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Figure 1. The HOTA@n curve on the AIC24 validation set is shown for various sequences using online method (left) and offline method
(right). The online method struggles with re-identification issues lead to less accurate HOTA evaluations in extremely long sequences. The
horizontal dashed lines indicate the mHOTA value for each sequence, with each having a length of 24000 frames.

Abstract

Multi-camera Multi-Object Tracking has drawn signif-
icant attention in recent years due to its critical role in
surveillance, analytics, and related fields. Various chal-
lenges, including non-overlapping regions, varying occlu-
sion conditions, and the need for cross-domain generaliza-
tion in multi-camera tracking systems, remain unsolved in
the field. We propose a novel online tracking framework that
capitalizes on real-time camera calibration to achieve con-
sistent multi-object tracking across camera networks. Our
approach seamlessly integrates spatial and temporal asso-
ciation techniques, ensuring robust tracking even in long-
duration videos. However, standard tracking evaluation
metrics like CLEAR or HOTA fall short of accurately inter-
preting the performance of tracking over extended video se-
quences. Another contribution of this study is the proposal
of a new evaluation metric, mHOTA, which provides a bet-
ter assessment of tracking performance over prolonged pe-
riods. Our comprehensive experiments on the AIC24 Multi-
Camera People Tracking dataset demonstrate the effective-

ness and scalability of our method, along with the capability
of the proposed evaluation metric. The code will be avail-
able at https://github.com/ipl-uw/mHOTA.

1. Introduction

With the pervasive surveillance in recent years, the abil-
ity to effectively track individuals across multiple camera
feeds within extended video sequences is paramount for
various applications ranging from security surveillance to
retail analytics. However, the task becomes significantly
challenging when dealing with extremely long video se-
quences, where traditional tracking methods may fail due
to computational constraints or loss of tracking accuracy
over time. In this paper, we introduce an innovative on-
line approach and evaluation method tailored specifically
for tracking people across cameras in such extremely long
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sequence scenarios.
Most of the existing multi-camera people tracking

frameworks [9, 10, 12, 13] incorporate state-of-the-art sin-
gle camera online tracking methods [1, 28] and an offline
global link model to conduct tracking across cameras and
achieve robust and accurate tracking under long video se-
quence. The online tracking method either used motion
[5, 14, 15, 25, 26] or appearance [1, 8, 16, 23], while the
offline global link model often leverages appearance and
spatio-temporal information to conduct association.

However, although it achieves superior performance
with an online tracking method and offline global link
model, the area of online multi-camera tracking method is
still under exploration. Online multi-camera tracking shares
the ability to handle video in an online or even real-time
manner, which usually represents a lower computational
cost and also the potential for real-world application, where
sometimes processing the input sequence without access to
future information is needed. For this reason, we propose
a fully online approach for multi-camera people tracking,
aiming to facilitate research in this area and provide a more
practical solution. Furthermore, we also proposed a com-
prehensive evaluation framework designed to assess the ro-
bustness and reliability of our tracking approach across di-
verse tracking settings. This evaluation framework encom-
passes metrics for the 3D tracking accuracy under different
lengths of video sequence.

Our contributions can be summarized as follows:
• A new metric, mHOTA, is introduced to address the short-

comings of existing evaluation methods, with the goal of
establishing a fair benchmarking standard that accurately
assesses online and offline tracking methods on extremely
long sequences.

• We present an online and real-time multi-camera track-
ing framework leveraging camera calibration for spatial
and temporal association, optimized for extended video
sequences.

• The approach is validated on a multi-camera tracking
dataset, achieving fifth place in the 2024 AI City Chal-
lenge Track 1 under 3DHOTA.

2. Related Work
2.1. Single-Camera Multi-Object Tracking

Since the introduction of deep learning technology, the
single-camera multi-object tracking field has made signif-
icant progress, mainly adhering to the detection-tracking
paradigm [2, 6, 18], which detects the location of the object
to be tracked in each image frame extracted from a video,
and connects the objects between frames based on differ-
ent association clue. With the significant advances in object
detection, tracking by detection has been widely adopted
as the dominant paradigm in the MOT field. Early stud-

ies [5, 24] applied the Kalman filter to predict the position
in the next frame and used the motion feature as a way to
conduct data association. As a follow-up study, [24, 27]
focused on improving the association accuracy by extract-
ing appearance feature information and used as an associa-
tion clue. Recently, a lot of research has been proposed to
improve performance by incorporating different modules or
global link models into existing algorithms and boosting the
tracking performance. ByteTrack [29] proved that not only
high-confidence detection results but also low-confidence
detection results can contribute to better tracking perfor-
mance. Several works [8, 15] proposed to enhance the per-
formance with an extra tracklet-level association after on-
line tracking. Despite recent advancements in online track-
ing algorithms, the predominant focus remains on single-
camera tracking. However, the significance of tracking in-
dividuals across multiple cameras cannot be overlooked, as
it serves as a crucial application. To address this need, we
have developed an online multi-camera people tracking al-
gorithm designed to advance research in this area.

2.2. Multi-Camera Multi-Object Tracking

Following single-camera tracking research, there have been
efforts to adapt them to multi-camera applications. Most
recent methods for multi-camera multi-object tracking sys-
tems solve the problem with two separate stages. Usually,
a single-camera online tracking stage within each camera
and a global association stage with a global link model con-
ducting cross camera association based on spatio-temporal
information and tracklet’s feature similarity. While a two-
stage approach is common in most multi-camera track-
ing frameworks, the single-camera tracking stage in recent
works [11–13] usually does not consider using global infor-
mation from different cameras to conduct association. Fur-
thermore, some previous works [7, 13, 21] indicated that
the ID switch problem might also occur during the single-
camera tracking stage, which might further harm the final
performance of the multi-camera tracking system. To ad-
dress this issue, it is usually beneficial to conduct online
tracking with the assistance of global information. In this
work, we propose using an object’s world coordinates to
conduct online tracking, which utilizes each object’s loca-
tion and motion features under the world coordinate for as-
sociation. This approach enables us to leverage informa-
tion from multiple camera sources and maintain the track-
ing process online, even with multiple cameras as inputs.
When multiple cameras serve as input sources, the track-
ing process becomes more robust against various common
challenges in multi-object tracking, including occlusion and
missing detections.
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Figure 2. The pipeline of our online multi-camera people tracking framework. The extracted frames from all camera views are fed into the
same Detector (Sec 3.1) to predict the detection nodes in image space. The footpoint locations are projected into world coordinates for the
Spatial Association (Sec 3.2) to generate spatial nodes, which then undergo Temporal Association (Sec 3.3).

3. Method
3.1. Detection

In this section, we introduce an enhanced detection method-
ology leveraging the YOLO-based detector framework [17].
Specifically, we augment the detector architecture by incor-
porating an additional head dedicated to pose estimation,
which is crucial for robust people tracking across multiple
cameras. Let θD denote the detection head of the original
YOLO-based detector, and θP represent the pose estima-
tion head. Since the ground-truth world coordinates of each
track are provided, we can utilize Hc, the ground-truth cam-
era projection matrix, to reproject the corresponding foot
point location in the image coordinates of each visible de-
tection. We define the prediction bounding box and image
coordinate pair as follows:

X(c,t) =
{(

x
(c,t)
0 , k

(c,t)
0

)
,
(
x
(c,t)
1 , k

(c,t)
1

)
, · · ·

}
(1)

where x
(c,t)
i ∈ R5 represents the bounding coordinate and

confidence score under camera view c ∈ C at timestamp
t, and k

(c,t)
i ∈ R3 is the corresponding keypoint prediction

and confidence score in world coordinates for the i-th detec-
tion, which is projected from predicted image coordinates
with Hc. The representation X is what we call Detection
Node in the following content.

Our joint training objective is formulated as follows:

Ltotal(θD, θP ) = λbbox ·
(
Lloc +Lclass

)
+ λpose · Lpose (2)

where Lloc denotes the bounding box regression loss, Lclass
represents the classification loss, and Lpose is the pose es-
timation loss. By jointly optimizing these components,

Algorithm 1 Pseudo-code of Spatial Association

Require: Detection nodes, Xt, Clustering threshold, Tc

Aspect ratio threshold, Tr

# Initialize Z with detections
Zt ← []
for x(c,t) in Xt do

if check aspect(x(c,t)) > Tr then
Z.append(z(x(c,t), c))

end if
end for
# Merge all z not from the same view with distance < Tc

while nearest distance(Z) < Tc do
merge nearest(Z)

end while

our enhanced detector not only accurately localizes and
classifies objects but also provides reliable pose estimates,
thereby facilitating robust people tracking across diverse
camera views in extremely long sequences.

3.2. Spatial Association

To conduct an efficient and effective multi-view online
MOT pipeline, we decouple the spatial and temporal associ-
ation. For spatial association, as shown in Alg 1, we cluster
the detection results, X(c,t), across all the views based on
their spatial locations, into Spatial Nodes, Zt,

Zt =
{
zt0, z

t
1, · · ·

}
(3)

where zti represents a Spatial Node as it is a set of detection
nodes across different cameras c ∈ C at timestamp t, clus-
tered by world coordinates. All detection nodes, X(c,t), are
filtered by aspect ratio threshold, Tr, to remove potential
noisy detection results.
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It is important to highlight that the bounding box infor-
mation at the image level is maintained in the spatial node,
playing a crucial role in the tracking process. This data is
essential for deriving aggregate world coordinates, facili-
tating the seamless merging of different camera perspec-
tives. Moreover, it is valuable in post-processing, where
it helps improve the accuracy of tracking results. Keeping
this information ensures a more detailed understanding of
the scene, which is critical for efficient decision-making in
the tracking system.

3.3. Online Temporal Association

In the temporal association step, we employ standard track-
ing techniques under world coordinate systems, where the
spatial node serves as the fundamental unit that we aim to
associate across different timestamps.

Similar to multi-object tracking in traditional image
space, the Kalman filter [4] can handle linear motion very
well, especially since our tracking targets consist of humans
who follow simple movement patterns around the environ-
ment in the Omniverse. The Kalman filter has four param-
eters, x, y, x′, and y′, denoting the position in the x and y
directions and their respective velocities. These parameters
are essential for modeling the state of a tracked object and
updating its position and velocity estimates over time:

ẋ =
[
x, y, x′, y′

]
. (4)

In addition to the Kalman filter, we incorporate standard
association techniques to match detected objects across
frames and cameras. This matching is based on a combina-
tion of spatial proximity and motion prediction. We employ
a cost matrix that quantifies the likelihood of matches us-
ing L1 distance between existing tracks and new detections,
optimizing the association problem using the Hungarian al-
gorithm to minimize the overall cost.

3.4. ID Re-assignment

To improve the tracking performance, we further proposed
an ID Re-assignment method aims to merge tracklets from
the same identity after online tracking. After temporal as-
sociation is finished, we can obtain multiple tracklet frag-
ments from the whole sequence. However, several common
tracking errors can happen, including 1. the same tracklet
contained detections from multiple identities and were as-
signed with the same tracking ID, and 2. different tracklets
contained the detections from the same identity but were as-
signed with different tracking IDs. These are usually caused
by either the error during spatial and temporal association
or the failure in ReID when the identity reappears in videos.
To handle these error cases, we proposed an appearance-
based ID Re-assignment method, which contains two stages
including a tracklet splitting stage and a tracklet merging
stage.

Tracklet Splitting. We first perform tracklet splitting to
make tracklets into small fragments. For a tracklet with
length N , the appearance feature extracted from a ReID
model can be denoted as F ∈ RN×D. To determine
whether the tracklet contains features from multiple identi-
ties, we calculate the inner average pairwise cosine distance
Dinner of all the features in each tracklet, which the average
inner distance Dinner can be expressed as:

Dinner =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

Fi · Fj

|Fi| · |Fj |
(5)

In this equation, Fi and Fj represent the appearance feature
vectors of frames i and j in the tracklet, respectively. For
those tracklets with Dinner bigger than threshold τinner, we
further conduct hierarchical clustering to split the tracklets
into more fragmented tracklets based on their appearance
features. The number of clusters ranging from 2 to kcluster,
whenever the cluster results do not resulted in all the clus-
tered tracklets having Dinner smaller than τinner, we in-
crease the number of clusters by one and continue another
round of clustering process.
Tracklet Merging. After tracklet splitting, we should ob-
tain many fragmented tracklets that require further merg-
ing processing and assign the same fragment tracklets with
a unified tracking ID. We conduct an average pooling of
features for each tracklet and use hierarchical clustering to
merge these tracklet fragments. Note that we do not merge
any tracklets that have spatial and temporal overlap or larger
distance than merging threshold τmerge. We keep merging
until no more tracklet pair can be further merged.

4. The mHOTA Evaluation Metrics
HOTA. Higher Order Tracking Accuracy [19] is designed
to overcome limitations of previous CLEAR metrics [3]
such as IDF1 and MOTA by considering higher-order asso-
ciations and detection at the same time. A simple represen-
tation of HOTA in the multi-camera multi-object tracking
setting is:

HOTAα =
1

NC

∑
c∈C

√
DetAα ·AssAα (6)

where α represents the IoU threshold used to calculate DetA
and AssA while NC represents the number of views. As the
final HOTA is computed by averaging over different thresh-
olds.
3DHOTA. The organizer [20, 22] defines a modified ver-
sion of HOTA called 3DHOTA that serves as a benchmark-
ing metric for multi-camera multi-object tracking. Unlike
the traditional HOTA, which averages the matching of pre-
dicted tracks with ground-truth tracks under each camera
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Figure 3. Samples from the AIC24 Multi-Camera People Tracking dataset. This illustration showcases sequences across training,
validation, and test sets, including warehouse, market, and hospital environments. The dataset is composed of synchronized videos from 8
to 16 distinct camera angles, each spanning over 13 minutes, highlighting challenges such as non-overlapping regions, varying occlusion
conditions, and the need for cross-domain generalization in multi-camera tracking systems.

view, 3DHOTA is calculated directly in world coordinates,
where tracks are represented as an x, y coordinate only. In-
stead of using Intersection over Union (IoU), they employ
L2 distance and a fixed threshold β to determine if the pre-
dictions qualify to match the ground truth. This approach
restricts each track to predict only one world coordinate at
each time t, ensuring consistency across all camera views.

However, a significant limitation of all existing evalua-
tion metrics is their inability to adequately evaluate online
methods in long video sequence datasets. This is because
of the strategy used to determine the matching between pre-
dicted tracks and ground truth, which often favors brute
force post-processing methods like setting maximum track-
let numbers.
mHOTA. To address this, we present mHOTA, which can
serve as an evaluation metric for extremely long video se-
quences. Given a video sequence, we divide it into over-
lapping segments of length Ln where Ln = n × Lmax as
0 < n ≤ 1.0 stands for length ratio and Lmax stands for
total length of the sequence s. The 3DHOTA@n can be de-
fined as:

3DHOTA@n =
1

M

M−1∑
i=0

3DHOTA(sni ) (7)

sni = s

⌊Ln/2⌋ · i︸ ︷︷ ︸
start

, ⌊Ln/2⌋ · i+ Ln︸ ︷︷ ︸
end

 (8)

where we try to average the 3DHOTA values over a total of
M overlapping sequences sni . The s(fstart, fend) stands for
the slicing operation of the original s sequence.
This calculation ensures that 3DHOTA@n represents the
average 3DHOTA score over the selected segments of
length ratio n, taking into account the standard 3DHOTA
calculation method across different thresholds.

Finally, we adapt the similar idea of mAP (mean average
precision), defining the mHOTA as approximately the inte-
gral as summation that iterates over values of n from 0.05
to 1.00 in steps of 0.05:

mHOTA =

∫
0<n≤1

3DHOTA@n (9)

≈ 1

19

1.00∑
n=0.05
n+=0.05

3DHOTA@n. (10)

5. Experiment
5.1. Datasets

The AIC24 Multi-camera People Tracking dataset, intro-
duced by the AI City Challenge [22] this year, offers a com-
prehensive collection of data sourced from multiple cam-
era feeds within a synthetic environment. These large-
scale synthetic datasets were meticulously crafted using
the NVIDIA Omniverse Platform, encompassing three dis-
tinct indoor scenarios. In total, the dataset comprises 90
scenes, each scene featuring approximately 16 cameras.
Each camera provides synchronized high-resolution 1080p
video feeds at 30 frames per second with a total length of
around 10 minutes, enriched with detailed tracking annota-
tions such as tracking IDs, bounding boxes, and world co-
ordinates across camera views.

It’s worth noting that the training and validation data
only contain the warehouse scenario as in Figure 3. In con-
trast, the testing set presents a diverse array of scenarios
including warehouse, hospital, and supermarket. This di-
versity introduces additional challenges in both detection
and tracking tasks, stemming from the variations in ob-
ject size, camera shooting angle, and environment settings
across scenarios.
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Sequence Name @0.05 @0.2 @0.5 @0.05-1.00
HOTA AssA DetA HOTA AssA DetA HOTA AssA DetA mHOTA mAssA mDetA

scene 041 77.28 69.21 86.52 54.57 34.64 86.45 39.39 18.12 86.09 42.22 22.67 86.23
scene 042 73.67 67.73 80.38 52.09 34.02 80.16 36.93 17.00 80.51 39.66 21.73 80.29
scene 043 80.32 75.43 85.71 58.34 39.94 85.66 40.51 19.25 85.41 44.88 25.77 85.57
scene 044 73.43 63.65 84.95 50.09 29.80 84.71 35.16 14.62 84.75 38.41 19.41 84.37
scene 045 70.50 60.14 82.91 45.73 25.31 82.91 31.64 12.10 82.83 35.72 17.25 82.97

Total 75.04 67.23 84.09 52.16 32.74 83.98 36.73 16.22 82.92 40.18 21.37 83.89

Table 1. The online result HOTA, AssA, DetA and its mHOTA on validation data of AIC24 dataset.

Type HOTA@0.05 HOTA@0.2 HOTA@0.5 HOTA@1.0 mHOTA mAssA mDetA mLocA
Online 75.04 52.16 36.73 27.79 40.18 21.37 83.89 95.97
Offline 69.92 60.59 57.03 56.58 58.07 49.48 68.81 95.30

Table 2. Comparison of the online and offline method of the tracking performance on validation data of AIC24 dataset.

Model Type Scene HOTA AssA DetA LocA
Baseline Online W 28.08 9.53 82.61 99.20
Baseline+ Offline W 79.41 78.34 80.51 99.25
Baseline Offline All 53.58 47.94 60.91 91.02
Baseline+ Offline All 57.15 54.80 59.88 91.24

Table 3. Overall tacking performance on test data of AIC24
dataset. Due to number of submission tries being limited, the first
two rows of result (in gray color) are recompute based on the eval-
uation script provided by the organizer.

Figure 4. The visualization of the detection results on AIC24 test-
ing dataset. The gray area are padding region to demonstratet the
the keypoint predictions can land outside of the image.k

5.2. Implementation Details

Detector. With a frame rate of 30 FPS, the training and val-
idation sets contain over 20 million high-resolution frames
from 60 annotated sequences. To balance training time and
detection performance, we train our YOLO-based detector
at a sampling rate of 100 using all scenes in AIC24 and
a sample rate of 250 using all hospital and market scenes
in AIC23. The YOLOv8-x model was trained with an ini-
tial learning rate of 0.01 and a weight decay of 0.01 for 60
epochs. Keypoint annotations are in world coordinates, so
we reproject them to image coordinates using the provided
projection matrix. Note that some keypoints may extend
beyond the bounding box or image due to occlusion. We re-
tain these out-of-bound keypoints in the hope of improving
both bounding box and keypoint predictions.
Spatial Association. We use hierarchical clustering for spa-

tial association with clustering threshold, Tc, and aspect
ratio threshold, Tr. More details and ablation studies are
shown in Sec 3 and Table 4.
Temporal Association. We employ the default Kalman fil-
ter parameters from ByteTrack [28]. Considering the poten-
tial for long-term occlusion, we use a larger tracking buffer
of 90 frames, which is equivalent to 3 seconds. The match-
ing threshold is set to 2.5 (meter).
ID Re-assignment. For extracting the appearance feature,
we trained an OSNet model [30] using the training proce-
dure outlined in [13], employing ReID data sampled from
this year’s AI City Challenge training and validation sets
[22]. The final sampled dataset comprises 41,757 training
images, 20,919 testing images, and 21,210 query images.
We set the tracklet re-assignment parameter k to 10, τinner
to 0.3, and τmerge to 0.15.

5.3. Experiment Results

Online Results. We implemented our online method on the
first five scenes of the validation set from the 2024 AI City
Challenge multi-camera people tracking dataset [22]. The
tracking performance is shown in Table 2. As depicted in
the table, tracking metrics related to association, including
HOTA and AssA, drastically degrade as the length ratio of
the sequence increases, indicating the drawback of online
tracking under extremely long sequences. Under a length
ratio of 0.05, online tracking maintains robust tracking ac-
curacy with over 75% HOTA, while under a higher length
ratio setting such as 0.5, the failure in long-term ReID leads
to a significant drop in tracking performance. We also re-
port the performance of our online method on the test set in
Table 3.
Offline Results. To further improve performance, we incor-
porate offline tracklet merging as a post-processing method
to boost the final performance. We compare the perfor-
mance between the online and offline methods in Table
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Tc Tr mHOTA mAssA mDetA mLocA
1.0 0 34.09 16.51 79.92 95.00
2.5 0 38.05 19.57 82.75 94.06
1.0 1.4 38.78 20.16 83.56 95.83
2.5 1.4 40.18 21.37 83.89 95.97

Table 4. Online tracking performance of using different spatial
association parameters on validation data of AIC24 dataset. The
default setting stands for direction using (x+0.5w, y+0.95h) of
each box as the foot point coordinate in image space.

BBox Keypoint mHOTA mAssA mDetA mLocA
prediction default 32.53 15.76 76.15 90.50
prediction prediction 40.18 21.37 83.89 95.97

GT default 52.37 30.69 96.76 99.32
GT GT 60.63 39.29 99.85 99.74

Table 5. Online tracking performance of using different bounding
box and keypoint source on validation data of AIC24 dataset.

2. In a lower length ratio like 0.05, the online method
achieves a higher HOTA compared to the offline method.
This is mainly caused by incorrect merging in the offline
post-processing, which might merge tracklets from differ-
ent identities incorrectly, resulting in the removal of some
parts of overlapped tracklets (with the same tracking ID un-
der the same frame) during the evaluation stage. However,
with a higher length ratio like 0.5 or 1.0, the offline method
achieves better performance. This is attributed to the ability
of offline post-processing to conduct long-term ReID. The
performance of the offline method is reported in 3.

5.4. Ablation Studies

Different Spatial and Aspect Ratio Thresholds. As
shown in Table 4, several different combinations of spatial
and aspect ratio thresholds are tested. We achieve the best
performance with Tc = 2.5 and Tr = 1.4. Tr is set to re-
move the noisy or partially detected human bounding boxes.
The reason why larger Tc does not lead to clustering wrong
instances is that we make sure in each spatial node, zi, all
detection nodes are from different cameras.
Effectiveness of Keypoint Estimation. To evaluate the
effectiveness of keypoint estimation, we compared the
mHOTA from different sources of detected bounding boxes
and spatial keypoint estimation. For bounding boxes, we
try to utilize predicted bounding boxes from Yolov8 and
ground truth bounding boxes. On the other hand, for key-
point estimation, we try predicted and default keypoints
from the bottom of the bounding boxes. As shown in Ta-
ble 5, with the help of more accurate estimated keypoints
or ground truth keypoints, the mHOTA improves 7.65%
with predicted bounding boxes and 8.26% with ground truth
bounding boxes.

Figure 5. Example of the impact of occlusion on tracking in a
multi-camera setup, where selective masking (region in red) and
view optimization can enhance keypoint prediction and spatial as-
sociation.

6. Discussion and Limitations

Exploring Online Re-Identification. In Tables 1, 2, and
3, it is evident that the performance degradation of the on-
line method intensifies with the increase in frame count.
Consequently, offline re-identification techniques, such as
track ID reassignment, splitting, and merging, coupled with
post-processing methods like interpolation, can surpass the
online method in performance. Nevertheless, online track-
ing holds significant importance in real-world multi-camera
multi-object tracking applications due to its due to its real-
time processing capabilities and ability to provide imme-
diate situational awareness, which is critical for dynamic
decision-making and timely response in various scenarios.

A potential strategy to mitigate this issue is to execute of-
fline tracking every nk frame, allowing for accurate recon-
struction of the track’s appearance features (from different
cameras), motion states, and historical trajectory. This ap-
proach could enhance future frame association, especially
if temporal association involves matching these elements.
However, this may result in a trade-off, as the method might
not support real-time implementation.
Keypoint Reliability. The method proposed in this paper
relies heavily on the accuracy of keypoint prediction. With
supervised learning, it performs exceptionally well in the
warehouse scene during testing, as indicated in Table 3,
with a nearly perfect Localization Accuracy (LocA) high-
lighting the success of the spatial association step. How-
ever, when this method is adapted to unfamiliar settings
such as market and hospital, which feature different back-
grounds, camera angles, and distances to the target, there is
a noticeable and significant drop in performance. To over-
come this, one possible approach is to employ unsupervised
domain adaptation techniques for detector training, aiming
to reduce the domain disparity in such scenarios.
Camera-View Selection. In our experiments, we observed
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that not all cameras should be treated equally. For instance,
as shown in Figure 5, some tracks are significantly occluded
by the aisle, leading to substantial errors in keypoint predic-
tion in the image coordinates. These errors tend to amplify
when reprojected back to world coordinates due to the in-
creased distance from the camera. However, these same ar-
eas might be clearly captured by another camera. By selec-
tively masking out the bounding boxes and keypoint pre-
dictions in the affected area, we often achieve improved
results in spatial association. Determining which camera
views to retain or which areas to mask out presents an in-
triguing challenge, with the potential for resolution through
learning-based methods.

7. Conclusion

We introduce an online and real-time multi-camera peo-
ple tracking framework that utilizes established camera cal-
ibration for spatial association in world coordinates, fol-
lowed by temporal association. Additionally, we address
the current shortcomings in metrics and the absence of ade-
quate evaluation methods for online tracking in lengthy se-
quences. To address this gap, we propose the mHOTA met-
ric, which offers a more comprehensive evaluation approach
and hopes to establish it as a standard benchmark for assess-
ing the effectiveness of online tracking methods in extended
video sequences. Our method is thoroughly evaluated on a
multi-camera people tracking dataset across different sce-
narios. Our proposed approach, along with post-processing,
achieved a fifth-place ranking on the public test set of the
2024 AI City Challenge Track 1 in terms of 3DHOTA.
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