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Abstract

Human faces encode a vast amount of information in-
cluding not only uniquely distinctive features of the individ-
ual but also demographic information such as a person’s
age, gender, and weight. Such information is referred to as
soft-biometrics, which are physical, behavioral or adhered
human characteristics, classifiable in pre—defined human
compliant categories. As we often say 'one look is worth
a thousand words’. Vision Transformers have emerged as
a powerful deep learning architecture able to achieve accu-
rate classifications for different computer vision tasks, but
these models have not been yet applied to soft-biometrics.
In this work, we propose the Bidirectional Encoder Face
representation from image Transformers (BEFiT), a model
that leverages the multi-attention mechanisms to capture lo-
cal and global features and produce a multi-purpose face
embedding. This unique embedding enables the estima-
tion of different demographics without having to re-train the
model for each soft-biometric trait, ensuring high efficiency
without compromising accuracy. Our approach explores
the use of visible and thermal images to achieve powerful
face embedding in different light spectra. We demonstrate
that the BEFIT embeddings can capture essential informa-
tion for gender, age, and weight estimation, surpassing the
performance of dedicated deep learning structures for the
estimation of a single soft biometric trait. The code of BE-
FiT implementation is publicly available'

1. Introduction

Transformer models [24] have boosted the perfor-
mance of deep learning across various domains in the last
years. Traditionally employed in Natural Language Pro-
cessing (NLP) tasks, attention-based neural networks such

Uhttps://github.com/nmirabeth/BEFiT/

as the Vision Transformers (ViTs) are now making sig-
nificant progress in image-based tasks attaining state-of-
the-art (SotA) results on many computer vision bench-
marks [26]. While Convolutional Neural Networks (CNNs)
have achieved remarkable success in facial processing tasks,
they face a fundamental challenge in capturing long-range
relationships among different facial regions. To cap-
ture long-distance dependencies, the traditional convolution
model should enlarge its receptive fields through the stack-
ing of convolutional layers. However, Vision Transformers
offers a natural solution to this problem by learning global
token dependencies within images [23].

Soft biometric traits are human characteristics typically
described using human-understandable labels and measure-
ments. Soft biometrics, such as gender, age, height, weight,
ethnicity, hair color, etc., are not unique to the individual but
can be aggregated to provide discriminative biometric sig-
natures. Indeed, their use has been proposed in the literature
to enhance the performance of traditional biometric systems
and enable identification based on human descriptions [6].

As other works before ours have formalized the process
of face recognition [1], we provide below a mathematical
formulation of soft biometric estimation from face images:

Let D be an electromagnetic spectral domain composed
of a d-dimensional feature space X C R¢ with marginal
distribution P(X’) and a label space )V C N. Given a n-face
database X = {z;},, where x; € X and their corre-
sponding n-value for each k-biometric trait Y* = {y;c i1
where y¥ € Y and k = 1,...,m with n,;m € N. Then
a Face Processing Task is defined as a parametric function
Sk,e described by the deep learning model parameters ©
where

Sro: X xY* —[0,1]
(xl,yf) — P(Y = yf|X =uz;,0)

where i,j € [1,n] and k € [1,m]. Thus, any facial
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processing model § o aims to learn the optimal parameters
O so that the probability of correctly estimating the trait k
for all n identities is 1.

The number of soft biometric traits that can be extracted
from a person’s face is large, and traditionally, the esti-
mation of each of them requires different networks trained
specifically for each soft biometric to be estimated. In
this work, we introduce BEFiT, a novel ViT-based facial
image processing model that enables the extraction of a
unique face embedding useful for the estimation of var-
ious soft biometrics without having to know in advance
which trait is to be classified. Due to the ability of ViT
to learn more nuanced and context-rich features from in-
put images, we demonstrate that by employing BEFiT for
extracting a unique embedding from a face, this same em-
bedding can effectively be used for the estimation of various
soft biometric traits — as opposed to specializing an end-to-
end neural network classifier for the detection of a given
soft biometric trait. Moreover, we test the ability of our
proposed model to extract face features from both visible-
and thermal-spectrum images. Because thermal imagery
can provide advantages over visible imaging in challenging
conditions such as occlusions, and variations in illumina-
tion [13], we explore the potential of BEFiT on visible and
thermal face images for enhancing soft biometric estima-
tion tasks, as well as on the fusion of visible and thermal
imagery for improved estimation. The main contributions
of this work are summarised in the following:

* We propose BEFiT, a vision transformer-based model
designed to extract a general face embedding from
which different soft biometric traits can be estimated;

* We effectively estimate three distinct traits using the
general embedding provided by BEFiT: gender, age,
and weight;

* We train BEFiT for visible and thermal face processing
and compare their performance against SotA architec-
tures, performing fusion at the score level.

The rest of this paper is organized as follows. In Sec-
tion 2, we offer a comprehensive review of state-of-the-art
methods for soft biometric estimation, along with an intro-
duction to vision Transformers. Section 3 describes BEFiT
and how it is employed for extracting the general face em-
beddings, as well as the fusion protocol, while in Section 4
the experimental setup is detailed. In Section 5 we present
the performance analysis of our approach, including the uti-
lization of both visible and thermal imagery, as well as the
fusion of scores from both networks, for the estimation of
gender, age, and weight. Finally, we conclude with future
research directions in Section 6.

Table 1. Overview of soft biometric modalities and key human
features within each category.

Permanent* Temporal
Global Face Body Biological Clothing
Gender Eye (?o.lor Arm lenght | Hair style Head coverage
Age Ethnicity L . Clothing color
: Wrist size Hair color
Weight Nose type Tattoos Facial hair Footwear type
Height | Lip thickness Eye glasses

*In this context, "permanent” refers to a trait unchangeable over a
short period.

2. Related Work

In this section, we present an overview of Transformers
applied to computer vision tasks and state-of-the-art meth-
ods for facial processing from a person’s image, focusing
in particular on the estimation of the three soft biometrics
considered in this paper: gender, age, and weight.

2.1. Vision Transformers

Since their creation in 2016, Transformers [24] have
proven superior to other architectures, such as Recurrent
Neural Networks (RNNs), due to their ability to process
data in parallel rather than sequentially. By leveraging self-
attention mechanisms, Transformers can effectively capture
relationships between different parts of input sequences,
providing context that might not be discernible through
sequential processing as the most relevant image patches
for prediction may not necessarily be adjacent to the cur-
rent one. This allows Transformers to process multiple se-
quences in parallel, speeding up the process thanks to the
parallelization of attention mechanisms.

Vision Transformer [7] have excelled in different com-
puter vision tasks, including image classification [3], object
detection [4], and text-to-video translation [29]. Regard-
ing facial processing tasks, some works have successfully
applied ViTs in the context of Face Recognition (FR) prov-
ing their superiority over other architectures. A first ap-
proach was presented in 2021, where Zhong et al. proposed
a modification to the patch generation process, enabling to-
kens with sliding patches to overlap with each other, thus
enhancing the representation of facial features [28]. More
recently, a novel Hybrid tOken Transformer (HOTformer)
module was presented, which integrates seamlessly into the
traditional ViT architecture, focusing on identifying cru-
cial facial semantics to enhance the effectiveness of people
recognition tasks [23]. Subsequently, Kim ef al. proposed
S-ViT, image Relative Positional Encoding as a customized
positional encoding in the Transformer encoder [ 1].

2.2. Facial Soft Biometrics

Soft biometrics, such as gender, age, and weight, are in-
trinsic to conventional human descriptions [22], as we nat-
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urally use these traits to identify and describe each other.
Table | provides an overview of soft biometric modalities
and the associated human traits within each modality. Per-
manent traits, unlike Temporal ones, are difficultly modified
by a user. In this paper, we specifically put our focus on the
estimation of Permanent features that can be inferred from
face images.

Antipov et al. introduced one of the earliest deep
learning-based methods for gender estimation [2]. They
presented an ensemble model based on CNNs. D’ Ame-
lio et al. [8] achieved notable success in gender classifica-
tion from real-world facial images by leveraging features
extracted through the VGG-Face Deep Convolutional Neu-
ral Network. Age estimation through deep learning mod-
els gained traction in 2015 when Wang et al. introduced a
methodology employing a CNN architecture, followed by
linear Support Vector Regression for age estimation [25].
Inspired by them, other researchers explored various CNN
architectures [19] as well as ensemble approaches combin-
ing multiple models [21] achieving improved performance
over prior methods. Weight estimation from face images
has been less explored in the literature. A Residual Neural
Network (ResNet) with 50 layers and a final regression one,
has been employed for this task [15].

Concerning thermal imagery, research has primarily fo-
cused on the estimation of gender, ethnicity, and weight
from facial images. Deep learning structures began to be
explored with a VGG-CNN trained on visible data and
tested on thermal faces for gender and ethnicity classi-
fication [18]. Farooq et al. performed transfer learn-
ing from nine renowned architectures to estimate gen-
der from thermal data [9], including ResNet-50, ResNet-
101, Inception-V3, MobileNet-V2, VGG-19, AlexNet,
DenseNet-121, DenseNet-20, and EfficientNet-B44. They
also proposed GENNet for the same task. In a recent study,
Mirabet-Herranz et al. conducted a comparative analysis of
ResNet50’s performance on visible and thermal input data
for weight estimation [14].

All the approaches presented are end-to-end systems
trained for a specific task. Soft biometric traits are numer-
ous, and traditionally, dedicated networks need to be ex-
tensively trained for their estimation, sometimes originat-
ing from a similar base as transfer learning is typically per-
formed from an analogous task such as face recognition. In
this work, we introduce a multipurpose embedding that can
be utilized for various tasks, and then we train lightweight
CNN s to classify the proposed embedding.

3. Methodology

In this section, we describe vision transformers, which
consist of multi-head attention and feed-forward neural net-
works. Following that, we detail our approach for com-
puting different soft biometric traits from a single embed-
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Figure 1. Vision Transformer Encoder

ding and the fusion strategy employed. Additionally, we
describe the existing networks adopted and the baselines
re-implemented to compare our BEFiT model with other
existing networks.

3.1. BEFiT

BEFiT is build upon the architecture of BEIiT (Bidirec-
tional Encoder representation from Image Transformers) [3]
for image classification tasks. BEiT uses the traditional
Transformer [24] as the backbone network. Vision Trans-
formers [7] are a type of deep learning model that extends
the Transformer architecture, originally designed for nat-
ural language processing tasks, to handle computer vision
tasks such as image classification, object detection, and seg-
mentation. BEIiT enhances the performance of other vision
transformers by introducing a masked image modeling task
for pretraining.

In Figure 1 we present the basic architecture of vision
transformers. To be processed by the vision transformer,
each image is divided into fixed-size patches. Positional
encodings are added to the patches to provide spatial in-
formation about the position of each patch in the image.
Transformers operate through sequence-to-sequence learn-
ing, where the transformer takes a sequence of tokens (in
our case, image patches) and predicts the next element in the
output sequence. This process iterates through the encoder
layers, with each layer generating encodings that define the
relevance of each part of the input sequence to others, which
are then passed to the next encoder layer.

The main advantage of transformers is the self-attention
mechanism. The patch embeddings, along with their po-
sitional encodings, are fed into the self-attention mech-
anism where each patch embedding attends to all other
patch embeddings, including itself, to compute a weighted
sum representation of the entire image. In addition, vision
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Figure 2. Overview of BEFiT training.

transformers employ multi-head attention, where the self-
attention mechanism is performed multiple times in parallel
with different sets of learned parameters. This allows the
model to attend to different aspects of the input image si-
multaneously and learn diverse spatial relationships.

After the self-attention mechanism, the output is passed
through position-wise Feed Forward Networks (FFNs).
FFNs consist of two fully connected layers with a non-linear
ReLU activation function applied in between. These layers
help capture spatial features within individual patches, al-
lowing the model to encode local information in the image
such as edges, textures, and shapes.

In computer vision tasks like image classification where
the goal is to predict a single output based on the input im-
age, only the encoder is required. As depicted in Figure 2,
by discarding the decoder, the input image patches are fed
to the Transformer which produces a fixed-size embedding
representing the entire image. This embedding is then fed
into a classification head to make predictions.

3.2. Soft Biometric Estimation

Figure 3 depicts the pipeline for soft biometric estima-
tion. Fine-tuning in deep learning refers to taking a pre-
trained neural network and further training it on a new
dataset for a different task. We fine-tune BEiT for FR on
RGB face images obtaining BEFiT model. After that, BE-
FiT is fine-tuned once more with thermal faces to perform

FR in thermal spectra. We will refer to the different ver-
sions of BEFiT as BEFiT-V and BEFiT-T depending on the
spectra in which they work.

Once the models are trained, the classification head is
removed and new face images are passed through BEFiT
encoder to obtain the learned feature vector as presented in
Figure 2. This general face embedding can be now used
for estimating different facial traits without the need to re-
training BEFiT.

Afterwards, customized CNNs are defined. These net-
works take as input the embeddings obtained with BEFiT
and are trained to classify the three soft biometric traits
studied in this paper. For binary traits such as gender, we
define a CNN consisting of a dense layer with 64 units and
ReLU activation followed by an output layer with 1 unit and
sigmoid activation for binary classification. For regression
traits, the CNNs architecture consists of a sequential stack
of two fully connected (dense) layers: the first layer has
64 units and uses ReLLU activation function, and the second
layer has a single unit with ReLU activation function, which
outputs the predictions.

Fusion is performed at the decision level. It is applied to
scores for classification tasks and to predictions for regres-
sion tasks. A weighted average is computed in each case.

3.3. Baselines

In Section 5, we test BEFiT against other state-of-the-art
networks for soft biometrics estimation. Unlike our univer-
sal face embedding, each of the other networks tested has
been trained for a specific trait estimation.

Several baselines were defined by re-implementing SotA
methods. VGG architecture has been proven in the litera-
ture as powerful for estimating gender and age from face
images [ 10]. Moreover, in their comparative study of archi-
tectures for gender estimation from thermal data, Farooq et
al. [9] revealed the high performance of VGGNet for this
task. No study, to the authors’ knowledge, has been con-
ducted on the feasibility of thermal imagery for age estima-
tion. Therefore, we select the VGG network with 16 weight
layers, i.e., the VGG16 model, for our gender and age base-
line estimation models. We use the VGG16 base model as
a feature extractor and we add custom fully connected lay-
ers on top for binary classification and regression for gen-
der and age prediction respectively. Regarding weight es-
timation from thermal faces, a ResNet50 architecture is se-
lected [14].

In addition, we test three publicly available and largely
trained SotA networks. Those networks estimate the dif-
ferent soft biometric traits from images in the visible do-
main. For gender classification, we adopt the open-source
DeepFace® library. DeepFace provides the most popular
pre-trained models for face detection and FR along with its

Zhttps://github.com/serengil/deepface
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Figure 3. Fine-tuning pipeline for soft biometric estimation using BEFiT. Given any input face image, BEFiT-V and BEFiT-T compute a
general face embedding. These embeddings serve as the foundation for estimating three key soft biometric traits: gender, age, and weight.

own models for gender classification. It returns the labels
“man”, "woman”, and associated probabilities, once a hu-
man face is passed to the gender model. For age estimation,
Deep EXpectation (DEX)? [21] model is adopted. DEX is a
model for apparent age estimation based on an ensemble of
CNNs with VGG-16 architecture pre-trained on ImageNet.
Finally, for weight estimation, we use the ResNet50 imple-

mentation proposed by Mirabet-Herranz et al. [15].

4. Experimental setup

This section presents the databases employed in our ex-
periments, as well as our training and testing protocols.
Several metrics are reported in our experiments to facilitate
comparability with future works. Finally, because repro-
ducibility is essential for future studies, we provide all our
model implementation details.

4.1. Databases

The training of BEFiT-V is performed using the CelebA
database [12]. The CelebFaces Attributes Dataset (CelebA)
is a large-scale face attributes dataset with more than 200K
celebrity images from more than 10K unique identities.
The images in this dataset cover large pose variations and
background clutter. BEFiT-T is fine-tuned on the TUFTS
database [20], which was presented in 2018. The TUFTS
database is composed of more than 10K images, including
imagery from different modalities, namely visible, thermal,
near-infrared, computerized facial sketch, and 3D images of

3https://github.com/siriusdemon/pytorch-DEX

Figure 4. Example images from the LVT Face Database. The three
variations are displayed in visible (upper row) and thermal (bottom
row) spectra, from left to right: N, O and A.

each volunteer’s face.

As described in Section 3.2, custom CNNs are defined
to estimate each task from the BEFiT embeddings. Dif-
ferent databases are used to train the visible CNNs. The
gender CNN is trained using the CALFW dataset [27]. The
Cross-Age Labelled Faces in the Wild (CALFW) is an im-
proved version of the LFW face dataset by adding face pairs
with age gaps to incorporate the aging process intra-class
variance while maintaining the same identities as in the
LFW dataset. The CALFW dataset contains 4,025 individ-
uals with 2, 3, or 4 images for each person. We use the
AgeDB [17] database to train the age CNN. AgeDB is a
manually collected database with a wide range of ages for
each subject, comprising 568 identities with 29 images per
subject. The weight CNN is trained on the VIP attribute
dataset [5], which consists of facial images annotated for
gender, height, weight, and Body Mass Index (BMI). This
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dataset, collected from the web, includes 1,026 frontal face
images of celebrities.

A limited number of publicly available databases contain
thermal imagery, and among them, their annotation is min-
imal. To the authors’ knowledge, one database exists with
paired visible-thermal facial images annotated with gender,
age, and weight: The LVT Face Database for face biomet-
rics [14]. The LVT database is composed of a compendium
of images, videos, soft biometrics, and health parameters
recorded from 52 different subjects in two sessions. It con-
tains 612 face and 416 shoulder images and videos, respec-
tively, with three different conditions: Neutral, Ambient
light, and Occlusion in the form of eyeglasses. Example
images from the LVT database are shown in Figure 4.

To provide a fair comparison between the visible and
thermal networks, we perform a subject-exclusive split of
the LVT database: Training set (480 images from 40 sub-
jects) and Testing set (120 images from the remaining 12
subjects). The thermal gender, age, and weight CNNs are
trained on the LVT training set. The baselines are anal-
ogously trained on LVT training set. All the models are
tested on the LVT test set.

A second test dataset is selected, for cross-database
assessment, which is much more challenging than LVT,
namely the VIS-TH database [13]. This database con-
sists of 2100 paired visible-thermal images captured under
challenging conditions, including variations in expressions,
head poses, occlusions, and different illuminations. It en-
compasses 50 subjects of diverse age, sex, and ethnicity.
However, only gender and age information is provided.

4.2. Metrics

Accuracy is used as a metric for gender classifier assess-
ment. Regarding age and weight, we report the Mean Ab-
solute Error (MAE) and Mean Root Square Error (MSRE)
in years and kilograms (kg), respectively, and the Pearson’s
correlation coefficient (p). Additionally, for age, we provide
the Standard Deviation (StD) of the difference between the
predicted and the real age of the subjects. Finally, we in-
clude the Percentage of Acceptable Predictions (PAP) for
the weight estimation network. This metric represents the
percentage of predictions with an error smaller than 10% of
the initial weight, indicating a reasonable error in medical
applications.

4.3. Implementation Details

We initialize the training of BEFiT-V for face recogni-
tion with BEiT pre-trained values obtained from Hugging-
Face*. BEiT was pre-trained on ImageNet-22k, a collection
of 14 million images and 22K classes. Each 224 x 224
image is divided into fixed-size patches of size 16 x 16.
BEFiT-V and BEFiT-T were trained for 150 epochs in the

“https://huggingface.co/docs/transformers/model_doc/beit

CelebA and TUFTS databases respectively with a batch size
of 32, a learning rate of 0.002 and weight decay set to 0.05.
In our experiments, we used 2 Nvidia GeForce RTX 2080
Ti 11GB cards with CUDA 11.2. For training BEFIiT-V, the
training runtime was 3.5 days, with 69.5 samples trained
per second and 1.087 train steps per second. For fine-tuning
BEFiT-T, the training runtime was 0.8 hours, with 24.5 sam-
ples trained per second and 0.389 train steps per second.

For soft biometric estimation, once the embedding was
extracted, they were passed to customized CNNs trained for
20 epochs with a batch size equal to 32, Adam optimizer,
and a learning rate of 0.001. The loss function chosen was
binary cross-entropy for gender classification and MAE for
age and weight regression.

Fusion was performed at the decision level. A weighted
average of the scores (classification) and estimations (re-
gression) was computed, with weights « for the visible and
1 — « for the thermal. The values of o were set to 0.5, 0.2,
and 0.7 respectively for gender, age, and weight networks.

The weights of the VGG16 and ResNet50 baselines were
initialized with pre-trained weights obtained from the Im-
ageNet and UTK dataset respectively. The input images
were resized to 224 x 224 pixels. The VGG16 networks
were trained for 20 epochs using the Adam optimizer with
a learning rate of 0.001. Binary cross-entropy loss function
was selected for gender classification, while mean squared
error was employed for age estimation. Each ResNet50
model was re-trained during 10 epochs followed by an ad-
ditional 10 epochs for training the final regression layer.
Adam optimizer was used with a learning rate of 0.01, and
Huber loss function was selected with § = 1. Regarding the
fused VGG16 networks, analogously to BEFiT, a weighted
average of the scores (classification) and estimations (re-
gression) was computed, with weights « for the visible and
1 — « for the thermal. The values of o were set to 0.5, 0.1,
and 0.7 respectively for gender, age, and weight networks.

5. Results

In this section, we present the experimental results of our
proposed BEFiT model for the estimation of gender, age,
and weight from face images in two spectra: visible and
thermal. We compare the performance of a unique embed-
ding for estimating soft biometrics in contrast to specialized
architectures.

5.1. Gender, age, and weight estimation on LVT

Gender estimation: In Table 2, we present the accuracy
of the different approaches for gender classification. When
comparing VGG16 and BEFIT for both thermal and visible
spectra, we observe an advantage of using RGB images for
predicting this trait. However, the superiority of BEFiT for
extracting gender is clear, with BEFiT-V correctly classi-
fying 95% of the subjects in the LVT test set. Moreover,
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Figure 5. Scores distribution for male and female classes for gender classification via BEFiT model.

Table 2. Evaluation of the gender classification models in the LVT test set for different input data modalities.

GENDER Visible Thermal Fusion
Deepface | VGG16* | BEFiT-V | VGG16* | BEFiT-T* | VGG16* | BEFiT-VT*
Accuracy 0.79 0.81 0.95 0.77 0.86 0.82 0.97

by fusing the scores provided by BEFiT-V and BEFiT-T,
BEFIiT-VT achieves 97% correct classification.

In Figure 5, the distributions of male and female scores
obtained with the different versions of BEFiT are presented.
In our training, the male class was set to zero and the female
to one. We can observe that the female class has scores
spread along the entire interval, while the male class reports
scores very close to zero, especially remarkable in the case
of BEFiT-V. Fusing both spectra allows for greater sepa-
rability between the classes, consistent with the results of
Table 2, where the accuracy of BEFiT-VT for the classifica-
tion task is higher.

Previous research has highlighted that male and female
bodies have different bone mineral and muscle densities,
which results in differing facial appearances even when in-
dividuals are of the same weight [15]. Therefore, although
thermal imagery alone may not suffice for gender classi-
fication, it provides crucial information that complements
visible input data.

Age estimation: Table 3 presents various metrics assess-
ing the different age estimators. Contrary to the results for
gender classification, thermal imagery surpasses RGB for
both architectures, VGG16 and BEFiT. The fusion strategy
seems especially beneficial for BEFiT-VT, able to gather in-
formation from both spectra achieving the lowest errors in
the LVT test set. The MAE of BEFiT-VT, at 3.69, is half
that of the one presented by the SotA estimator DEX. In
contrast to this behavior, it can be observed that in the case
of VGG16, thermal predictions are generally penalized by
their visible counterpart, resulting in less accurate predic-
tions.

The advantage of thermal data for facial processing is
supported by the findings in medical research, where it has
been shown that bone, muscle, and body fat do not con-

duct temperature equally [16]. Heat emission patterns can
be utilized to characterize a person as they provide infor-
mation about the location of major blood vessels, skeleton
thickness, amount of tissues, and muscle and fat distribu-
tion [14].

Weight estimation: In Table 4, the results of the com-
parative study of different techniques for weight estimation
are displayed. In this case, the results indicate that train-
ing a dedicated network delivers more accurate results than
extracting weight from a general face embedding. The su-
periority of thermal data is also confirmed for this task.

When fusing the decisions in BEFiT-VT, the network
achieves competitive performance with the state-of-the-art
ResNet50. Indeed, BEFiT-VT has the lowest PAP in the
LVT test set and competitive results in terms of MAE and
RSME. The fusion strategy is also optimal for the ResNet50
networks, achieving the lowest MSRE and higher correla-
tion coefficient in the LVT test set.

5.2. Gender and age estimation on VIS-TH

To assess the generalisation of BEFiT, we have tested
gender and age estimation on a more challenging dataset,
because of face pose, expression, and illumination varia-
tion. Table 5 presents the performance of BEFiT and the
SotA methods on the VIS-TH database. Again, BEFiT-
VT performs best for gender estimation despite the more
complex conditions whereas VGG has a big drop in perfor-
mance.

As for age, by observing the results, we can confirm that
thermal data has an advantage over visible data. Moreover,
the fusion strategy proves to be the most successful once
more for both architectures, BEFiT and VGG16. BEFIT-VT
and DEX have similar performances, with a drop compared

*Trained on LVT training set
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Table 3. Evaluation of the age estimation models in the LVT test set for different input data modalities.

AGE Visible Thermal Fusion
DEX [21] | VGG16* | BEFiT-V | VGG16* | BEFiT-T* | VGG16* | BEFiT-VT*
StD 8.69 7.04 9.50 6.45 5.56 6.50 5.21
MAE 7.23 5.83 8.41 3.94 4.36 4.11 3.69
MSRE 9.12 8.82 10.70 7.33 6.33 7.45 5.40
Correlation 0.53 0.28 0.31 0.34 0.45 0.32 0.55

Table 4. Evaluation of the weight estimation models in the LVT test set for different input data modalities.

WEIGHT Visible Thermal Fusion
ResNet50 [15] | ResNet50* | BEFiT-V | ResNet50* | BEFiT-T* | ResNet50* | BEFiT-VT*
MAE 8.13 10.11 11.29 8.18 11.12 9.11 9.16
MSRE 11.26 12.97 13.48 12.36 16.03 10.18 10.76
Correlation 0.57 0.39 0.31 0.76 0.18 0.74 0.37
PAP 53% 35% 33% 36% 60% 36% 60%
Table 5. Evaluation of the gender and age estimation models in the VIS-TH database.
Visible Thermal Fusion
GENDER Deepface | VGG16 | BEFiT-V | VGG16 | BEFiT-T | VGG16 | BEFiT-VT
Accuracy 0.84 0.60 0.93 0.33 0.87 0.28 0.97
AGE Visible Thermal Fusion
DEX [21] | VGG16 | BEFIiT-V | VGG16 | BEFiT-T | VGG16 | BEFiT-VT
StD 5.87 6.64 9.20 5.21 6.88 5.19 5.89
MAE 4.95 5.16 7.71 4.66 8.75 4.55 5.42
MSRE 6.17 6.67 9.44 5.49 10.73 5.40 6.89
Correlation 0.47 0.06 0.40 0.03 0.15 0.06 0.39

with the results on LVT. VGG16 achieves the best results
in terms of MAE and MSRE, however, the low correlation
coefficient obtained in each spectrum for the VGG16 archi-
tecture reflects that the predictions given by this architecture
are always close to the dataset’s average age, resulting in
minimized age error without learning specific face features
for age estimation.

6. Conclusion

Previous work on soft biometric estimation requires spe-
cialized networks for each soft biometric trait to be esti-
mated. As an alternative, approaches such as multi-task
learning are proposed, but their performance comes at the
cost of network complexity. In addition, many soft bio-
metric traits can be estimated from the face; consequently,
multiple training sessions need to be done. To tackle this
problem, in this paper, we introduce a novel structure for
face embedding extraction: BEFiT. BEFiT is a vision trans-
former that can extract a unique face embedding from which
different soft biometric traits can be estimated. Unlike
other approaches for soft biometric estimation, the train-

ing of BEFIT for face feature vector extraction was not op-
timized for a specific soft biometric trait estimation, thus
boosting embedding generalization. We train two differ-
ent versions of BEFiT (BEFiT-V and BEFiT-T) in the visi-
ble and thermal spectra, and we compare their performance
with state-of-the-art networks and baselines. Additionally,
we perform fusion at the decision level, enhancing the per-
formance of the soft biometric estimators by gaining in-
sights from both visible and thermal spectra. Our exper-
imental results demonstrate that the embeddings extracted
from BEFIiT-V and BEFiT-T achieve competitive perfor-
mance with the ones extracted from dedicated architectures
for gender, age, and weight estimation. Furthermore, our
fusion strategy successfully estimates the three traits con-
sidered, achieving state-of-the-art performance for gender
and age on the LVT database.
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