
6. Additional related works
In this section, we provide a detailed introduction to the re-
lated works that we used as baseline (NI-SI-TI-DI) through-
out the work and show how DWP is combined with it.

6.1. Baseline

Momentum and Nesterov Iterative Method (NI) [5, 25]
Inspired by Nesterov Accelerated Gradient [32], the Nes-
terov Iterative Method (NI) modifies Momentum Iterative-
FGSM [5] by adding the historical gradients to current ad-
versarial examples xn and gets xnes

n in advance. Gradients at
the ahead xnes

n instead of the current xn will be used for up-
dating. The scheme helps accelerate convergence by avoid-
ing the local optimum earlier:

xnes
n = xn + α · µ · gn−1 (7)

gn = µ · gn−1 +∇xJ(x
nes
n , ytarget; θ) (8)

xn+1 = Clipϵ
x(xn − α · sign(gn)). (9)

Here µ is the decay factor of the historical gradients. The
gradient computed encourages adversarial examples to in-
crease confidence logit output by the white-box network
model θ on the target class through gradient ascent with
learning rate α. A clipping operation onto the ϵ-ball cen-
tered at the original input image x is at the end of each iter-
ation. To preserve more information about the gradient for
attacking [56], we don’t include the L1 normalization.

Scale Invariant Method (SI) [25] Neural networks can
preserve output even though the input image x goes through
scale operations such as Sm(x) = x/2m. With the scale-
invariant property, each composite of white-box networks
and scale operations becomes different functions. Adver-
sarial examples can enjoy more diverse gradients:

gn = µ · gn−1 +
1

M

M−1∑
m=0

∇xJ(Sm(xnes
n ), ytarget; θ). (10)

M is the number of scaled versions feeding into the network
for each image.

Diverse Input Patterns (DI) [49] Inspired by data aug-
mentation techniques [37] used in network training, DI im-
poses random resizing and padding on each image before it
feeds into network models to avoid overfitting. Straightfor-
ward cooperation with NI and SI is as follows:

gn = µ · gn−1+
1

M

M−1∑
m=0

∇xJ(Sm(T (xnes
n , pDI)), y

target; θ).

(11)

The introduced T decides whether to apply random resiz-
ing at each iteration with probability pDI, which degenerates
when pDI = 0.

Translation Invariant Method (TI) [6] To deal with dif-
ferent discriminative regions [6] of various defense neural
networks, TI produces several translated versions for the
current image in advance and computes the gradient for
each separately. These gradients will then be fused and
used to attack the current image. [6] also shows that one
can approximate the gradient fusion using convolution. The
approximation prevents TI from enduring the costly com-
putation on excessive translated versions for every single
image, also yielding the further revised updating procedure:

gn = µ·gn−1+W∗ 1

M

M−1∑
m=0

∇xJ(Sm(T (xnes
n , pDI)), y

target; θ).

(12)
W is the convolution kernel matrix applied. Some typical
options are linear, uniform, or Gaussian kernel.

6.2. Combining DWP with NI-SI-TI-DI

We acquire pruned models at each iteration right before gra-
dient computing and combine with NI-SI-TI-DI:

gn = µ · gn−1+

W
M

∗
M−1∑
m=0

∇xJ(Sm(T (xnes
n , pDI)), y

target;P (θ, r)). (13)

where the pruning operation P (.) is obtained in Eq. (5).
Finally, with K white-box models participating in longi-

tudinal ensemble, our final DWP attack procedure is shown
as follows:

gn = µ · gn−1+

W
M

∗
M−1∑
m=0

K∑
k=1

βk∇xJ(Sm(T (xnes
n , pDI)), y

target;P (θk, r)),

(14)

where βk are the ensemble weights,
∑K

k=1 βk = 1.

7. Untargeted attack for single model attack
transferability

We provide untargeted attack results transferring from a sin-
gle source model in Tab. 8. The untargeted attack’s goal is
to minimize the overall accuracy of the victim model with-
out considering which class to predict. As a result, the un-
targeted success rate is higher than the targeted one on av-
erage. In this situation, DWP still prevail NI-SI-TI-DI for



Source Model: Res-50 Source Model: VGG-16
→VGG-16 →Den-121 →Inc-v3 →Res-50 →Den-121 →Inc-v3

NI-SI-TI-DI 92.3 96.3 79.7 80.1 83.4 74.8
+GN 93.2 96.7 80.8 82.1 86.4 79.1
+DWP 95.5 98.2 85.0 83.6 86.7 79.8

Source Model: Den-121 Source Model: Inc-v3
→Res-50 →VGG-16 →Inc-v3 →Res-50 →VGG-16 →Den-121

NI-SI-TI-DI 87.0 86.9 71.8 71.8 74.6 69.7
+GN 90.4 89.3 77.4 58.1 72.3 62.0
+DWP 91.7 92.2 81.7 72.7 80.4 75.0

Table 8. Untargeted success rates of transferring to naturally trained CNNs without the ensemble strategy. The “→” prefix stands for the
black-box network. Results with targeted / untargeted attack success rates are reported.

Attack Method NI-SI-TI-DI +GN +DWP
Inc-v3ens3 80.3 84.1 88.0
IncRes-v2ens 52.7 66.0 67.5
Average 66.5 75.05 77.75

Table 9. The untargeted success rates of transferring to adversari-
ally trained models. DWP outperforms GN and DSNE over 10%.

3.47% when transferring from Res-50, 3.93% from VGG-
16, 6.63% from Den-121, and 4% from Inc-v3, on average.
When comparing with GN, DWP obtains 2.67%, 0.83%,
2.83% and 11.9% improvement for Res-50, VGG-16, Den-
121 and Inc-v3, respectively. We can observe a similar phe-
nomenon mentioned in Fig. 2 that the extent of improve-
ment brought by DWP is affected by the network redun-
dancy. When the model is more sensitive to the parameter
drops, DWP exhibits better performance.

8. Untargeted attack for ensemble transfer to
adversarially trained model

We report the untargeted attack success rate for ensemble
transferring to the adversarially-trained model in Tab. 9.
DWP suppress NI-SI-TI-DI by a notable 11.25%. When
comparing to the related model augmentation methods,
DWP is 2.7% higher in untargeted success rate than GN.

9. Transferring to multi-step adversarially
trained models

Transferable targeted attacks from naturally-trained CNNs
to multi-step adversarially trained networks remain an open
problem. Recent attacks only show non-targeted results
[34]. Even the resource-intensive attack [31] fails to achieve
satisfied targeted success rates. We choose four naturally-
trained networks (Res-50, VGG-16, Den-121, Inc-v3) as
white-box source models to generate the adversarial exam-
ples, transferring to the multi-step adversarially trained net-
works provided by Salman et al. [36]. Tab. 10 shows the

Attack Method NI-SI-TI-DI +GN +DWP
Res-18 (|ϵ|∞ = 1) 0.2 0.2 0.2
Res-50 (|ϵ|∞ = 1) 0.0 0.6 0.3
WideRes-50-2 (|ϵ|∞ = 1) 0.0 0.2 0.1
Res-18 (|ϵ|2 = 3) 0.0 0.1 0.0
Den-121 (|ϵ|2 = 3) 0.0 0.0 0.0
VGG-16 (|ϵ|2 = 3) 0.0 0.0 0.0
Resnext-50 (|ϵ|2 = 3) 0.0 0.0 0.0

Table 10. The targeted success rates of transferring to three-step
adversarially trained networks from naturally trained CNNs.

failure of transferring targeted attacks from the ensemble of
naturally-trained CNNs. The attack success rates approach
0% in all cases. All the existing methods fail to effectively
attack such a scenario and DWP is not an exception. It re-
quires sophisticated investigation into this difficult setting.

10. Untargeted attack for ensemble transfer to
non-CNN architectures

The result of the untargeted attack success rate transferring
from four naturally-trained CNNs (Res-50, VGG-16, Den-
121, Inc-v3) to non-CNNs (ViT-S-16-224, ViT-B-16-224,
Swin-S-224, Swin-B-224, MLP-Mixer, ResMLP, gMLP) is
presented in Tab. 11. DWP exceeds the NI-SI-TI-DI by a
notable 9.04% on average and also suppress GN by 0.52%
in untargeted attack success rate. The results further vali-
date the efficacy of DWP.

11. Time cost of DWP
To ascertain the practical feasibility of DWP without impos-
ing excessive computational overhead, we present a time
cost analysis in Tab. 12. The results are obtained using a
batch size of 16 images and 100 attack iterations, with each
cell representing the average from five different runs on a
single RTX A5000 GPU. Remarkably, with an equivalent
number of forward passes, DWP introduces minimal over-
head in comparison to the NI-SI-TI-DI.



Attack Method NI-SI-TI-DI +GN +DWP
ViT-S-16-224 48.1 57.7 55.0
ViT-B-16-224 52.5 61.4 64.8
Swin-S-224 57.6 65.1 66.5
Swin-B-224 53.9 62.9 62.1
MLP-Mixer 50.1 57.7 59.1
ResMLP 72.7 78.5 80.6
gMLP 44.3 55.5 54.4
Average 54.17 62.69 63.21

Table 11. The untargeted success rates of transferring to Non-CNN
architectures. Our DWP maintains higher success rates stably.

Time (sec.) Res-50 Den-121 VGG16 Inc-v3
NI-SI-TI-DI 10.50 12.26 17.64 13.19
+DWP 10.86 15.87 18.72 15.62

Table 12. Time cost of NI-SI-TI-DI and DWP on a single CNN.

12. Perturbations diversity from auxiliary
models

Recent works [6, 25] have improved transferability with
output-preserving operations. Despite the model exhibit-
ing similar output given an example, gradients calculated
through backward operations differ as some randomness is
introduced. The diverse gradients participating in the attack
prevent overfitting to local optimal, yielding better-targeted
attack transferability. Motivated by the finding that gradi-
ent diversity benefits transferability, we examine the diver-
sity between perturbations from the pruned auxiliary mod-
els generated in DWP.

Liu et al. [27] first studied the effectiveness of ensem-
ble attacks in enhancing transferability. They demonstrate
the diversity of the ensemble by showing near-zero cosine
similarities between perturbations from different white-box
networks. Following Liu et al. [27], we calculate cosine
similarities between perturbations generated from the addi-
tional auxiliary models produced by DWP. From each of
our four naturally trained CNNs, we acquire five auxiliary
models with different connections pruned. We term the
cosine similarity between perturbations of pruned models
from an identical CNN as an intra-CNN similarity. The case
from different CNNs is termed as inter-CNN similarity. To
avoid cherry-picking, both intra-CNN and inter-CNN simi-
larities come from the average of the first ten images in the
ImageNet-compatible dataset. Furthermore, we only use NI
in combination with DWP to produce perturbations in this
experiment to prevent other factors from affecting the result.

Fig. 6 is a symmetric matrix containing 16 (4×4) blocks.
The diagonal blocks summarize ten (C5

2 ) intra-CNN simi-
larities while the non-diagonal blocks summarize 25 (5×5)
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Figure 6. Perturbation cosine similarities between pruned models.
Each diagonal block summarizes 10 (C5

2 ) intra-CNN similarity
cells. Each non-diagonal block summarizes 25 (5× 5) inter-CNN
similarity cells. The pairwise cosine similarity matrix is symmet-
ric and shows orthogonality between perturbations.

inter-CNN similarities in cells. The diagonal cells are all
1.0 since they are all from two identical perturbation vec-
tors. As for the non-diagonal cells, we find the cell values
in diagonal blocks (intra-CNN) slightly higher than in non-
diagonal blocks (inter-CNN). However, these values are still
close to zero, appearing dark red. The results show that
whether two auxiliary models come from the same CNN or
not, the generated perturbations are always nearly orthogo-
nal. These observations on orthogonality support our claim
that auxiliary models obtained via DWP provide more di-
versity for attacking.



13. Results of DWP on Google Cloud Vision

Bagel → Spider Toy Shop → Consomme Mortarboard → Paddle Menu → Jay Dog → Stage

Dowitcher → Cock Butterfly → Dog Eagle → Geta Beetle → Weight Machine Monastery → Fence

Goose → Conch Turtle → Cock Rifle → Taxi Fox → Squirrel Beetle → Cockatoo

Jeep → Linnet Otter → Mask Dam → Sea Slug Leaf Hopper → Bike Beer Glass → Butterfly
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