
A. Appendix

In this section, we further detail our experimental setup and
provide more results. Appendix A.1 gives an overview to
the Relation benchmarks and we detail our control factors
in Appendices A.2 to A.5. Finally, we list the models we
used in our experiments in Appendix A.6.

A.1. Overview Relation Benchmarks

Figure 4 shows zero-shot models performance all Relation
benchmarks (Section 2.1). Figure 4 provides a detailed
comparison of the performance of various VLMs, partic-
ularly highlighting the effectiveness of the NegCLIP and
BLIP models across different relational benchmarks. This
figure illustrates how the NegCLIP model, with its learn-
ing objective that incoporates hard negatives, excels in re-
lational understanding compared to other models. Inter-
estingly, BLIP outperforms NegCLIP and other models on
VG Attribution, Winoground, and Sugarcrepe benchmarks,
while falling short on Flickr30K order, COCO order, and
VG Relation benchmarks. This demonstrate that BLIP’s
objective which adds image-to-text matching and image-
conditioned language modeling allows models to perform
better on attribution-based tasks. Through Figure 4, we
gain a comprehensive view of how different models stack
up against each other in the realm of relational understand-
ing, highlighting the necessity of richer learning objectives
and training strategies for relational understanding tasks.

A.2. Training Data Size

Figures 5 and 6 provides a focused examination of how the
scaling of training dataset sizes influences the performance
of VLMs on various benchmarks. Figure 5 shows that in-
creasing dataset size beyond 2 billion samples reaches a
demonishing return on ImageNet, Robustness, and Corrup-
tion benchmarks. For instance, increasing dataset size from
400 million to 2 billion samples, improves performance by
6.36%. Alternatively, increasing dataset size from 2 billion
to 12.8 billion samples, improves performance by 1.57%.

Figure 6 also shows that contrary to the positive impact
of increased dataset size on benchmarks like ImageNet, Ro-
bustness, and Corruption, the figure illustrates a starkly dif-
ferent scenario for relational tasks. It highlights that, de-
spite the substantial escalation of training data up to 12.8
billion samples, most VLMs do not exhibit significant im-
provement in relational understanding, often performing
near or at chance levels. This suggests a plateau in per-
formance gains from dataset scaling in the context of rela-
tional benchmarks. This divergence underscores the limited
effectiveness of mere data scaling in relational contexts and
hints at the necessity for targeted learning strategies to over-
come the inherent challenges in relational understanding for
VLMs.

A.2.1 Figure Controls

In Figures 5 and 6, we isolate the effect of training data
size by controlling for other factors. To do so, we use
the same ViT-B/32 architecture trained with the same con-
trastive CLIP objective over different number of training
samples. These include models trained with DataComp
(small, medium, large, and extra-large), LIAON (400 mil-
lions and 2 billions), and MetaCLIP (400 millions and 2.5
billions).

A.3. Model Size

Figures 7 and 8 provide a detailed examination of the impact
of model size on the performance of VLMs across various
benchmarks. Figures 9 and 10 highlights that increasing
the model size does not correspond with better performance
on relational benchmarks, suggesting that relational under-
standing requires more than just larger models.

A.3.1 Figure Controls

We show a controlled analysis of performance as a func-
tion of model size keeping training data size and learning
paradigm fixed in Figure 9 and Figure 10. To do so, we use
either ViT or ResNet architectures trained with the same
contrastive CLIP objective and dataset (LIAON400M) with
different number of parameters. These include ResNet50,
ResNet101, ResNet50x64, ViTB32, and ViTL14.

A.4. Architecture

Figures 9 and 10 extends analysis of Appendix A.3 to com-
pare different encoder architectures, showing that while the
choice between ViT and convolutional architectures does
not significantly affect performance on standard ImageNet,
relational, and robustness benchmarks, transformer-based
models exhibit a notable advantage in handling corrupted
images.

A.4.1 Figure Control

We show a controlled analysis of performance as a func-
tion of model size and architecture keeping training data
size and learning paradigm fixed in Figure 9 and Fig-
ure 10. To do so, we use either ViT or ResNet architec-
tures trained with the same contrastive CLIP objective and
dataset (LIAON400M) with different number of parame-
ters. These include ResNet50, ResNet50x64, ViTB32, and
ViTL14.

A.5. Learning Objective

Figures 11 and 12 provide a comprehensive overview of
how different learning objectives influence the performance
of VLMs across a range of benchmarks. Figure 11 zeroes
in on the impact of various learning objectives on models’



Figure 4. Average zero-shot performance of all models across Relation benchmarks (Section 2.1). Orange-colored bars reflect performance
of BLIP, and red-colored bars reflect performance of NegCLIP. The x-axis outlines the names of the models, with the size of the dataset
they were pre-trained on, [ModelName] : [DatasetSize].

abilities to tackle relational benchmarks, illustrating that
specific objectives such as NegCLIP and BLIP can signif-
icantly improve performance on relational understanding.
On the other hand, Figure 12 broadens this analysis to other
benchmarks, showing how the adoption of different learn-
ing objectives can also lead to varied performance across a
spectrum of tasks, not just relational ones. For example, de-
spite SigLIP being trained on a substantial dataset of 10 bil-
lion samples and comparable number of parameters to other
methods such as pure contrastive and NegCLIP, it substan-
tially underperforms in specific areas, notably Corruption
and Relation benchmarks. This instance shows that even
with extensive training data and substantial model complex-
ity, the right learning objective is crucial. These figures
highlights the versatility and adaptability required in select-
ing and designing learning objectives, emphasizing that the
right choice can enhance a model’s proficiency in specific
tasks while potentially impacting its general performance
across others.

A.6. Evaluation Setup

We show in Table 2 the list of models with their correspond-
ing architecture, learning paradigm, model size, and train-
ing data size.



Figure 5. Average zero-shot performance of models scaled only in the number of samples across various benchmarks (Section 2.1). Grey-
colored bars reflect ImageNet zero-shot performance, blue-colored bars reflect performance across other benchmarks. Grey-dashed line
represent chance level.

Figure 6. Average zero-shot performance on Relation benchmarks (Section 2.1) of VLMs trained on varying dataset sizes. Grey-dashed
line represent chance level.



Figure 7. Average zero-shot performance of models scaled only in the number of parameters across various benchmarks (Section 2.1).
Grey-colored bars reflect ImageNet zero-shot performance, blue-colored bars reflect performance across other benchmarks. Grey-dashed
line represent chance level.

Figure 8. Average zero-shot performance on Relation benchmarks of VLMs trained on varying dataset sizes. Grey-dashed line represent
chance level.



Figure 9. Average zero-shot performance of models scaled only in the number of parameters across various benchmarks (Section 2.1).
Blue-colored bars reflect ViT models, and orange-colored bars reflect convolutional models. While varying model sizes and achitecture,
we control for other factors that could influence performance. For instance, we only used models that are trained similar datasets.

Figure 10. Average zero-shot performance on Relation datasets of VLMs trained on varying model sizes and architectures. Blue-colored
bars reflect ViT models, and orange-colored bars reflect convolutional models. While varying model sizes and achitecture, we control for
other factors that could influence performance. For instance, we only used models that are trained similar datasets.



Figure 11. Average zero-shot performance of models across all datasets in the dataset zoo. There are four categories of datasets: ImageNet,
Relation, Robustness, and Corruption. The following figure demonstrate that unlike ImageNet, Robustness, and Corruption datasets,
Relation datasets are not correlated in models’ performance. Models were ranked based on their ImageNet zero-shot performance in order
to compare trends across the other categories of benchmarks.

Figure 12. Average zero-shot performance of models across all datasets in the dataset zoo. There are four categories of datasets: ImageNet,
Relation, Robustness, and Corruption. The following figure demonstrate that unlike ImageNet, Robustness, and Corruption datasets,
Relation datasets are not correlated in models’ performance. Models were ranked based on their ImageNet zero-shot performance in order
to compare trends across the other categories of benchmarks.



Dataset size Model size Learning objective Architecture Model name

blip vitB16 14m [16] 14 86 BLIP vit BLIP ViT B 16
blip vitL16 129m [16] 129 307 BLIP vit BLIP ViT L 16
blip vitB16 129m [16] 129 86 BLIP vit BLIP ViT B 16
blip vitB16 coco [16] 129 86 BLIP vit BLIP ViT B 16
blip vitB16 flickr [16] 129 86 BLIP vit BLIP ViT B 16
blip vitL16 coco [16] 129 307 BLIP vit BLIP ViT L 16
blip vitL16 flickr [16] 129 307 BLIP vit BLIP ViT L 16
eva02 vitE14 plus 2b [8] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02 vitE14 2b [8] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02 vitL14 2b [8] 2000 307 Pure Contrastive vit EVA02 ViT L 14
eva02 vitB16 2b [8] 2000 86 Pure Contrastive vit EVA02 ViT B 16
eva01 vitG14 plus 2b [7] 2000 1011 Pure Contrastive vit EVA01 ViT g 14
eva01 vitG14 400m [7] 400 1011 Pure Contrastive vit EVA01 ViT g 14
clipa vitbigG14 [19] 1280 1843 Pure Contrastive vit CLIPA ViT G 14
clipa vitH14 [19] 1280 633 Pure Contrastive vit CLIPA ViT H 14
clipa vitL14 [19] 1280 307 Pure Contrastive vit CLIPA ViT L 14
siglip vitL16 [36] 10000 307 Contrastive (sigmoid) vit SigLIP ViT L 16
siglip vitB16 [36] 10000 86 Contrastive (sigmoid) vit SigLIP ViT B 16
openclip vitB32 metaclip fullcc [30] 2500 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip vitB16 metaclip 400m [30] 400 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip vitB32 metaclip 400m [30] 400 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip vitB16 metaclip fullcc [30] 2500 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip vitL14 dfn2b [6] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip vitL14 metaclip 400 [30] 400 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip vitL14 metaclip fullcc [30] 2500 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip vitH14 metaclip fullcc [30] 2500 633 Pure Contrastive vit MetaCLIP ViT H 14
openclip vitH14 dfn5b [6] 5000 633 Pure Contrastive vit OpenCLIP ViT H 14
openclip convnext base [15] 400 88 Pure Contrastive conv OpenCLIP ConvNext
openclip vitB32 datacomp s [9] 13 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB32 datacomp m [9] 128 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB32 datacomp xl [9] 12800 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB16 datacomp xl [9] 12800 86 Pure Contrastive vit DataComp ViT B 16
openclip vitB16 datacomp l [9] 1280 86 Pure Contrastive vit DataComp ViT B 16
openclip vitH14 [15] 2000 633 Pure Contrastive vit OpenCLIP ViT H 14
xvlm flickr [35] 16 86 XVLM Swin XVLM Swin B
flava full [27] 70 86 Other vit FLAVA ViT B 32
openclip vitL14 400m [15] 400 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip vitL14 datacomp xl [9] 12800 307 Pure Contrastive vit DataComp ViT L 14
openclip vitL14 2b [15] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
clip vitL14 [24] 400 307 Pure Contrastive vit CLIP ViT L 14
xvlm coco [35] 16 86 XVLM Swin XVLM Swin B
openclip vitB32 400m [15] 400 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip vitB32 2b [15] 2000 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip vitG14 2b [15] 2000 1011 Pure Contrastive vit OpenCLIP ViT g 14
openclip vitbigG14 2b [15] 2000 1843 Pure Contrastive vit OpenCLIP ViT G 14
openclip vitB16 2b [15] 2000 86 Pure Contrastive vit OpenCLIP ViT B 16
openclip vitB16 400m [15] 400 86 Pure Contrastive vit OpenCLIP ViT B 16
opencoca vitL14 2b [15, 32] 2000 307 Other vit OpenCOCA ViT L 14
opencoca vitB32 2b [15, 32] 2000 86 Other vit OpenCOCA ViT B 32
negclip vitB32 [33] 400 86 Negative CLIP vit NegCLIP ViT B 32
clip vitB16 [24] 400 86 Pure Contrastive vit CLIP ViT B 16
clip resnet50 [24] 400 38 Pure Contrastive conv CLIP ResNet50
openclip resnet101 yfcc [15] 15 56 Pure Contrastive conv OpenCLIP ResNet101
openclip resnet50 yfcc [15] 15 38 Pure Contrastive conv OpenCLIP ResNet50
openclip resnet50 cc [15] 12 38 Pure Contrastive conv OpenCLIP ResNet50
clip resnet101 [24] 400 56 Pure Contrastive conv CLIP ResNet101
clip resnet50x4 [24] 400 87 Pure Contrastive conv CLIP ResNet50x4
clip resnet50x16 [24] 400 167 Pure Contrastive conv CLIP ResNet50x16
clip resnet50x64 [24] 400 420 Pure Contrastive conv CLIP ResNet50x64
clip vitB32 [24] 400 86 Pure Contrastive vit CLIP ViT B 32

Table 2. List of all the models used in evaluations with their corresponding dataset size, model size (number of parameters), learning
objective, and architecture.
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