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Abstract

In recent years, deep neural networks (DNNs) have be-
come integral to many real-world applications. A pressing
concern in these deployments pertains to their vulnerabil-
ity to adversarial attacks. In this work, we focus on the
transferability of adversarial examples in a real-world de-
ployment setting involving both a cloud model and an edge
model. The cloud model is a black-box victim model, while
the edge model is a surrogate model that is fully accessible
to users. We investigated scenarios where attackers lever-
age information from the known surrogate model to gener-
ate adversarial examples to attack the unknown black-box
victim model. Existing methods often optimize the adver-
sarial example generation based on the steepest gradients
estimated from the surrogate model, which do not gener-
alize effectively to the victim model. To better gauge the
for real-world adversarial risks in a cloud-edge deployment
setting, we proposed an novel attack mechanism that en-
hanced transferability by incorporating a sharpness-aware
objective into the optimization process. Our evaluation
on image classification benchmarks demonstrates that our
method significantly improves adversarial example’s trans-
ferability, even on the foundational computer vision models
such as OFA-Large, showcasing its potential as a new stan-
dard in assessing attack transferability within a cloud-edge
hybrid deployment scenario.

1. Introduction
The widespread adoption of deep neural networks (DNNs)
has raised security concerns about their vulnerability to ad-
versarial attacks [1, 13], especially given the observation
that attackers can add a small amount of noise to the origi-
nal input images and fools the model to overturn their orig-
inally correct predictions into incorrect ones [8]. In particu-
lar, we are concerned about the transferability of the adver-
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Figure 1. Illustration of the real-world adversarial attack setting.
Since the target model of the service provider is generally a black
box that only outputs prediction score and limits malicious access,
the attacker will (1) generate adversarial image through a known
surrogate model and then (2) put the generated adversarial exam-
ple to target model for attacking.

sarial examples in a cloud-edge deployment scenario. Here,
attackers can utilize a white-box edge (surrogate) model to
generate adversarial examples and further attack a black-
box cloud (victim) model. This problem is critical because
if the attack pattern, generated using knowledge of a known
model, is transferrable to a target victim model, it enables
attackers to compromise the target victim model even with
limited access. In high-stakes applications, this transferra-
bility can result in significant financial losses [12] and trust
erosion among users.

Early research on adversarial example generation mainly
operated within the white-box setting, where attackers had
full access to the victim model’s parameters, enabling a
deterministic reverse-engineering process to deceive the
model effectively [3, 20]. Subsequently, the black-box sce-
nario was introduced, where attackers only possessed ac-
cess to prediction logits or top-1 predictions [2]. However,
a practical adversarial attack setting tailored for real-world
applications, encompassing diverse compute platforms, in-
cluding the cloud-edge deployment scenario we are investi-
gating, has yet to be established. In this scenario, the edge
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model is typically a white-box, deployed on the user end
and fully accessible, while the cloud model remains a black-
box, offering only final prediction logits or top-1 scores to
end users, as illustrated in Fig. 1. We refer to this setting
as real-world adversarial attack. Our objective is to in-
vestigate how knowledge acquired from the white-box edge
model can be transferred to fool the black-box cloud model,
which holds significant security implications. In this con-
text, we consider two practical scenarios:
• Scenario 1: Attackers cannot query target victim models

before inputting adversarial examples.
• Scenario 2: Attackers can query victim models for a lim-

ited number of times (finite horizon).
These two scenarios lead us to finding solutions to the fol-
lowing research questions:
• Q1: What is the key to generating adversarial examples

with high transferability rates and how can we utilize it
to design an adversarial example generation method with
high transferability rates?

• Q2: How can we employ the black-box output from the
victim target model to generate adversarial examples with
higher transferability when a limited number of queries to
the victom models are allowed?
Our approach to addressing research question Q1 is

rooted in the observation that many effective adversar-
ial example generation methods rely on gradient informa-
tion. In light of this, we explore sharpness-aware optimiza-
tion [11, 29] and introduce a sharpness regularization term
into the attack formulation of PGD [20] to better estimate
the loss landscape around the adversarial example, thus en-
hancing attack transferability. Specifically, we introduce the
notion of the average-descent direction for solving this op-
timization problem, as opposed to the gradient-descent di-
rection used in prior work[20]. The average-descent direc-
tion allows us to assess sharpness around the adversarial ex-
ample in all directions, rather than just along the gradient-
descent direction. We estimate the average-descent direc-
tion using Monte Carlo estimation, with randomly sampled
Gaussian noise added to the input image. For research ques-
tion Q2, where attackers are permitted a limited number of
queries to the victim target model, we incorporate the output
logits from the black-box model into our sharpness-aware
optimization solution. This is achieved by modifying the
direction of the randomly sampled perturbation based on
changes in the output logits. These innovations enable to
make the following contributions:
• We incorporate a sharpness-aware regularization into

the existing adversarial example generation optimization
framework. Moreover, we use the average-descent direc-
tion to handle this sharpness regularization term. This
approach allows us to consider the flatness of the loss
landscape around the input in all directions. Through
extensive experiments, comparing our propsed method

with various adversarial attack baselines, we demonstrate
that our approach significantly enhances the transferabil-
ity rate on the adversarial samples from 7.29% to 32.41%
depending on the surrogate and target models.

• We further propose a mechanism to integrate the black-
box output logit information in the optimization process
by flipping the direction of the sampled Gaussian noise
through the estimated gradient of the target black-box
model. This approach can achiever better transferability
rate on the adversarial samples up to 21.99% in most of
cases.

2. Related Work
2.1. Adversarial Attack and Robustness

It has been observed that DNNs are prone to change their
correct prediction results into incorrect ones by being at-
tacked by adversarial examples [14]. Existing adversar-
ial attack can generally be classified as white-box [14, 21]
and black-box [4, 15, 17, 25] ones, where the white-box
ones assume the full knowledge of the victim models while
the black-box ones only have the knowledge of prediction
score distribution. Respective white-box methods include
FGSM [14] and PGD [21], which generate adversarial ex-
amples based on the gradient with respective to the input
images. For the black-box ones, since they only have partial
knowledge, the attack transferability among different archi-
tecture is not always guarantee. In our work, in addition to
the respective white-box methods, we choose the black-box
method named Square Attack [2] as another type of attack
to verify our hypothesis, which is able to generate adver-
sarial examples that be transferable among different DNN
structures.

Although existing works have conducted discussion on
the adversarial attack transferability [26], they usually do
not take the real-world application scenario into considera-
tion. Although there is a recent work [22] exploring attack-
ing foundation model with prompts in the black-box set-
ting, it requires queries to black-box systems to train the
prompts, which is unrealistic because real-world systems
usually limit the overdue access from users. For our work,
we are particularly interested in how the adversarial attack
transferability observed by existing research affects DNNs
in the real-world application scenario. Such an unexplored
discussion can bridge the gap between existing theoretical
research and real-world application for DNNs.

2.2. Sharpness-Aware Optimization

Sharpness is the geometry measure of the loss landscape
and generalization [11, 29] in parameter optimization. In
mathematical terminology, the sharpness of the loss land-
scape is the largest eigenvalue of the Hessian matrix of
the loss function with respect to the model parameters. In
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model parameter optimization, a model will have good gen-
eralization ability if the sharpness value is small. In terms
of geometric interpretation, a low degree of sharpness indi-
cates a high degree of flatness in the loss landscape around
the optimized parameters. Such a good property in the loss
landscape can further help improve the generalization abil-
ity of the trained model parameters among different tasks.

In our work, we focus on the adversarial example trans-
ferability instead of model generalization ability. How-
ever, based on the observation on how sharpness-aware op-
timization helps increase the generalization ability of the
model, we can include the sharpness-aware optimization
framework in the formulation of adversarial example gen-
eration too to improve the transferability of adversarial ex-
amples. This idea can be naturally applied in adversarial
example optimization because a good ability of transfer-
ability means it can consistently fool different victim mod-
els, which can be considered as generalizaiton ability of the
adversarial example. Although existing works [30] have
applied the sharpness-aware regularization on the formula-
tion of adversarial example generation, their solutions adopt
the gradient-descent direction for solving the optimization
problem. Our solution differs from them by adopting the
average-descent direction instead to solve the optimization
problem. Such a treatment is able to take a more compre-
hensive consideration on the landscape around the adver-
sarial example, and it is a better estimation on the sharpness
around the adversarial example.

3. Methodology
3.1. Preliminary

Adversarial Attack: Suppose we are given a C-class im-
age classification dataset D = (X,Y ) over a compact
image space X ⊂ R3×m×n and a discrete label space
Y = {y1, · · · , yC}, where each image x ∈ X has 3 chan-
nels and m×n pixels in each channel. Now we are given an
image x ∈ R3×m×n whose label is y and a image classifica-
tion model f that successfully classifies x into the category
of y, i.e., f(x) = y. In the task of adversarial attack [13]
we would like to generate an adversarial image x′ = x+ δ
by adding a small amount of noise δ into x such that

f(x′) ̸= y, s.t., ||δ||p < ϵ, (1)

where f(x′) ̸= y means that f cannot classify x′ correctly
after δ is added to x, and the constraint ||δ||p < ϵ means
that the Lp norm of the added noise δ is confined within the
range of ϵ > 0, i.e., the perturbation is imperceptible.
Transferable Attack. In this paper, we focus on the real-
world adversarial attack setting where attacks targeting a
victim modelm, denoted as f , is conducted through a surro-
gate model, denoted as g. In this context, attackers initially
employ the white-box model g to generate an adversarial

example x′ from x. Subsequently, they input x′ into f to
assess whether it can deceive f . We define an adversarial
example as transferable [28] from g to f if two conditions
are met. Firstly, we require that:

f(x) = g(x) = y, (2)

which means both f and g successfully classify x into the
correct class y. Secondly, we demand that:

f(x′) ̸= y and g(x′) ̸= y, subject to ||δ||p < ϵ, (3)

indicating that x′ successfully deceives both f and g. In this
context, x′ is generated from g using an adversarial attack
algorithm, while maintaining the constraint ||x′ − x||p < ϵ.
PGD Attack: As attackers have knowledge of the surro-
gate model g, they typically employ white-box adversarial
attack methods to generate an adversarial example, denoted
as x′, given an input x. The generation of an adversarial
example can be framed as an optimization problem with the
following formulation:

x′ = argmax
x̃

L(g(x̃), y), s.t., ||δ||p = ||x̃− x|| < ϵ, (4)

where L is the loss function. This formulation indicates
that the optimal adversarial example x′ is the one among
all possible {x̃} that can fool the surrogate model to the
largest degree as measured by the loss function L under the
imperceptibility constraint that ||δ||p = ||x̃− x|| < ϵ.

Existing solutions to Eq. (4) include PGD [20] and
FGSM [13]. We primarily consider PGD here as it is the
most representative method for solving Eq. (4), which in-
volves an iterative process. Suppose it has T iteration and
the initial solution x′

0 = x. In the t-th iteration (1 ≤ t ≤ T ),
given the output of previous iteration x′

t−1, we have

x′
t = ΠBϵ(x′

t−1)
(x′

t−1 + α∇x′
t−1

L(g(x′
t−1), y), (5)

where ∇x′
t−1

L(g(x′
t−1), y) is the gradient with respect to

the previous solution x′
t−1 and α is the step size for updating

x′
t−1 for the current iteration. ΠBϵ(x′

t−1)
means projecting

the updated solution x′
t−1 + α∇x′

t−1
L(g(x′

t−1), y) in the
Lp norm ball centered at x′

t−1 whose radius is ϵ. After T
iterations, the output x′

T will be the final solution to the
optimization problem Eq. (4).

3.2. Sharpness-Aware Optimization

Previous research has drawn parallels between enhancing
the transferability of adversarial examples and improving
a model’s generalization capabilities. The latter typically
involves favoring solutions within regions characterized by
flat loss landscapes, which can be quantified using the con-
cept of loss landscape sharpness [29]. From an optimization
perspective, the notion of a model’s generalization aligns
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Figure 2. Illustration of sharpness-aware optimization. (a) The
gradient direction used for constructing adversarial examples are
the weighted sum of the gradient calculated on x′

t−1 and the
average-direction gradient estimated from the samples which are
obtained from adding Gaussian noise to perturbed sample x′

t−1.
(b) For the average-direction gradient, it is an element-wise av-
erage of the gradient calculated from the surrounding sample
x′
t−1 + r ηi

||ηi||
which is perturbed sample of x′

t−1 by adding nor-
malized Gaussian noise ηi

||ηi||
.

with the concept of adversarial transferability in adversar-
ial images. Given this observation, we hypothesize that
highly transferable adversarial examples should be located
in flat regions within the optimization function L(g(x̃), y)
in Eq.(4). To introduce sharpness-awareness into the opti-
mization problem and enhance the transferability of adver-
sarial examples, we incorporate a regularization term and
modify the optimization problem as follows:

x′ = argmax
x̃

(L(g(x̃), y)− λ||∇x̃L(g(x̃), y)||2),

s.t., ||δ||p = ||x̃− x||p < ϵ, (6)

where ||∇x̃L(fs(x̃), y)||2 is the regularization term mea-
sured by the L2 norm, λ is the weight of the regularization
term, and we take the negative of the regularization term to
fit in the maximization optimization framework.

The difference between the sharpness-aware optimiza-
tion in Eq. (6) and the vanilla optimization in Eq. (4) lies
in the regularization term ||∇x̃L(fs(x̃), y)||2, which in-
dicates the sharpness of the area around x̃ in the opti-
mization manifold. Upon convergence where x̃ → x′, if
||∇x′L(g(x′), y)||2 is small, it means the local area around
x′ is flat and has a higher degree of transferability.

Denote Lreg = L(g(x̃), y) − λ||∇x′L(g(x′), y)||2 and
Lx̃ = L(g(x̃), y). Solving Eq. (6) directly would introduce
the calculation of the Hessian matrix of Lreg with respect to
x̃ as follows:

∇x̃Lreg = ∇x̃Lx̃ − λ∇2
x̃Lx̃ · ∇x̃Lx̃

||∇x̃Lx̃||
(7)

which can be difficult to compute in practice. To relieve
it, existing methods [30] usually use Taylor expansion to
approximate the Hessian and ignore the high-order terms.
Specifically, by Taylor expansion, introducing a small per-
turbation with a step size of r gives rise to:

∇x̃L(g(x̃+ r
∇x̃Lx̃

||∇x̃Lx̃||
), y)

= ∇x̃Lx̃ + r
∇x̃Lx̃

||∇x̃Lx̃||
∇2

x̃Lx̃ +O(∇2
x̃Lx̃). (8)

Thus, we can have

∇x̃Lreg ≈ (1+
λ

r
)∇x̃Lx̃−

λ

r
∇x̃L(g(x̃+r

∇x̃Lx̃

||∇x̃Lx̃||
), y)

(9)

Eq. (9) uses the gradient direction to measure the sharp-
ness around x̃. However, we argue that it only measures
the flatness in one direction, i.e., the steepest descent direc-
tion which has the highest slope, which may not lead to the
global optimum. To alleviate this limitation, we propose
to use the average direction for measuring the sharpness.
Formally, under L-Lipschitz assumption, the average ascent
gradient can be expressed as follows,

∇x̃Lavg = ∇x̃

(
Eη∼N(0,I)L(g(x̃+ r

η

||η||
), y)

)
(10)

where N(0, I) stands for the isotropic Gaussian distribu-
tion. In implementation, we adopt Monte Carlo estimation
for calculating Eq. (10). Suppose we sample k times from
Gaussian distribution N(0, I), which we denote the i-th one
as ηi. Formally, we use the following equation to estimate
Eq. (10):

∇̃x̃Lavg =
1

k

k∑
i=1

∇x̃L(g(x̃+ r
ηi

||ηi||
), y), (11)

Thus, the gradient we use to update adversarial example be-
comes:

∇x̃Lreg = (1 +
λ

r
)∇x̃L(g(x̃), y)−

λ

r
∇̃x̃Lavg, (12)

This method is illustrated in details in Figure 2. For sim-
plicity, we name our attack method as Average Direction
Regulation (ADR) attack.

3.3. Further Justifications For ADR Attack Method

Motivation for sharpness-aware optimization In our
sharpness-aware optimization, we put regularization on the
decision boundary location where adversarial examples are
generated. Since in the general case the victim is less sen-
sitive to adversarial examples in the flat area of its decision
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black-box target model, we can utilize the output information to
randomly flip the estimated average-direction gradient.

boundary [23], adversarial examples generated around this
area will be more powerful and be more easily transferred to
other models compared to the ones generated in other areas.

Motivation for using randomized direction for optimiza-
tion. In adversarial example generation, diverse input pat-
terns are proved to be effective in improving the trans-
ferability of adversarial examples across different mod-
els. [31]. Since adding random noise to the input introduces
diversity to the input compared to only using the gradient
direction, the adversarial examples generated through ran-
dom estimation will have a higher probability of fooling
the victim model based on the principle we have discussed
above. Therefore, we adopt a random estimation in solv-
ing sharpness-aware optimization for adversarial example
generation, which can lead to higher transferability among
different models, as illustrated in Sec. 4.3.

3.4. Utilizing Target Model with Limited Query

In the real-world scenario, attackers may have a limited
number of queries (finite horizon) they can use on the black-
box target model to aid in the generation of adversarial ex-
amples (e.g., by employing the black-box model’s outputs).
In this context, our question is how to leverage the output
from the black-box target model to enhance the transfer-
ability of adversarial examples. To address this question,
we propose utilizing the estimated gradient from the black-
box model to adjust the average ascent direction, which is
initially derived entirely from the white-box model.

Firstly, we would like to introduce how gradient is esti-
mated given the black-box prediction [5]. Given the white-
box surrogate model g and black-box target model f . Sup-
pose at the time step T − 1, we have adversarial example
x′
T−1. We can calculate the loss at x′

T−1 and denote it as
L(f(x′

T−1), y). Suppose we spend the last k queries on
black-box target model, we can estimate the gradient of loss

function with respect to x′
t by Gaussian noise as follows:

∇̃x′
T−1

Lk ≈ ηi
r||ηi||

· L
(
f(x′

T−1 + r
ηi

||ηi||
), y

)
−

ηi
r||ηi||

· L
(
f(x′

T−1), y
)

(13)

where ηi is the Gaussian noise sampled at query k.
This can be consider as an estimate of gradient by one-

sample Monte Carlo estimation. We can see from this equa-

tion that
L(f((x′

T−1+r
ηi

||ηi||
),y)−L(f(x′

T−1),y)

r decide the di-
rection of gradient. We can use this information to improve
our calculation in Eq (11) as follows, which is demonstrated
in Figure 3:

(1) If
L(f((x′

T−1+r
ηi

||ηi||
),y)−L(f(x′

T−1),y)

r > 0, we keep
the sampled Gaussian noise to calculate the average direc-

tion in Eq (11). (2) If
L(f((x′

T−1+r
ηi

||ηi||
),y)−L(f(x′

T−1),y)

r <
0, we adjust the sampled direction to make it align with the
gradient estimate direction of black-box target model. In
particular, we sample ρ of all elements in ηi and change
their values by multiplying them by -1. As a result, we
could make the estimated average direction more aligned
with the gradient direction of black-box model, which helps
improve the transferability rate.

4. Experiments

4.1. Experimental Setup

Dataset The image classification dataset we use in experi-
ment is ImageNet-1k [7]. We randomly sample 5,000 im-
ages as samples for attack.
Baselines Methods The used baselines in our comparison
experiments are as follows.
• PGD Attack [20]. PGD attack is representative white-

box adversarial attack method that iteratively updates the
adversarial examples through gradient ascent.

• FGSM Attack [13]. It is another representative white-
box adversarial attack that uses gradient information to
generate adversarial examples. It takes the sign of the
gradient as the perturbation added to the images.

• Square Attack [2] is a black-box adversarial attack that
uses randomized search to generated adversarial exam-
ples given the black-box prediction information from the
target model.

• Universal Adversarial Attack [24]. This is a method that
train a general adversarial pattern that can be added uni-
versally among different models.

• GNP Attack [30]. Compared to PGD attack, this method
introduces an l2 norm regularizer for gradient and solve it
by ascent-direction solution as shown in Eq. (9).
The step size of optimization is 2/255, and we the max-

imum perturbation between the perturbed image x′ and the
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original one x is ||x′ − x||∞ = 8/255, which means the l∞
norm between x′ and x is at most 8/255.
Evaluation Metric. Naturally, transferability rate (TR) is
used in our experimental evaluation. Given a set of testing
images Dtest = {(x, y)}, we calculate it as follows:

TR =

∑
(x,y) Dtest

1f(x)=g(x)=y,f(x′) ̸=y and g(x′ )̸=y∑
(x,y) Dtest

1(f(x) = g(x) = y)
,

(14)
where 1 is the indicator function which equals to 1 when
the condition satisfies and equals to 0 when it does not.
Victim Model. We adopt the following representative
models of different types as victim models, which includ-
ing convolutional neural networks, Transformer-based net-
works, and foundation models.
• ResNet-18 and ResNet-50 [16]. ResNet is a type of rep-

resentative convolutional neural networks that use resid-
ual connection to relieve the vanishing gradient prob-
lem in convolutional structures. It has been widely used
as the base model for different computer vision tasks.
In our experiments, we use two relatively light-weight
ResNet structures including ResNet-18 and ResNet-50 as
the black-box victim models.

• ViT-b/16 and ViT-b/32 [10]. Vision Transformer is a re-
cently favored DNN architecture for computer vision in-
spired by the success of Transformer [9] in natural lan-
guage processing tasks. One representative structure is
named ViT, which treats each image patch as Trans-
former token for computer vision tasks such as image
classification. In our experiments, we adopt the rela-
tively lightweight ViT base model (ViT-b) as victim tar-
get model, and two of its variants include ViT-b/16 and
ViT-b/32, which divide a image into 16 and 32 patches,
respectively.

• Swin-T [19]. Swin Transformer is another representative
Transformer structure. Compared to ViT structures, it in-
cludes shifted windows that can improve the computation
efficiency and helps obtain better performance. We used
the configuration tiny in our experiment.

• OFA-Large [27]. OFA is a recently proposed foun-
dation model which can be fine-tuned into different
types of structures. It uses convolutional structure (e.g.,
ResNet50) to extract visual features, and the visual fea-
tures are put to Transformer-based encoder-decoder for
predictions. Compared to previously mentioned encoder-
only structure (ViT and Swin Transformer), OFA has a
brand new encoder-decoder structure that output the pre-
diction through generative response. It helps obtain better
performance.

Surrogate Models. In our experiments, the surrogate mod-
els include ViT-b/16 and ResNet-50. We use them because
they are representative for lightweight convolutional neural
networks and Transformer-based model, which can reduce

the computation resources the attackers require.

4.2. Comparison Results

4.2.1 Comparison with Baseline Methods

We show the comparison results with baselines in Table 1.
Firstly, we can find that attacks such as square attack and
universal attack generally cannot generate adversarial ex-
ample with high transferability. This is basically because
(1) black-box attacks only utilize the output logit informa-
tion for adversarial example generation and they cannot use
the gradient information. As a result, since the generation
adversarial example does not take the loss landscape of ad-
versarial example generation into consideration, the gener-
ated ones tailors only to one specific models and has a lower
degree of transferability. (2) The data distribution of images
used to learn the universal adversarial pattern in the Univer-
sal Attack is usually different from the test data, and thus
the attack pattern cannot be easily applied to other target
models.

Secondly, among white-box adversarial attacks, PGD
attack usually generate adversarial examples with higher
transferability rates. Based on that, the gradient regular-
ization is able to further improve the adversarial transfer-
ability rate against different black-box target models by the
regularizing the loss landscape. As for our optimization
framework, it achieves better performance over the ascent-
direction optimization framework. For example, in the
case of using ResNet-50 as a surrogate model, our method
achieves an increase by 14.23% compared to using the
ascent-direction for optimization. Those improvement re-
sults further demonstrate the effectiveness and reasonable-
ness of utilizing average direction for sharpness-aware op-
timization in adversarial example generation, which leads
to higher transferability rate by utilizing the loss landscape
information in different directions around the current adver-
sarial example.

4.2.2 Influence of Using Black-Box Target Model Out-
put Information

After validating the effectiveness of using average direc-
tion for solving the adversarial example optimization prob-
lem with gradient norm regularization, we further conduct a
comparison of using black-box information for adversarial
example optimization. We denote the proposed method us-
ing output logits to generate adversarial example ADR-BB.
In Table 2, in most cases ADR-BB outperforms ADR. Espe-
cially, in the case of attacking ViT-b/32 by using ResNet-50
as the surrogate model, ADR-BB achieves up to 3.33% in
terms of attack transferability rate. These results show that
the adjustment of sample direction through the designed
mechanism is able to generated adversarial examples that
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Surrogate Model Target Model #Param. PGD FGSM Square Universal Attack GNP ADR Improvement (%)

ViT-b/16

OFA-Large 450.0 11.87 4.24 8.74 / 12.72 14.87 14.46
ViT-b/32 88.2 21.62 10.71 5.41 / 23.85 25.96 8.13
Swin-T 28.3 21.65 8.93 4.22 / 22.51 24.91 9.36

ResNet50 25.6 17.68 7.93 4.68 7.69 18.95 20.44 7.28
ResNet18 11.7 31.82 32.13 7.16 / 33.36 37.37 10.73

ResNet-50

OFA-Large 450.0 5.92 2.50 9.47 3.39 8.35 14.01 32.41
ViT-b/32 88.2 12.63 8.24 8.47 6.25 15.14 18.48 18.07
Swin-T 28.3 13.02 6.90 7.17 6.45 16.77 23.85 29.69

ViT-b/16 25.6 9.66 5.70 6.05 7.69 12.42 16.15 23.10
ResNet18 11.7 28.45 14.38 14.63 9.69 37.22 51.45 27.66

Table 1. Results of attack transferability rate (%) obtained by different attack methods in ImageNet.

Surrogate Model Target Model ADR ADR-BB Improvement (%)

ViT-b/16

ViT-b/32 25.96 25.51 -1.73

Swin-T 24.91 25.17 1.04

ResNet18 37.37 38.55 3.16

ResNet50 20.44 21.41 4.75

ResNet-50

ViT-b/32 15.14 18.47 21.99

Swin-T 23.85 23.94 0.38

ResNet18 51.45 50.82 -1.22

ViT-b/16 16.15 16.61 2.85

Table 2. Comparison results of attack transferability rate (%) on
using black-box victim model output information.

can achieve better transferability on the black-box target
model.

4.3. Ablation Study

Without loss of generality, we adopt the case of using ViT-
b/16 as surrogate model to conduct the ablation study for
understanding the effectiveness of the proposed method.

4.3.1 Influence of Injecting Noise in Different Layer

As shown in Eq. 11, one of the key calculation of our
method is to adopt the average direction for measuring the
sharpness to conduct regularization. This operation can be
conducted in the latent layer of ViT too. Thus, firstly, we
conduct an ablation study on how the number of layer where
noise is injected influence the performance. The results are
shown in Table 3.

Since ViT-b/16 has 12 self-attention layers, we test on
other variants where noise is injected before 1st, 3rd, 6th,
9th and 12th self-attention layers. From the results, we
can find that the quality of transferability generally de-
creases as the noise injected layer go deeper, and the
decrease usually converges in the mid-layer (6th) self-
attention blocks. These results show that using average

direction for sharpness-aware optimization is the most ef-
fective for input images and becomes less useful when the
noise is added to high-level features. This is because adding
Gaussian noise to images is basically constructing a ran-
domized smoothed classifier [6] , which could generate a
more robust prediction than the base model. Thus, the gra-
dient calculated from this randomized smoothed classifier
is more instructed because it is a feedback signal from at-
tacking a more robust model. And as the added noise go
deeper, it is found that the modular sensitivity will become
less bounded and the added noise will bring more harm to
the model performance [18]. Thus, we shall inject noise in
the input image.

4.3.2 Influence of Number of Queries

Another key idea for our sharpness-aware optimization is
using Monte Carlo estimation for getting an estimate for
Eq. (10). Table 4. Whether the results are sensitive to
the choice of k is another important aspect of our solution.
Thus, we further conduct an experiment on how k affects
the results our solution, whose results are shown in Table 4.
From those results, it can found that the proposed method
can achieve relatively good results on transferability against
ViT-b/32, Swin Transformer and ResNet18 when k = 2.
Thus, it does not take a large k for the proposed method
to get a good estimate for Eq. (10) in generating adversar-
ial examples with high transferability rate, which shows the
insensitivity of our method with respect to k.

4.3.3 Influence of Number of Optimization Steps

As previous solution, the proposed method is also an iter-
ative optimization solution. We also conduct an ablation
study on the influence of optimization steps, as shown in
Table 5. We can find in some cases, setting the number
of optimization step to be 4 has already helped us obtain
adversarial examples with high transferability. Thus, the
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Surrogate Model Target Model Position of injecting noise

Image 1st 3rd 6th 9th 12th

ViT-b/16

OFA-Large 14.87 12.49 12.35 12.69 11.95 12.42
ViT-b/32 25.96 22.51 20.26 20.40 20.26 21.18
Swin-T 24.91 21.88 20.44 19.93 19.40 19.85

ResNet18 37.37 31.94 30.24 29.90 29.19 29.90
ResNet50 20.44 18.08 16.98 16.30 16.76 16.84

Table 3. Results of attack transferability rate (%) influenced by injecting noise in different layers.

(a) Original (b) PGD (c) GNP (d) ADR (e) Original (f) PGD (g) GNP (h) ADR

Figure 4. Visualization of generated adversarial examples.

Target
Model

#Query

1 2 3 4 5

OFA-Large 13.24 13.82 13.82 14.61 14.87
ViT-b/32 24.07 25.82 25.29 25.98 25.96
Swin-T 24.42 26.55 26.52 25.78 24.91

ResNet18 35.30 36.63 36.69 38.17 37.37
ResNet50 19.25 18.32 18.72 19.51 20.44

Table 4. Results of attack transferability rate (%) influenced by k.

Target
Model

#Optimization steps

2 4 6 8 10

OFA-Large 13.56 15.85 15.52 15.32 14.87
ViT-b/32 26.73 28.34 27.34 26.79 25.96
Swin-T 23.79 24.98 24.05 25.25 24.91

ResNet18 36.14 38.79 38.45 38.51 37.37
ResNet50 18.32 19.44 19.61 19.58 20.44

Table 5. Results of attack transferability rate (%) influenced by
optimization step.

introduced average-direct gradient does not add further bur-
den to the iterative optimization.

5. Conclusion

Real-world application systems that use deep neural net-
works usually are designed as black box services for users.
In this paper, we mainly investigate the research question
of generating adversarial examples with high transferability
rate in the setting of using surrogate models to attack black-

box target models. Enlightened by the sharpness-aware op-
timization framework, we introduce the average direction
for regularizing the sharpness of loss landscape at the adver-
sarial example to achieve higher transferability. In addition,
when attackers are allowed to access the black-box with
a limited number of queries, we introduce a direction ad-
justment mechanism that change the perturbation to obtain
a more accurate estimated gradient for adversarial exam-
ple generation. Experiment results conducted in ImageNet
dataset with an extensive selection of target models show
that the proposed ADR attack generally produce adversar-
ial examples with higher transferability rate. In addition,
the devised mechanism with black-box output information
can further help improve the transferability of generated ad-
versarial examples.
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