance of the
model by refining the behavior boundary through post
connection and candidate behavior splicing criteria.

2. Related Work
Our framework consists of two main components: ac-

tion classification and temporal action localization. Both of
these components are important research branches in com-
puter vision, and there have been a large number of related
works. In this section, we summarize the methods and re-
lated works that we were used in our research.

2.1. Action classification

Action classification is an important branch of video un-
derstanding with broad application prospects. At a macro
level, mainstream action classification methods can be di-
vided into two categories: 2D convolution-based and 3D
convolution-based methods. 2D convolution-based meth-
ods extract features from each frame of the video using 2D
convolutional neural networks (CNNs) and classify these
features with a classifier to recognize the action in the video
[2, 9, 11]. However, 2D convolution-based methods can-
not consider temporal information because they can only
process each frame individually, without capturing the tem-
poral relationships between frames, which results in the
model’s inability to handle fast actions or changes.

3D convolution-based action recognition methods learn
the temporal and spatial features of actions by performing
convolution operations in both time and space dimensions,
thus better capturing action information in videos. Com-
mon 3D convolution-based action recognition methods in-
clude C3D [19], Res3D [10], LTC [23], and I3D [4]. Due to
the significantly larger number of parameters and computa-
tional complexity of 3D convolutional networks compared
to 2D convolutional networks, some methods focus on low-
rank approximation of 3D convolutional networks, such as
FstCN [17], P3D [16], R(2+1)D [20], and S3D [26]. In ad-
dition, the X3D [8]method adjusts the hyperparameters of
3D CNNs to make the network more compact and efficient.

Moreover, methods based on Transformer networks,
such as Video-Swin-Transformer [14] and ViViT [3], can
better handle the spatio-temporal features of video se-
quences. In response to the characteristics of the Track3
dataset, we selected Video-swin-Transformer to avoid over-
fitting. [29]

2.2. Temporal Action Localization

Temporal action localization is an important task in
video action recognition, which aims to determine the start
and end time of a specific behavior in a video. Based
on deep learning, temporal localization methods can be
mainly categorized into three types: one-stage, two-stage,
and multi-stage methods. One-stage network methods di-
rectly predict the start and end time of behaviors from the
video sequence. This method [5] typically converts the
temporal localization task into a regression problem using
a similar approach to object detection. Two-stage meth-
ods typically produce temporal candidate proposals, which
are subsequently classified and their temporal bounds re-
fined. Techniques like border detection refinement [13] and
sliding windows aggregation [7] have been used in earlier
studies. Current investigators have put forth strategies that
model action contexts using graph architectures [28] and
attention mechanisms [18, 24]. Multi-stage network meth-
ods use multiple network modules to extract features and
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Figure 2. The framework diagram of a robust distracted action recognition method is presented. The system takes video as inputs and goes
through video clips sampling , action recognition classification, multi-view fusion, adaptive thresholding filtering, merging and removing,
and post connection to obtain the final results.

perform temporal localization step by step. Common multi-
stage network methods include BMN [12] and G-TAD [27].

Overall, one-stage research has become increasingly
mainstream, but these methods have high computational
costs and require large amounts of data to train the network.
Moreover, these methods cannot meet the requirements for
highly accurate temporal boundaries and classification.

Therefore, we rethink the method and start with a two-
stage network to simplify the temporal localization process.
Compared to conventional one-stage approaches, our sug-
gested two-stage technique has advantages.Through the di-
vision of the activity into successive stages, it lowers com-
puting costs and facilitates more effective resource usage.
It may also more accurately achieve temporal boundary
localization and classification and effectively utilize less
datasets.

3. Method

The natural driving behavior recognition framework pro-
posed in this paper consists of two stages, namely the ac-
tion classification stage and the temporal action localiza-
tion stage. The design and improvements of each stage will
be described in detail below. The input of this framework
is video frames, which go through processes such as ac-
tion classification, temporal action localization, and post-
processing to obtain the final results.

3.1. Overall Architecture

The distraction behavior classification and temporal lo-
calization task in track3 requires accurate classification
of many similar behavior categories and correct recogni-
tion and localization of distraction behavior in untrimmed
videos with missing explicit boundaries or obvious object
interactions. To address this challenge, a two-stage frame-
work for distraction behavior classification and temporal lo-
calization is proposed in this paper. The framework consists
of two stages: behavior classification and temporal localiza-
tion with post-processing.

In the behavior classification stage, video clips are fed
into the classification model to predict categories. We
adopted an attention mechanism-based model as classifi-
cation models. The model of attention mechanism has a
strong ability to capture motion information and perform
well in practice.

In the temporal localization and post-processing stage,
a multi-view fusion and adaptive thresholding method is
used to filter out low-confidence video clips based on the
predicted classification scores. In addition, a criterion for
candidate behavior interval merging and deletion is used to
determine the temporal boundaries of the behavior. To fur-
ther improve the overall performance of the model, a post
connection strategy is employed to further improve the ac-
curacy of behavioral boundary positioning.
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3.2. Action Recognition Module

The purpose of this module is to accurately classify be-
haviors in video clips and provide accurate classification
predictions to support subsequent temporal localization. A
well-performing classifier is required for accurate tempo-
ral localization on unedited natural driving behavior videos.
This section will introduce the behavior classification net-
work used in our approach, as well as the model training
strategy adopted.

Video Swin Transformer [14] is a Transformer-based 3D
behavior recognition network, which not only leverages the
global information modeling ability of Transformers but
also employs the method of moving windows to connect
across windows. This allows the model to focus on infor-
mation related to adjacent windows, extending the field of
perception to some extent and resulting in higher efficiency.
Due to a series of advantages of Video Swin Transformer,
we selected Swin-L as the backbone network for behavior
recognition.

Due to the difficulty of the dataset, where different be-
haviors have a high degree of similarity and are interfered
by the background class, the accuracy of the model under
a single view is insufficient to meet the task requirements.
Therefore, it is necessary to fully utilize the information
from the three views. However, the difficulty of classify-
ing the same behavior in different camera views is differ-
ent. For example, it is easy to distinguish left-hand phone
calls in the dashboard view, while the key item, the phone,
may be occluded in the right view, making classification
difficult. In order to allow the model to learn the features
of different perspectives in a more targeted manner on the
basis of learning all video features, we adopt a strategy of
training three perspectives separately to further improve the
accuracy of the model.

3.3. Temporal Localization Module

The objective of this module is to obtain the start and end
times of distracted driving behaviors in untrimmed videos
through temporal localization, in order to achieve more ac-
curate results. In our framework, post-processing for tem-
poral localization is crucial, which includes filtering out er-
roneous behaviors, connecting segments, and obtaining pro-
posal behaviors. The TAL process we designed are shown
in Fig. 3.

Threshold filtering. To address the issue of inaccurate
predictions due to the difficulty of learning for the classi-
fier, we propose a threshold filtering method. In general,
threshold filtering is effective. However, choosing the ap-
propriate threshold has become a tricky problem. Previ-
ous methods [22] have used the average prediction score of
the classifier on all videos as the global threshold and then
filtered out video segments with scores below the average
threshold. We call this solution Method1, and its formula is

Figure 3. The temporal localization and post-processing mod-
ule, which includes multi-view ensemble, threshold filtering, clip
merging and removing, post connection.

as follows:

Thr =

∑N=16
c=0

∑M
j=0 maxi=1,2,3

{
pcij

}
N ×M

(1)

where N represents the total number of categories and M
represents the total number of video clips per clip. pcij rep-
resents the classification prediction score of the j-th clip in
the i-th perspective for the c-th category.

However, due to differences in the duration and classi-
fication difficulty of different behaviors, some video seg-
ments have low confidence but are classified correctly,
while some video segments have high confidence but are
classified incorrectly. Therefore, we propose an adaptive
thresholding approach. We take the top-M scores for each
class according to the time axis and filter out video seg-
ments with scores lower than the class-specific threshold.
We call this solution Method2, and its formula is as follows:

Thrc = Sort

(
max

i=1,2,3

{
pcij

}
,M

)
(2)

where Sort(·,M) means to sort all the predicted scores of
the c-th category in descending order and take the M-th
value. pcij represents the classification prediction score of
the j-th clip in the i-th perspective for the c-th category.

By using this method, errors in video segments can be
filtered more accurately, resulting in more precise start and
end times for distracted behaviors. This can help improve
the performance and effectiveness of our model.

Merging and Removing. The objective of this module
is to concatenate short video segments into longer candidate
segments. Although threshold filtering can filter out a large
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number of misclassified and redundant video segments, the
filtered segments of each class are not contiguous in time,
making it difficult to determine the temporal boundaries of
behaviors. Therefore, it is necessary to splice discrete video
segments according to reasonable rules. To this end, we
have designed splicing criteria: if the time interval dt1 be-
tween two segments of the same category is less than T1,
these two segments are spliced together. Through this splic-
ing operation, the extraction of candidate segments is com-
pleted. In addition, since distracted behaviors generally last
no less than 3 seconds, we delete candidate segments with a
duration less than 3 seconds. In practice, we found that af-
ter connecting the segments, there may be overlapping pre-
dicted results. To solve this problem, we have designed a
simple filtering criterion inspired by the NMS [15], which
is to retain the first occurring behavior and remove the later
occurring behavior in the overlapping behaviors. Finally,
we successfully obtained candidate results for each category
and improved the accuracy of the algorithm.

Further processing. Taking into account the influence
of actual labels and datasets, this module is designed to fur-
ther refine the behavior boundaries from coarse localization
to fine localization to improve the final recognition accu-
racy. Given the irregular intervals at which actual behav-
ioral segments occur, we perform a secondary connection.
Previously, clips are connected to short proposals. Now, for
these short proposals, we conduct the post connection. If
the interval between two short proposals is less than dt2, we
connect the two short proposals, until there is no short pro-
posals to connect. The empirical value of dt2 is 20s. Now,
the final proposals extraction is complete.

4. Experiment
In this section, we will present in detail the threshold se-

lection strategy, the separate training strategy and the post
connection strategy that we proposed, and explain some ex-
perimental details. Subsequently, we will demonstrate the
effectiveness of the proposed method.

4.1. The Dataset of AI City Track 3

The dataset used in our study consists of a total of
594 videos, which were captured from 99 different drivers.
These video clips total about 90 hours. Each driver per-
formed 16 different tasks, such as talking on the phone,
eating, and reaching back, once in a random order. The
data collection was done using three cameras mounted in
the car, recording from different angles in synchronization.
Specifically, the videos in the dataset have a resolution of
1920×1080 pixels, a frame rate of 30 frames per second, and
are divided into three categories: A1 for training and A2/B
for testing. The training set contains information about the
start and end times of each behavior, as well as the category
of the behavior, as shown in Tab. 1. This dataset provides

a comprehensive and diverse benchmark for evaluating our
proposed methods.

ID Description ID Description

0 Normal Driving 8 Adjust control panel
1 Drinking 9 Pick up from floor(Dri)
2 Phone Call(Right) 10 Pick up from floor(Pas)
3 Phone Call(Left) 11 Talk to Pas(right)
4 Eating 12 Talk to Pas(backseat)
5 Text(Right) 13 yawning
6 Text(Left) 14 Hand on head
7 Reaching behind 15 Sing or dance with music

Table 1. 16 distracted actions. Label 0 is not considered for the
evaluation.

4.2. Experiment Setting

During the data preprocessing stage, the videos were
sampled at a rate of 8 frames per video. During training,
we adopt a pretrain-and-finetune manner, that is, putting
the data from three perspectives together for pre training,
and then fine tuning them separately. Training three per-
spectives separately enhances the model’s ability to learn
distinct features from each perspective,thereby further im-
proving the accuracy of the model. For the pre training pro-
cess, we use a pre trained Video Swin Transformer model
on Kinetics-400 [4]. All training and inference were per-
formed on 4 NVIDIA Tesla T4 GPUs, with each GPU hav-
ing 15GB of memory.

During training, we use 2 second as a clip, which con-
tains 16 frames, and the temporal order of clips is ran-
domly shuffled when inputting them into the classification
network. This can prevent the network from overfitting to a
certain class. During inference, we use 0.5 seconds as a clip
and perform inference in chronological order.

4.3. Metrics

Evaluation for track 3 is based on model activity identifi-
cation performance, measured by the average activity over-
lap score, which is defined as follows. Given a ground-truth
activity g with start time gs and end time ge, we will find
its closest predicted activity match as that predicted activ-
ity p of the same class as g and highest overlap score os
, with the added condition that start time ps and end time
pe are in the range [gs-10s, gs+10s] and [ge-10s, ge+10s],
respectively. The overlap between g and p is defined as the
ratio between the time intersection and the time union of the
two activities, i.e. [25]. The Intersection over Union(IoU)’s
formulation is as follows:

os(p, g) =
max(min(ge, pe)-max(gs, ps), 0)

max(ge, pe)-min(gs, ps)
(3)
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Swin [14] Respective Train Adaptive Thresholding Post Connection Scoce

✓ 0.4755
✓ ✓ 0.5066
✓ ✓ ✓ 0.6184
✓ ✓ ✓ ✓ 0.6272

Table 2. Ablation on the Verification set with different correction strategies.

The Average Intersection over Union (AIOU) is the av-
erage IOU calculated for each video.

Figure 4. Results of selecting top-M on the validation set.

Figure 5. Method results visualization on one of the verification
data set.The orange lines are the ground-truth distribution, and the
blue lines show the final predict results.

4.4. Main results

In order to better simulate the data distribution of the
test set A2 and verify the effectiveness of the model, we
selected all videos of A1 7 set as the verification set. The
ablation on the verification set are shown as Tab. 2. Ob-
viously, training the data set respectively in three perspec-
tives can enhance the recognition module’s functionality.
Post connection module improves the model to some ex-
tent. Adaptive thresholding strategy is quite effective, sig-
nificantly improves the Score from 0.5066 to 0.6184. Ad-
ditionally, Fig. 4 indicates that the adaptive thresholding is
highly sensitive to the top-M hyperparameter, as the selec-
tion of the threshold is crucial in locating the regions where
the behavior occurs in the sliding window temporal local-
ization algorithm. When M is too small, the threshold is
too high, resulting in decreased recall due to shorter behav-
ior regions. When M is too large, the threshold is too low,
resulting in decreased precision due to longer behavior re-
gions. There is an optimal M value that allows the calcu-
lated threshold to optimize the framework’s performance.
Based on the results of the ablation experiments, we se-
lected the hyperparameters that produced the best perfor-
mance.

To more intuitively show the effect of our model, the per-
formance of the model is visualized in Fig. 5. It’s notice-
able that our method performs excellently in classification
precision. This is due to the fact that we fully utilize the
outcomes of action recognition from three perspectives and
employ numerous useful techniques. The adaptive thresh-
olding approach, in particular, significantly enhances the
model.

4.5. Final Ranking

The performance of our framework and models has been
gradually improved through continuous optimization, mak-
ing it more practical in real-world scenarios. The specific
Test A results can be seen in Tab. 3, which lists the scores
of the top 10 teams. We finally achieve a score of 0.6080.

5. Conclusion
The detection and recognition of distracted driving be-

haviors has emerged as a new vision task with the rapid
development of computer vision. Our proposed adaptive
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Rank Team Score

1 TeleAI 0.8282
2 supermonkey 0.8213
3 yptang 0.8149
4 Rockets 0.8045
5 SKKU-AutoLab 0.7798
6 Bumblebee AIO 0.7624
7 boat 0.6844
8 MCPRL(ours) 0.6080
9 zzl 0.5963

10 USTC-IAT-United 0.2307

Table 3. Top 10 Leaderboard of AI City 2024 Track 3 Naturalistic
Driving Action Recognition.

distracted driving behavior recognition system achieved
good performance in the AICITY2024 Task3 competi-
tion. This task is a temporal action localization prob-
lem, and for untrimmed naturalistic driving videos, we
adopted a two-stage framework for distracted driving be-
havior classification-temporal localization based on sliding
window algorithm, which is concise and efficient. To ad-
dress the problem of high similarity between different be-
haviors and background class interference, we used multi-
view fusion and adaptive thresholding methods, effectively
filtering out false positives and missed detections. In addi-
tion, to solve the problem of blurred behavior boundary po-
sitioning, we designed a set of post-processing procedures,
including post connection and candidate behavior splicing
criteria, achieving the goal of coarse-to-fine localization of
behavior boundaries. Particularly, we conducted detailed
ablation experiments to validate the effectiveness of the im-
proved methods. In the future, we will continue to focus on
balancing the accuracy and efficiency of temporal localiza-
tion, in order to apply the methods proposed in this paper to
practical applications.
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