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Abstract

In this paper, we address the vulnerabilities of iris recog-
nition systems to both image-based impersonation attacks
and Presentation Attacks (PAs) in physical environments.
While existing Presentation Attack Detection (PAD) meth-
ods have been effective against PAs, they remain suscep-
tible to adversarial examples. We propose a combination
of physical adversarial attacks tailored to iris recognition
and PAD, and also propose a defense method against them.
Our attack methods involve a physical impersonation at-
tack using adversarial perturbation on the iris region and
a physical PAD evading attack using an adversarial patch
on the pupil region. We demonstrate the high transferabil-
ity and effectiveness of our attacks on multiple PA instru-
ments in digital and distinct physical environments using
multiple recognition engines. To counteract these attacks,
we develop a defense method for PAD involving adversarial
fine-tuning against both the physical attacks. This defense
method successfully reduces the PAD evasion attack suc-
cess rate from 71.5% to 21.0% in physical environments
and ultimately lowers the overall physical impersonation
success rate from 58.0% to 19.5%. Our proposed method
lays the groundwork for developing more robust and secure
iris recognition systems with increased protection against
sophisticated PAs.

1. Introduction

Iris recognition is one of the most reliable biometric recog-
nition methods, utilizing the unique texture patterns of
the iris region to verify an individual [18]. However,
iris recognition systems face two main types of potential
threats: image-based impersonation attacks [57, 58] that
target digital images and subsequent Presentation Attacks
(PAs) [12, 13] executed on physically captured images.

Image-based impersonation attacks manipulate the query
iris image using target iris image (or feature), leading
the system to incorrect verification. Various techniques

Figure 1. (a) Our real-world attack scenario and goal. (b) An
example of our scenario. The target iris image is displayed on
the e-Paper illuminated using the near-infrared (NIR) light. NIR
camera for iris recognition captures displayed iris images.

are employed in these attacks which include the utiliza-
tion of adversarial perturbations [58] and image morphing
[57]. However, these methods have only been evaluated
on digital images and their effectiveness in physical envi-
ronments, such as on printed paper or displayed screens,
remains unassessed. Therefore, confirming the effective-
ness of these attacks in real-world physical environments
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becomes crucial.
Presentation Attacks (PAs) [12, 13] typically make use

of presentation attack instruments (PAIs) such as prosthetic
eyes, textured contact lenses, printed iris images, or iris im-
ages displayed on electronic paper (e-Paper) screens to de-
ceive iris recognition systems. These PAIs are captured by
the system, misleading the verification process. PAs can
co-occur with image-based impersonation attacks, for in-
stance, by displaying a generated image on e-Paper screens
or printed papers. Thus, Presentation Attack Detection
(PAD) plays a vital role in iris recognition systems to pre-
vent both types of attacks on physically-captured images.

PAD methods detects PAs by deriving PA scores from
cropped iris images.PAD methods [1, 3, 7, 8, 12, 14, 15, 17,
23, 26, 27, 44, 47, 56, 59, 60], have been developed and
researched to preemptively identify such attacks. Conven-
tional studies [1, 7, 8, 15, 26, 27, 44, 56, 60] have demon-
strated that using Convolutional Neural Networks (CNNs)
can significantly enhance the performance of PAD. Es-
pecially, D-NetPAD [56] consists of simple DenseNet121
[29] structure achieved most accurate detection in LivDet-
Iris2020 Challenge [13].

However, CNN-based PAD methods remain susceptible
to adversarial examples[6, 22, 38]. Despite this, exploration
into the vulnerabilities within the PAD models themselves
and the development of defensive strategies against these
are still limited. It is necessary to consider the vulnerabil-
ities of PAD in terms of operational environments in real-
world iris recognition systems and to develop correspond-
ing defences. Generally, fine-tuning with adversarial exam-
ples is effective [22, 38]. We believe that it is paramount for
this fine-tuning process to utilize attacks that hold valid and
effective implications in the real world.

Recent studies [2, 4, 21, 28, 36, 54, 64] have proposed
physical adversarial attack scenarios on real-world sensing
systems. Digitally generated adversarial attacks tend to be
ineffective against physically sensed adversarial instances
due to distributional shifts due to image degradation from
the sensing process. Solutions to these domain shifts are
sought through digital optimization techniques in the con-
duct of physical adversarial attacks. However, these meth-
ods have yet to take into account to the sensing system itself.
Therefore, it is crucial to examine the efficacy of adversarial
attacks and their defenses in the context of iris recognition
systems, which operate under near-infrared (NIR) lighting
and necessitate high-resolution capturing.

In this paper, we demonstrate physical adversarial exam-
ples effective on both iris recognition and PAD. We then ap-
ply adversarial training [38] in PAD models to protect from
these attacks as illustrated in Figure 1 (a). We propose novel
physical adversarial attacks and demonstrate their effective-
ness on both iris recognition and PAD.

Our contributions are as follows:

• Physical Impersonation Attack: We propose an attack us-
ing adversarial perturbation on the iris region against iris
recognition systems. We demonstrate its high transfer-
ability and effectiveness in digital and two physical envi-
ronments with two PAIs.

• Physical PAD Evading Attack: We propose an attack em-
ploying an adversarial patch on the pupil region without
preventing impersonation attacks. We demonstrate the ef-
fectiveness of our capturing-in-the-loop (CIL) optimiza-
tion method for lower-dpi PAIs such as e-Paper displays.
We apply our optimization on one capturing environment
and demonstrate that optimized patches are effective on
another capturing environment.

• Defense Method: We develop an effective defense
method for PAD involving adversarial fine-tuning [22,
38], which protects against both the physical imperson-
ation and PAD evading attacks, as shown through experi-
ments.
We use three iris recognition engines [10, 43, 49] and a

publicly available PAD method, D-NetPAD [56] for evalua-
tion of physical attack, and fine-tune D-NetPAD. Our exper-
imental results show the existence of adversarial examples
for both iris recognition and PAD in real-world scenarios of
iris recognition systems shown in Figure 1 (b), as well as
the significant robustness improvement achievable by fine-
tuning D-NetPAD. Our proposed method paves the way for
developing more robust and secure iris recognition systems
with enhanced protection against sophisticated PAs.

2. Related Work
2.1. Iris Recognition

Iris recognition involves four main stages: segmentation,
mask creation, normalization, and feature extraction. The
process starts by isolating the iris region from the eye im-
age and generating a binary mask to filter out noisy pixels.
The annular-shaped iris and its mask are then normalized
using the rubber sheet model [18] into a rectangular shape.
The normalized images are fed into the feature extractor.
Many studies [18, 43, 49] have used hand-crafted features
such as two-dimensional (2D) Gabor or wavelet filters and
have used the Hamming distance for matching. Other stud-
ies [10, 19, 25, 41, 42, 50, 63, 69] have used CNNs as fea-
ture extractors, producing 1D feature vectors and leveraging
cosine similarity for matching. Iris recognition systems use
NIR cameras and require high-resolution images, e.g., 10
pixels per millimeter as per ISO/IEC 39794-6 [30].

2.2. Impersonation Attacks on Iris Images

Two primary types of digital impersonation attacks exist in
iris recognition: morphing-based techniques [57] and ad-
versarial example-based methods [58]. Sharma et al. [57]
proposed a morphing technique that aligns the iris regions
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e-Paper display

Figure 2. Overview of iris-recognition process (blue region) and adversarial-attacks generation processes. Our method first applies pertur-
bations to iris region for impersonation (yellow region) and optimizes an adversarial patch on pupil region to evade PAD (red region).

of target and query images based on the pupil and iris posi-
tion information, demonstrating a high recognition success
rate for both target and query images in a digital environ-
ment. Soleymani et al. [58] targeted the hand-crafted iris
recognition method OSIRIS, trained a U-Net [51] based sur-
rogate model on normalized images, and conducted adver-
sarial attacks on the surrogate model. However, it remains
unclear whether these attacks remain effective when applied
to original annular-shaped iris images or images captured in
real-world sensing environments.

2.3. Iris Presentation Attack Detection

PAD protects iris recognition against impersonating specific
identities or other PAs [12]. As shown in the upper part of
Figure 2, PAD is generally applied on cropped iris images
after the segmentation process within the iris recognition
pipeline. To enhance the performance of PAD, the LivDet-
Iris Challenge [13, 66–68] is held periodically and facili-
tates the development of PAD methods by focusing on de-
tecting various PAIs such as artificial eyes, GAN-generated
images [33], printed paper, cosmetic contact lenses and e-
Paper displays in captured images. Similar to iris recog-
nition, PAD methods fall into two categories: hand-crafted
and CNN-based methods. Hand-crafted methods use fea-
tures such as frequency [14], binarized statistical image fea-
tures (BSIF) [17, 47], and local descriptors [23, 59]. CNN-
based methods [1, 7, 8, 15, 26, 27, 44, 56, 60] demonstrated
high accuracy in previous LivDet Iris competitions. For
example, Sharma et al. [56] proposed D-NetPAD based
on DenseNet121 [29]. D-NetPAD achieved the most ac-
curate detection in LivDet-Iris2020. While iris recognition
framework solely extracts the iris region from images, PAD
framework inputs cropped regions, including the pupil. We
believe that this difference could make PAD systems more

vulnerable.

2.4. Adversarial Attacks and Defense

CNN models have been found to be vulnerable to adver-
sarial examples. Prior research has investigated generat-
ing adversarial examples by either adding small, human-
imperceptible perturbations to images [22, 38] or intro-
ducing adversarial patches that modify specific areas in
images without being confined to imperceptible perturba-
tions [4, 16, 35, 55, 61, 65]. Moreover, several studies
[2, 4, 21, 28, 36, 54, 64] have proposed physical adversar-
ial attacks on real-world sensing systems. Generated ad-
versarial examples in digital environments do not consis-
tently fool in physical environments due to factors such as
viewpoint changes and camera noise. As a technique for
adapting to physical environments, Expectation over Trans-
formation (EOT) [2] introduces image transformations and
noise while the attack generation process enhances the ro-
bustness of adversarial examples. Physical adversarial ex-
amples have been used for attack evaluations by printing
them on paper [2, 4, 36, 64] or projecting them using pro-
jectors [21, 28, 54]. In the context of iris PAD, there is a
commonality in printing on paper, and e-Paper displays can
serve as substitutes for projectors.

Various defense methods have been proposed against
adversarial attacks, such as detection methods [5, 24],
saliency-map based [11, 40], or enhancing model by train-
ing and fine-tuning with adversarial examples [9, 20, 22, 34,
37, 38, 48]. Consequently, it is possible to improve defense
capabilities by generating image-based weaknesses in PAD,
fine-tuning the models, and reinforcing their resilience and
detection performance.
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3. Proposed Method
We propose two physical adversarial techniques targeting
iris recognition and PAD. In the first phase, we develop a
physical impersonation attack that leverages internal repre-
sentations of a normalized iris image to generate adversar-
ial examples. This approach makes the perturbations ro-
bust against image deformations and degradations in phys-
ical environments. In the second phase, we propose a PAD
evading attack by designing an adversarial patch. This gen-
eration process is illustrated in Figure 2. Furthermore, to
defend against these adversarial attacks, we apply adversar-
ial fine-tuning [22, 38] to the PAD models by incorporat-
ing the generated adversarial images in their training phase,
resulting in improved robustness against adversarial exam-
ples.

3.1. Impersonation for Iris Recognition

We conduct an impersonation attack by generating an ad-
versarial example on the normalized iris image and then
warping it back to the original image (inverse normaliza-
tion). To generate a robust adversarial example, we use a
loss function based on the internal representation. This en-
ables us to create effective perturbations resistant to image
deformations and degradation introduced by PAIs.

3.1.1 Differentiable Inverse Iris Normalization

The normalization process[18] maps the 2D torus-shaped
iris region to a rectangular image. A transformation from
orthogonal coordinates [x, y] to normalized image coordi-
nates [r, θ], is given by[

x
y

]
=

[
R cos θ′ + xc

R sin θ′ + yc

]
, (1)

R =
( r

h
rp + (1− r

h
)ri

)
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2πθ

w
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[
xc

yc

]
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[
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h )xi
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h )yi

]
. (3)

where [xp, yp] denotes the center position of the pupil,
and [xi, yi] depicts the center position of the iris. The radius
of the pupil and iris are denoted as rp and ri, respectively.
The height and width of the rectangular output image are
respectively represented by h and w.

Recently, Khan et al. [32] proposed DeformIrisNet for
pupil-deliration simulations, a method that implicitly in-
corporates differentiable normalization using a spatial grid
sampler [31]. We have implemented this differentiable ap-
proach in our study for inverse normalization. In this field
of study, to the best of our knowledge, no papers providing
an analytical exposition on this Inverse Normalization have

been published. In light of this, we offer our explanation
here.

The inverse transformation from normalized image coor-
dinates [r, θ] to orthogonal coordinates [x, y] is derived by
squaring the sum of Eq. 1, with r representing the positive
solutions of the resulting quadratic function as given by

x2 + y2 = R2 + x2
c + y2c . (4)

θ is described as

θ = arctan

(
y − yc
x− xc

)
. (5)

We use bilinear interpolation to smooth the mappings of
pixels between the two coordinates. If the iris is cut at the
edge of the image, we use border replication for padding.
While our method allows for the application of perturba-
tions to the iris area prior to normalization, we apply them
after normalization. This is mainly because the perturbation
area become excessive if manipulated before normalization.

3.1.2 Optimization Using Internal Representation

When generating adversarial examples in iris recognition,
there are two critical issues. First, perturbations consisting
of pixel changes without adjacency, such as Gaussian noise,
may be lost during interpolation in deformation. Hence,
perturbations that can be robust to deformation and interpo-
lation are necessary. Second, iris-recognition systems adopt
various matching methods (such as Hamming distance or
cosine similarity), so it is necessary to be independent of
the particular matching method used as possible. We use
the internal representation to generate adversarial examples,
which is known for its strong transferability [39, 52, 53].
This method also enables backpropagation on hand-crafted
methods such as Gabor filter-based methods [43].

To optimize the generation of adversarial examples, we
use the projected gradient descent (PGD) algorithm [38],
which iteratively takes small steps in the direction that in-
creases the loss function as given by

xt+1
adv = Clipϵ(x

t
adv + αsign(∇L(ϕk(x

t
adv), ϕk(y)))). (6)

At each iteration t+1, the equation generates the adver-
sarial example xt+1

adv , where L is the loss function based on
L2-norm, and ϕk describes the intermediate convolutional
layer at the k-th level from the input. The hyperparameter
α controls the step size of the iteration, while the perturba-
tion is constrained within the ϵ-ball centered on the original
image through the clipping operation.

3.2. Adversarial Patch for PAD evasion

We propose a circular-shaped adversarial patch on the pupil
region. This method aids in preserving the adversarial per-
turbations for impersonation within the iris region. The dig-
itally generated adversarial patch becomes ineffective due
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(a) Initialization process (b) CIL optimization process

Figure 3. Our adversarial patch generation process. (a) Process of initializing a patch without capturing image, (b) Optimization process
of PAD score using an e-Paper display and a camera.

to domain shifts from lower-dpi PAIs such as e-Papers and
sensing systems. We consider it critical to establish a corre-
spondence between digital and physical spaces. To bridge
this gap, we propose using a capturing-in-the-loop opti-
mization technique.

3.3. Capturing-in-the-loop optimization

Given an iris image x ∈ X and an adversarial patch p ∈ P ,
we contemplate a PAD model D : X → R. We formu-
late a synthesizing function S : X × P → X and a digi-
tally synthesized image xp = S(x, p). The capturing func-
tion C : X → X signifies the display and capture process
in the real world where it results in degradation of the in-
put image and the adversarial patch becoming degraded and
non-differentiable p̄. In an attempt to acquire p in differen-
tiable optimization, we propose an approximation function
fθ : P → P with parameter θ to characterize the align-
ment between the digital and real-world environments. Our
proposed approach involves resolving the equation below:

min
p,θ

D(S(C(xp), fθ(p))) + ||Di(fθ(p))−Di(p̄)||2 (7)

In this equation, Di represents the layers of D up to the
i-th layer. We propose an iterative optimization of two pa-
rameters p and θ, an approach not yet explored in the con-
text of physical adversarial attacks. Algorithm 1 and Figure
3 (b) outlines our CIL optimization process.

3.3.1 Adversarial Patch Initialization

For the initialization of CIL, we use Expectation Over
Transformation (EOT) [2] to handle blur degradation dur-
ing the patch initialization, as depicted in Figure 3 (a). Our
initialization approach creates a black circular patch of ra-
dius t pixels and applies a mask of d pixels from the edge.
We then incorporate the patch into the pupil area of the

Algorithm 1 CIL algorithm
Require: initialized adversarial patch p0,

impersonation image x
1: while Score > threshold & captureCont < maxCapture do
2: xp ← S(x, p)
3: x′

p ← C(xp)

4: Score← PAD(x′
p)

5: p′ ← Extractfromx′
p

6: for i = 0; i < trainiterations; i + + do
7: minθ ||Di(fθ(p))−Di(p̂)||2
8: i + +
9: end for

10: for i = 0; i < maxiterations; i + + do
11: Score← D(S(x′

p, fθ(p))

12: minp D(S(x′
p, fθ(p))

13: end for
14: if score < PADthreshold then
15: break
16: end if
17: end while

image and employ the Projected Gradient Descent (PGD)
algorithm [38] to optimize the perturbation within a range
of radius t − d pixels. Using the random blur convolution
as EOT enhances the patch’s robustness against degrada-
tion. By optimizing with multiple images, we strengthen
the patch’s robustness, enabling it to handle potential vari-
ations in pupil dilation effectively. To address variations in
pupil size among different irises, we use differentiable im-
age sampling [31]. This performs an affine transformation
on the circular patch to match with varying pupil sizes in
the images, effectively acting as an EOT for scaling and en-
hancing the adaptability of the adversarial patch.

3.4. Enhancing PAD

We fine-tune PAD models using additional generated ad-
versarial examples. This enables the PAD model to improve
the accuracy of classifying generated adversarial iris images
and suppresses the effectiveness of newly created adversar-
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ial patches. Our proposed method involves real-time data
generation and optimization in a real-world environment.
Since carrying out iterative adversarial training involving
repeated learning and generation is unrealistic, we assume
that fine-tuning yields sufficient improvements in the per-
formance of the PAD model.

4. Experiments
In our experiments, we created physical environments uti-
lizing two distinct capturing settings and employed paper
and e-Paper as PAIs. Firstly, we demonstrate that our pro-
posed iris impersonation method outperforms conventional
approaches by achieving higher success rates in both digital
and physical environments. Additionally, we highlight the
effectiveness of our adversarial patches against D-NetPAD
[56] and establish that they maintain their efficiency in un-
known physical settings. Furthermore, we show the effec-
tiveness of defending against attacks by fine-tuning the im-
ages generated through attacks.

4.1. Iris Recognition System Environments

We explored the performance of our impersonation method
with two iris recognition engines. These engines consist
of the publicly available hand-crafted method OSIRIS [43]
and the CNN-based approach T-Center [10]. Moreover, we
assessed the transferability of impersonation using an addi-
tional iris recognition engine, the publicly available hand-
crafted method USITv3 [49]. The recognition performance
of each engine was evaluated on the ND-IRIS-0405 dataset
[45, 46], consisting of 13,438 positive pairs and 1,985,562
negative pairs. The evaluation results for equal error rates
(EERs) for T-Center, OSIRIS, and USITv3 were 4.46%,
2.06%, and 10.43%, respectively. For evaluations of im-
personation attacks, we used the score at FAR = 10−3 as
matching thresholds.

We established two different imaging environments,
each featuring a distinct camera setup. The first imag-
ing environment (Camera-1) utilizes an IMX267 image
sensor and with a 50 mm C-mount lens. We performed
our capturing-in-the-loop optimization in this environment.
The second imaging environment (Camera-2) involves an
IMX178 image sensor with a 35 mm C-mount lens. We
used near-infrared (NIR) light and a visible light cut filter
in front of the lenses. These devices has enough optical
resolutions and sensitivity for the iris recognition products.
For the e-Paper display, we employed a 13.3-inch Boox
Max Lumi screen (207 dpi). As for the paper, we printed
the images on office recycled paper using a Canon iR-ADV
C5560F printer (600 dpi). When generating the PA images,
we adjusted the iris diameters to be between 10-12 mm for
both the paper and electronic paper (e-Paper) display. We
captured PAI with the diameter of the iris being at least 160
pixels.

4.2. Impersonation on Iris Region

To show the impersonation performance of internal repre-
sentation, we compared five impersonation methods in dig-
ital and two camera settings:
• T-Center+PGD: This method is basic adversarial-

example-generation on T-Center [10]. Matching scores
(cosine similarity of features) are used for PGD loss.

• irisMorph [57]: This method involves morphing the query
image’s iris positions to match the target image and using
linear blending to combine the images.

• Sur-OSIRIS [58]: This method trains a surrogate model
of hand-crafted OSIRIS [43] feature extraction and gener-
ates adversarial examples using surrogate model (U-Net
[51] structure). We trained the surrogate model using
10,000 images from ND-iris-0405 dataset. L2-norm be-
tween iris codes is used for PGD loss.

• T-Center-inter (proposed): Based on T-Center [10], this
method employs L2-norm between internal representa-
tions from the Conv6 layer as PGD loss.

• OSIRIS-inter (proposed): This method is based on
OSIRIS [43]. OSIRIS employs six different sizes of Ga-
bor filters. We implemented these filters as convolution
layers. The PGD loss is L2-norm between (6,h,w) sized
internal representations.
We optimized these impersonation methods with a pa-

rameter of α = 1/255 and evaluated three different ϵ val-
ues: {8/255, 16/255, 24/255}. To localize the iris circles
for attacks, we used the iris localization network (ILN) [62].
In the evaluation phase, we used the detection methods of
the three unique iris recognition engines. We randomly de-
termined the source and target image pairs from the ND-
IRIS-0405 dataset, ensuring that the images used for train-
ing T-Center were excluded. The class of the source and
target images was also kept different. We assessed the im-
personation success rates (ISRs) for both original images
and e-Paper-displayed images. For the original images, we
randomly selected 200 pairs.

The experimental results are shown in Table 1. As a re-
sult of all evaluations, our method achieves high ISRs in
different engines and environments. The proposed OSIRIS-
inter exhibits the highest ISRs in the digital environment
using the OSIRIS engine, and the OSIRIS and USITv3
engines in multiple physical environments using multiple
PAIs. While ISR of the proposed T-Center-inter achieves
highest ISR in digital environment. Although the ISRs eval-
uated using CNN-based recognition T-Center result in that
all approaches have low ISRs in physical environments.
This result shows that the image domain which T-Center
model trained differs from the image of PAIs.

These results confirm that our proposed methods demon-
strate competitive performance compared to other methods.
Especially in T-Center+PGD, perturbations on normalized
images tend to be spatially high frequency and are canceled
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Table 1. Impersonation attack success rate (ISR) at FAR = 10−3. (w/o PAD)

Digital e-Paper@Camera-1 Paper@Camera1 e-Paper@Camera-2 Paper@Camera-2
eps OSIRIS T-Center USITv3 OSIRIS T-Center USITv3 OSIRIS T-Center USITv3 OSIRIS T-Center USITv3 OSIRIS T-Center USITv3

T-Center +
PGD [38]

08/255 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16/255 0.000 0.010 0.000 0.005 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.005 0.010 0.000 0.000
24/255 0.000 0.005 0.000 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005

irisMorph
[57] – 0.940 0.235 0.885 0.105 0.000 0.110 0.765 0.025 0.350 0.070 0.000 0.115 0.555 0.005 0.040

Sur-OSIRIS
[58]

08/255 0.670 0.030 0.495 0.000 0.000 0.010 0.620 0.000 0.330 0.095 0.000 0.045 0.470 0.000 0.110
16/255 0.910 0.020 0.580 0.025 0.000 0.100 0.870 0.005 0.360 0.290 0.000 0.190 0.750 0.000 0.155
24/255 0.935 0.040 0.585 0.095 0.000 0.105 0.935 0.015 0.350 0.425 0.000 0.250 0.765 0.005 0.150

TCenter-inter
(ours)

08/255 0.335 0.060 0.340 0.020 0.000 0.030 0.275 0.000 0.165 0.020 0.000 0.030 0.185 0.000 0.060
16/255 0.785 0.220 0.705 0.110 0.000 0.140 0.685 0.030 0.310 0.115 0.000 0.130 0.535 0.005 0.120
24/255 0.895 0.335 0.755 0.165 0.000 0.215 0.740 0.040 0.330 0.205 0.000 0.190 0.630 0.020 0.140

OSIRIS-inter
(ours)

08/255 0.865 0.025 0.820 0.070 0.000 0.100 0.640 0.005 0.380 0.075 0.000 0.105 0.470 0.000 0.120
16/255 0.960 0.120 0.860 0.203 0.000 0.305 0.820 0.015 0.385 0.215 0.000 0.325 0.685 0.005 0.150
24/255 0.975 0.120 0.860 0.295 0.000 0.300 0.860 0.035 0.400 0.305 0.000 0.375 0.690 0.005 0.170

Table 2. PAD evasion attack success rate (ESR).

Camera-1 Camera-2
patch e-Paper Paper e-Paper Paper

D-NetPAD-org
without 0.000 0.000 0.000 0.000
initial 0.330 0.460 0.505 0.510
optimized 0.880 0.170 0.520 0.435

D-NetPAD-PA
without 0.000 0.000 0.000 0.000
initial 0.020 0.685 0.170 0.335
optimized 0.715 0.345 0.535 0.260

D-NetPAD-AF
without 0.000 0.000 0.000 0.000
initial 0.000 0.210 0.000 0.010
optimized 0.000 0.105 0.000 0.000

out by inverse normalization. This cancel-out occurs due
to the lack of spatial information caused by the fully con-
nected layers of T-Center feature extractor. On the other
hand, Sur-OSIRIS extracts two-dimensional features from a
U-Net structure consisting only of convolution and decon-
volution layers. We considered that this structure also has
the function of preserving spatial features, similar to our in-
ternal representation-based method.

4.3. Adversarial Patch and Adversarial Training

To initialize the adversarial patch, we used 20 randomly
sampled iris images and optimize with parameters α =
2/255 and ϵ = 255/255. We conducted 100 iterations per
image to initialize the patch. The size of the patch were set
to 35× 35 pixels, which means the radius of circular patch
is t = 17 pixels. We also set the mask range d at 5 pixels.
For the random blurring parameter, we defined a range of
1.5 ≤ σ ≤ 5 with a kernel size of 21. To optimize and
evaluate the patch, we used OSIRIS-inter images (with ϵ =
24/255) that exhibited high ISRs in previous experiments.

In the capturing optimization process, we set PGD op-
timization parameters as (α, ϵ) = (5/255, 10/255), pa-
rameters in Algorithm 1 as maxIteration = 2 and
maxCapture = 50. For the shallow CNN T described
in Figure 3 (b), we used the following three distinct layers:
conv1 expands the channels from 1 to 16 using an (11, 11)
kernel size, conv2 maintains the 16 channels with a (5, 5)
kernel size, and conv3 reduces the channels from 16 to 1 us-

ing a (5, 5) kernel size. To preserve the image size through-
out the network, we apply zero padding. For evaluation, we
captured randomly sampled 200 images. We used ILN [62]
for detection during the attack and evaluation processes.

We focused on evaluating the evading performance of
D-NetPAD [56], a publicly available training model with
trained weights and threshold values. However, we assumed
that our imaging environment and image domain differ from
those in the original model. To address these issues, we
evaluate multiple fine-tuned D-NetPAD models using PAI
images captured in real-world settings and original images
from the dataset. We define original and fine-tuned models
as follows:
• D-NetPAD-org: Publicity available trained model of [56].
• D-NetPAD-PA: Fine-tuned model using randomly se-

lected 400 live-labeled images from ND-IRIS-0405, 200
e-Paper-displayed images, and 200 paper-printed images
for fine-tuning.

• D-NetPAD-AF: Fine-tuned model using 400 live (same as
PA model), 100 paper, 100 e-Paper w/o patches, 100 pa-
per with initial patches, and 100 e-Paper with optimized
patches. The patches are generated using D-NetPAD-org.

We used 50% of the images for training and the other 50%
of images for testing. In addition, the e-Paper and paper
data for training and testing were captured in Camera-1. We
fine-tuned 2 epochs because the PAD success rate on the
test data reached one after two epochs. The threshold for
PAD is determined based on the distribution of the test data
according to the method described in the D-NetPAD paper
and source code.

Table 2 shows the result of PAD evasion attacks using
three PAD models when applied to adversarial patches un-
der Camera-1 and Camera-2 environments using printed-
paper and e-Paper displayed images. The results show that
all PAD evasion success rates called Imposter Attack Pre-
sentation Match Rate (IAPMR) become 0 without adver-
sarial patches in all environments. The initial patches on
printed-paper images resulted in the highest IAPMR across
both cameras. Furthermore, when applying the optimized
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Table 3. Impersonation attack success rate (ISR) evading PAD at FAR = 10−3 .

e-Paper@Camera-1 Paper@Camera-1 e-Paper@Camera-2 Paper@Camera-2
patch OSIRIS T-Center USITv3 OSIRIS T-Center USITv3 OSIRIS T-Center USITv3 OSIRIS T-Center USITv3

D-NetPAD-org
without 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
initial 0.115 0.000 0.155 0.395 0.010 0.190 0.160 0.000 0.195 0.355 0.000 0.120
optimized 0.215 0.000 0.315 0.155 0.005 0.060 0.155 0.000 0.180 0.340 0.000 0.090

D-NetPAD-PA
without 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
initial 0.010 0.000 0.010 0.580 0.005 0.260 0.045 0.000 0.065 0.240 0.005 0.070
optimized 0.185 0.000 0.275 0.000 0.000 0.000 0.080 0.000 0.135 0.000 0.000 0.000

D-NetPAD-AF
without 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
initial 0.000 0.000 0.000 0.195 0.005 0.065 0.000 0.000 0.000 0.005 0.000 0.005
optimized 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4. Cross PAD evasion Imposter Attack Presentation Match
Rate (IAPMR) and PAD performance evaluation @Camera-2.

+PA patch IAPMR +AF patch IAPMR PAD performance
e-Paper Paper e-Paper Paper APCER BPCER

PAD-PA 0.535 0.335 0.330 0.265 0.005 0.000
PAD-AF 0.000 0.000 0.000 0.010 0.000 0.000

Figure 4. (a) query image (b) impersonation result (OSIRIS-
inter) (c) printed-paper image with initial patch (D-NetPAD-
org@Camera-1) (d) e-Paper-displayed image with optimized
patch (D-NetPAD-org@Camera-1)

adversarial patch for the e-Paper@Camera-1 environment,
the results achieved the highest IAPMRs across both cam-
era environments with e-Paper. Comparatively, the perfor-
mance of the proposed D-NetPAD-AF model is generally
lower than that of D-NetPAD-org and D-NetPAD-PA. This
result suggests that our fine-tuning enhances PAD against
adversarial patches.

Table 3 presents the final ISR evading PAD protec-
tion, specifically focusing on those targeting OSIRIS-
inter (eps=24/255). For cases where no fine-tuning was
performed (D-NetPAD-org and D-NetPAD-PA), the e-
Paper@Camera-1 experienced a maximum ISR of 31%.
Further, in the Paper@Camera-1, this increased sig-
nificantly to 58%. In the e-Paper@Camera-2 and
Paper@Camera-2, ISRs were 19.5% and 35.5%, respec-
tively. These results demonstrate the vulnerability of the
PAD models without fine-tuning. In contrast, D-NetPAD-
AF showed defensive capabilities against impersonation
attacks, achieving a maximum ISR of 19.5%, consider-
ably lower than the other models. This finding highlights
the effectiveness of D-NetPAD-AF in improving robustness
against adversarial attacks and the importance of fine-tuning
the PAD model for enhanced security.

Furthermore, we compared the cross IAPMRs between
the PA and AF models and benchmarked the PAD perfor-
mances of each model in Table 4. We first evaluated data

Figure 5. PAD evasion attack images with initialized patches

with patches generated using one model by the other model.
As a result, the IAPMRs of the PA model are high, even us-
ing the patches generated by the AF model. On the other
hand, the IAPMRs of the AF model result in almost zero.
These results show that fine-tuning enhances the resilience
of the model against adversarial patches. To evaluate the
PAD performance itself, we arranged additional evaluation
images. We selected 200 digital iris images from the ND-
IRIS-0405 as live labels and obtained 400 PA images cap-
tured live images on e-Paper and paper in the Camera-2 en-
vironment. The selected live images are not used for patch
generation and PAD fine-tuning. The right side of Table
4 shows the bonafide presentation classification error rate
(BPCER) and attack presentation classification error rate
(APCER) of each model. Both models achieve low error
rates, showing that our fine-tuning method enhances PAD
models while maintaining PAD performance.

5. Conclusion

We address the vulnerabilities of iris recognition systems to
both image-based impersonation attacks and Presentation
Attacks (PAs) in physical environments. Our contributions
include physical impersonation attacks that target both the
iris region and PAD methods, and a defense method using
adversarial fine-tuning for enhancing the robustness of PAD
against these attacks. The experimental results show the ex-
istence of physical adversarial examples for both iris recog-
nition and PAD in real-world scenarios. Furthermore, we
demonstrated that applying fine-tuning to D-NetPAD offers
significant improvement in robustness against attacks while
maintaining PAD performance. Our research paves the way
for the development of more secure and robust iris recog-
nition systems that are better equipped to counter sophisti-
cated presentation attacks.

1458



References
[1] Akshay Agarwal, Afzel Noore, Mayank Vatsa, and Richa

Singh. Generalized contact lens iris presentation attack de-
tection. IEEE Transactions on Biometrics, Behavior, and
Identity Science, 4(3):373–385, 2022. 2, 3

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. In Pro-
ceedings of the 35th International Conference on Machine
Learning, pages 284–293. PMLR, 2018. 2, 3, 5

[3] Aidan Boyd, Jeremy Speth, Lucas Parzianello, Kevin W.
Bowyer, and Adam Czajka. Comprehensive study in open-
set iris presentation attack detection. IEEE Transactions on
Information Forensics and Security, 18:3238–3250, 2023. 2

[4] Tom B Brown, Dandelion Man’e, Aurko Roy, Mart’ın
Abadi, and Justin Gilmer. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017. 2, 3

[5] Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM workshop on artificial intelli-
gence and security, pages 3–14, 2017. 3

[6] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. IEEE, 2017. 2

[7] Cunjian Chen and Arun Ross. A multi-task convolutional
neural network for joint iris detection and presentation attack
detection. In 2018 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 44–51, 2018. 2, 3

[8] Cunjian Chen and Arun Ross. An explainable attention-
guided iris presentation attack detector. In 2021 IEEE Winter
Conference on Applications of Computer Vision Workshops
(WACVW), pages 97–106, 2021. 2, 3

[9] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa
Amini, and Zhangyang Wang. Adversarial robustness:
From self-supervised pre-training to fine-tuning. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 696–705, 2020. 3

[10] Yifeng Chen, Cheng Wu, and Yiming Wang. T-Center: A
novel feature extraction approach towards large-scale iris
recognition. IEEE Access, 8:32365–32375, 2020. 2, 6

[11] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In In-
ternational Conference on Machine Learning, pages 1310–
1320. PMLR, 2019. 3

[12] Adam Czajka and Kevin W. Bowyer. Presentation attack de-
tection for iris recognition: An assessment of the state-of-
the-art. ACM Comput. Surv., 51(4), 2018. 1, 2, 3

[13] Priyanka Das, Joseph Mcfiratht, Zhaoyuan Fang, Aidan
Boyd, Ganghee Jang, Amir Mohammadi, Sandip Purnapatra,
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