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Abstract

Appearance of a face can be greatly altered by growing
a beard and mustache. The facial hairstyles in a pair of
images can cause marked changes to the impostor distribu-
tion and the genuine distribution. Also, different distribu-
tions of facial hairstyle across demographics could cause a
false impression of relative accuracy across demographics.
We first show that, even though larger training sets boost
the recognition accuracy on all facial hairstyles, accuracy
variations caused by facial hairstyles persist regardless of
the size of the training set. Then, we analyze the impact
of having different fractions of the training data represent
facial hairstyles. We created balanced training sets using
a set of identities available in Webface42M that both have
clean-shaven and facial hair images. We find that, even
when a face recognition model is trained with a balanced
clean-shaven / facial hair training set, accuracy variation
on the test data does not diminish. Next, data augmentation
is employed to further investigate the effect of facial hair
distribution in training data by manipulating facial hair pix-
els with the help of facial landmark points and a facial hair
segmentation model. Our results show facial hair causes
an accuracy gap between clean-shaven and facial hair im-
ages, and this impact can be significantly different between
African-Americans and Caucasians.

1. Introduction

While deep CNN face matchers have achieved great
success [9, 19,22, 25,32, 36, 38], researchers are also in-
vestigating concerns about fairness or bias in accuracy
[10, 13, 15, 16, 30, 31, 43, 45]. Because deep CNN face
matchers are trained with huge web-scraped datasets and
the decision-making of the final model is not transparent,
the imbalance of demographic groups in the training data is
often the “knee-jerk” first suspect for the cause of any bias.

However, it has been shown that having a training set
that is explicitly balanced on the number of subjects and im-
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Figure 1. The effect of training size on recognition is given for
African-American (AAM) and Caucasian (CM) males on MORPH
using 4 training sets: a facial hair-balanced subset of WebFace42M
(120K images Sec. 4.2), Casia-WebFace (500K images), Web-
Face4M (4M images) and WebFacel2M (12M images). Higher
d-prime between genuine and impostor distribution means better
recognition accuracy. While d-prime values for CS-CS (clean-
shaven v. clean-shaven), CS-FH (clean-shaven v. facial hair) and
FH-FH (facial hair v. facial hair) image pairs consistently increase
as training data gets larger, the d-prime gap across facial hairstyles
also increases. AdaFace [19] loss is used to train the models.

ages is not sufficient to mitigate, for example, the accuracy
difference across gender [2]. The correlation of various fa-
cial attributes with recognition accuracy differences has also
been extensively investigated [37]. Moreover, bias mea-
surement methods are analyzed in recent works [0, 1 1,33].

Among the facial attributes, facial hairstyle (e.g., beard
and mustache) can be easily changed to alter one’s appear-
ance. Facial hairstyle choices are influenced by a myriad of
factors, including cultural norms, genetic factors and fash-
ion trends. Facial hairstyle can occlude a substantial portion
of the face and thereby affect the feature vector and similar-
ity score produced by a face recognition model. This work
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seeks to understand how the facial hairstyles present in a
pair of images affect the impostor and genuine distribution,
and whether the training data can be engineered to minimize
accuracy differences across facial hairstyles. While the ef-
fect of facial hair on test set accuracy is analyzed in previous
works (Section 2), this is the first comprehensive study of
the influence of facial hair during training. First, effects of
various amounts of facial hair in training set are measured.
A controlled experiment is conducted by changing the fa-
cial hair percentage in a training set while maintaining the
same set of identities. Then, data augmentation methods for
manipulating pixels in the chin and mustache area are in-
vestigated. The accuracy discrepancy between image pairs
(clean-shaven against clean-shaven), (clean-shaven against
facial hair) and (facial hair against facial hair) is evaluated.
Results show that facial hair can significantly impact the
recognition performance on African-Americans and Cau-
casians even when a perfectly balanced training set is uti-
lized. Furthermore, this impact is observed to be different
across races, potentially leading to a false judgement of de-
mographic bias in facial recognition.

This paper is organized as follows. Section 2 reviews
previous works on fairness in machine learning. Also, ef-
fect of facial hair presence during evaluation is discussed
for face recognition. Section 3 presents the problem state-
ment and methodology to address the accuracy bias caused
by facial hair. Our dataset and evaluation protocol is also
explained. Section 4 describes our controlled training sets
to measure the effect of facial hair during training. A data
augmentation strategy on beard and mustache area is also
investigated. Then, Section 5 discusses the effect of the
data augmentation procedure on a web-crawled dataset for
a comparison with our controlled training set experiment.
Finally, we conclude with a summary of the work and sug-
gestions for future research.

2. Related Work

Fairness is currently a topic of great interest in machine
learning research. A comprehensive survey can be found
in [21]. Bias in learning algorithms can be broadly ana-
lyzed in two dimensions: algorithmic bias and data bias. In
the first case, it is assumed that the training set is balanced,
representing all subpopulations equally, and learning bias
is considered to come from the learning procedure. Bias
towards low complexity solutions in deep networks are in-
vestigated in recent works [5,27,28,35,46,50].

While the lack of theoretical foundation in deep learning
complicates the study of bias, data is often the root cause
of biased decisions in machine learning [7, 17, 18,40, 43].
Particularly, bias in face recognition models is extensively
studied in many works [8, 10,23,30,31,37,41,45,49]. Bal-
ancing the number of images in training across demograph-
ics is initially considered as a simple solution to the bias

problem, but previous works [2,39] show that gender gap
continues to exist even with a perfectly balanced training
set. In addition to the effort on constructing a “balanced”
training set, bias measurement strategies on the test set are
also investigated in previous studies [6, 17,33,34,49].

While many of the aforementioned works investigate de-
mographic biases across races, the effect of protected at-
tributes obstruct the evaluation of fairness in face recog-
nition [37]. In [41], effects of illumination on African-
American and Caucasian images are investigated. A pre-
trained BiSeNet [48] model is employed to segment a face
image into 13 regions. Then, an image brightness met-
ric is proposed to measure the face skin brightness. They
show that comparison of two over-exposed (too bright) and
comparison of two under-exposed (too dark) images can in-
crease the match scores, resulting in higher FMR.

Impact of facial hair on recognition bias. Givens et al.
[12] analyze the effect of facial hair together with other at-
tributes on non-deep learning face recognition approaches.
2,144 images from the FERET [26] dataset are used in their
experiments. A binary label is used to mark images as fa-
cial hair or clean-shaven. Their results suggest that when
facial hair is present in one image and not the other, face
recognition accuracy improves. This can be interpreted as
increased dissimilarity in an impostor pair of images reduc-
ing the similarity score, and therefore reducing the chance
of a false match.

In [20], the impacts of seven covariates with facial hair
are examined through the utilization of five Deep Neural
Networks (DNNs). The assessment of facial hair is based
on four binary labels: "no facial hair”, “mustache”, ”goa-
tee”, and “beard”. Their findings indicate that state-of-the-
art (SOTA) deep learning models can accommodate varia-
tions in facial hair. However, an uncontrolled dataset is used
in their evaluation.

Terhorst et al. [37] presents a comprehensive analysis of
facial attributes, including facial hair, with use of deep CNN
face matchers. In one particular result investigating the ef-
fect of 5 o’clock shadow on face images, they report better
recognition performance with 5 o’clock shadow compared
to clean-shaven images.

The examination of the impact of both scalp hair and fa-
cial hair on face recognition is analyzed in [3]. Scalp hair is
detected by a segmentation model [48] and combination of
Microsoft Face API and Amazon Rekognition predictions
are used to classify images as clean-shaven and facial hair.
They report that the accuracy of clean-shaven prediction is
lower for African-Americans than for Caucasians, suggest-
ing development of a better classifier for a more accurate
analysis.

In [42], a facial hair dataset is presented and a facial
hair attribute classifier is proposed. Facial hair information
about the area and length can be obtained using a set of 22
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Figure 2. Impostor and genuine distributions for CS-CS, CS-FH, and FH-FH image pairs. Similarity scores are obtained using a pretrained
AdaFace model on WebFace12M. D-prime values are given at the upper-left of the plots. While the recognition performance is better for
Caucasian males on CS-CS pairs (b), d-prime values are greater for African-American males on CS-FH and FH-FH pairs (a). Examples of

AAM FH-FH (c) and CM CS-FH (d) genuine pairs are shown.

binary labels. Using this classifier, the effect of beard re-
gion is analyzed [44]. They find mustache has a significant
impact on recognition compared to facial hair on chin area,
even though size of the mustache region is smaller.

A facial hair segmentation model is presented in [24],
trained using a hand-annotated facial hair dataset. Images
are categorized according to the number of facial hair pix-
els. Itis shown that a greater amount of facial hair can cause
a significant recognition bias across demographics.

3. Does recognition bias due to facial hairstyle
decrease with larger training data?

We start our analysis by comparing the performance
of face recognition models trained on different training
sizes. Three publicly-available [I] models, trained on
Casia-WebFace [47], WebFace4M and WebFacel2M [52]
to minimize AdaFace loss [19], are used for obtaining face
representations. To investigate the recognition bias between

clean-shaven and facial hair images, a facial hair classifier is
used [42]. The classifier can predict attributes about the area
and length of facial hair. Beard area attributes: “no beard”,
“chin”, ”side to side”. Mustache attributes: “no mus-
tache”, “mustache connected to beard”, ’mustache iso-
lated”. Length attributes: ”5 o’clock shadow”, “short”,
“medium”, "long”. We categorize images as clean-shaven
(CS) and facial hair (FH) according to predictions of the
model using a threshold value of 0.7:

”no beard” and “no mustache”

cs, if
Images = .
FH, ifnot (”no beard” or "no mustache”
or "5 o’clock shadow”)

Dataset. MORPH [29] is a widely used dataset to per-
form age, gender and race analyses [2, 3,41, 44]. MORPH
images are captured in controlled conditions, as observed in
passports, ID cards, etc., allowing a more detailed and ac-
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curate analysis of facial hair impact. The dataset consists
of 56,245 images of 8,839 African-American males (AAM)
and 35,276 images of 8,835 Caucasian males (CM). We use
5,123 CS and 24,968 FH images for AAM and 8,497 CS
and 12,578 FH images CM to report results across demo-
graphics. Mean face images are shown in Figure 3. The
distribution of number of facial hair pixels, detected by a
segmentation model [24] is given in Figure 4. AAM have
more images with a smaller fraction of facial hair pixels.
Distributions may vary for other datasets.

Evaluation. First, image representations are obtained
using a face recognition model. Then, cosine distance be-
tween images is measured to obtain similarity score distri-
butions. We use d-prime to calculate the distance between
genuine and impostor distributions.

X - X
d/: 1 = 22 (1)
2

Higher d-prime values mean better separation of these
distributions, indicating better recognition accuracy. Im-
age pair group, CS-CS (clean-shaven against clean-shaven),
CS-FH (clean-shaven against facial hair) and FH-FH (fa-
cial hair against facial hair) are created for evaluating per-
formance discrepancy caused by facial hairstyle. We fol-
low the same evaluation protocol for all the experiments
throughout the paper.

Effects of training set size on the recognition perfor-
mance for CS-CS, CS-FH and FH-FH is shown in Figure
1 across African-American (AAM) and Caucasian (CM)
males. We evaluate the performance using 4 models, trained
with 120K, 500K, 4M, 12M images. Even though d-prime
values are increasing with larger training set size, there is a
significant gap between particular groups (d-prime of AAM
FH-FH is 11.01 while d-prime of CM CS-FH 7.95 using
the model trained with 12M images) showing the impact of
facial hairstyle in an image pair.

Impostor and genuine distributions for the AdaFace
model trained on WebFacel2M are given in Figure 2. D-
prime values are also given in the upper left. It can be
seen that, when two images have different facial hairstyle
(CS-FH), both impostor and genuine similarity scores de-
crease. However, the genuine distribution of CS-FH Cau-
casian males is significantly shifted to lower scores, result-
ing in the worst d-prime value among all pair groups. Note
that, while d-prime of CS-CS pairs is higher for Caucasian
subjects, African-American subjects have better d-prime
values for CS-FH and FH-FH image pairs. These results
suggest that evaluation of recognition bias across races can
be significantly influenced by the amount of clean-shaven
and facial hair images in the test data.

(a) AAM CS (b) AAM FH
(c)CM CS (d) CM FH

Figure 3. Mean faces of clean-shaven (CS) and facial hair (FH) im-
age sets for African-American (AAM) and Caucasian (CM) males
on MORPH.
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Figure 4. Percentage of number of facial hair pixels in a FH image
for Caucasian and African-American males on MORPH.

4. How does the facial hair distribution in
training data affect the performance?

To investigate the effect of facial hair distribution in
training set, our goal is to have a set of male subjects that
have both clean-shaven and facial hair images available to
be used in the experiments. By doing so, we greatly control
the other factors while changing the facial hair frequency
in the training set; i.e., all training sets with different fre-
quency of facial hair representation have the same set of
identities and the same number of images per subject. The
WebFace42M [52] dataset is used to find such subjects.
Clean-shaven and facial hair images are detected using the
facial hair classifier [42] (see Section 3).
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Training data. Initially, we aim to have a training set
size similar to Casia-WebFace [47] for comparison (10,575
subjects and 494,414 images). On WebFace42M, we found
5,000 subjects with 12 CS and 12 FH images (12-CS 12-
FH). Subsets from this set of images are chosen to build our
training sets. Facial hair frequency is controlled by select-
ing 12 images of these 5,000 male subjects. Additionally,
we use the predictions of a gender classifier [17] to select
5,000 female subjects with 12 images to balance the num-
ber of images of male and female subjects. (Female subjects
and images are chosen randomly from WebFace42M.) The
same 60,000 female images are used in each training set.

Training sets with different facial hair frequency are con-
structed by two approaches: (1) selecting x number of males
with only CS images and 5,000-x male subjects with only
FH images. (2) selecting x CS images and 12-x FH im-
ages for all 5,000 male subjects. In addition to the selected
60,000 male images, the same 60,000 images of 5,000 fe-
male subjects are included in the training set, resulting in
10,000 subjects and 120,000 images for all training sets.

Implementation Details. A ResNet-50 [14] architec-
ture is used to train models. Training lasts 30 epochs using
120,000 images with a batch size of 128 on a single GPU.
Polynomial learning scheduler is employed with 3 warm-
up epochs. Learning rate is set to 0.1. AdaFace [19] loss is
used for training.

4.1. Impact of facial hair variation across subjects

For the first experiment, we created training subsets in
which each male subject has either only clean-shaven or
only facial hair images. We select {0, 500, 1,000, 1,500,
2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000} males
with 12 CS images and {5,000, 4,500, 4,000, 3,500, 3,000,
2,500, 2,000, 1,500, 1,000, 500, 0} males with 12 FH im-
ages respectively to form 11 different sets. Training is re-
peated 5 times, selecting a random set of subjects, from our
superset (12-CS and 12-FH), with only clean-shaven and
subjects with only facial hair images. In the two cases, all
images are clean-shaven (”5000-CS 0-FH”) and all images
are facial hair ("0-CS 5000-FH”), the same 120,000 images
are used in all repetitions with random initialization.

4.2. Impact of facial hair variation within subjects

In the second experiment, the frequency of facial hair is
controlled by selecting {0, 1, 2, 3,4, 5, 6,7, 8,9, 10, 11,
12} CS images and {12, 11, 10,9, 8, 7, 6, 5, 4, 3, 2, 1,
0} FH images for each male subject to construct 13 differ-
ent training subsets. Training is repeated 5 times, selecting
a random set of images, from our superset (12-CS and 12-
FH), for each subject. Note that, in the case of all images
are CS (”12-CS 0-FH”), the training set is the same as with
5,000-CS 0-FH (Section 4.1). Similarly, ”0-CS 12-FH” cor-
responds to ~’0-CS 5,000-FH”.

Results. Figure 5 shows the recognition performance for
training subsets with different facial hair frequency. Dashed
lines represent facial hair variation across subjects (Section
4.1), and solid lines are for facial hair variation within sub-
jects (Section 4.2) in the training set. It can be seen that,
models trained with subjects that have both CS and FH im-
ages always perform better than the models trained with
subjects that have only one type of facial hairstyle. Overall,
across 3 image pair groups and 2 races, d-prime values are
higher when the facial hair frequency is between 30% and
70%. However, a performance gap still exits among CS-CS,
CS-FH and FH-FH pairs, even when a balanced set (6-CS
6-FH) is used to train a face recognition model. In this ex-
periment, we do not find a frequency of facial hairstyle in
the training data that makes a major change in the hairstyle-
related accuracy difference in the test data.

To further investigate the effects of facial hair represen-
tation in the training set, we explore two data augmenta-
tion approaches (Alg. 1). The first approach is copying
facial hair pixels, detected by a facial hair segmentation
model [24], from the images in Casia-WebFace. We use
2,500 images that have more than 15% of the pixels de-
tected as facial hair. During training, a facial hair image is
picked randomly and facial hair pixels are copied to a clean-
shaven image. Facial landmark points [4] are used to warp
the facial hair mask to match points between two images.

In the second approach, instead of transferring real facial

Algorithm 1: Augment clean-shaven image

Data: CS_image, FH_image
Result: Augmented_image

FH_mask <+ segmentFacialHair(FH_image);

CS_landmarks < predictLandmarks(CS_image);

FH_landmarks < predictLandmarks(FH_image);

Warped _FH_mask < warpImage(FH_mask,
CS_landmarks, FH_landmarks);

5 Augmented_image <— replacePixels(CS_image,

Warped_FH_mask);
6 return Augmented_image;

AW N =

hair pixels from a different image, we apply random pixel
values to a target image [51]. Examples are shown in Figure
6.

The impact of data augmentation on recognition perfor-
mance for CS-CS, CS-FH and FH-FH pair groups is re-
ported in Table 1. Augmentation is applied to every im-
age in the clean-shaven training set (12-CS 0-FH) with the
probability of 0.2, 0.4, 0.6, 0.8 and 1.0. In addition, results
of augmentation on only male images against augmenting
all images (male and female) is compared. We find that,
setting random pixel values in the beard area can be useful
to increase recognition accuracy not only on facial hair im-
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Figure 5. Effect of facial hair distribution in training set. Recognition performance is measured on African-American (a) and Caucasian (b)
males on MORPH. D-prime values are shown for CS-CS (clean-shaven versus clean-shaven), CS-FH (clean-shaven versus facial hair) and
FH-FH (facial hair versus facial hair) image pairs. Dashed lines show the effect of facial hair ratio variation within subjects (Section 4.2)
and solid lines shows the variation across subjects (Section 4.1). Vertical bars show the standard deviation of 5 repetition. Lower d-prime
values are observed in most cases as facial hair percentage exceed 50% in training data.

(c) Augmentation using facial hair pixels (d) Augmentation using random pixels

Figure 6. Data augmentation using facial hair and random pixels. Clean-shaven images (a) are augmented using facial hair pixels (b) from
Casia-WebFace. First, a facial hair mask in obtained using a segmentation model. Then the mask is warped to match facial landmarks
between two images and facial hair pixels copied to a clean-shaven image (c). Instead of facial hair pixel values, random values are applied
to the corresponding area in the second approach (d).

ages but also on CS-CS pairs. It can be seen that d-prime 5. Facial hair area and Casia-WebFace
values are increasing over the baseline (12-CS 0-FH) and

even exceed the performance of perfectly balanced set (6-

CS 6-FH) for AAM CS-CS, AAM CS-FH and CM CS-CS lati.or.1 on Casia—We.bFace to measure.the effect on a la.rger
image pairs. training dataset. First, a face recognition model is trained

without data augmentation as baseline. Training is repeated

We further investigate the effect of beard area manipu-
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Train Test
AAM CM
CS-CS CS-FH FH-FH CS-CS CS-FH FH-FH

0-CS 12-FH | 5.12+£0.07 5.19+0.05 5.914+0.04 | 5.16 £0.03 4.524+0.04 5.50+£ 0.06
6-CS6-FH | 5.18£0.06 5.36£0.03 6.00+0.04 | 5.34£0.03 5.00+0.04 5.65=+0.06
12-CSO-FH | 5.17£0.08 5.29+0.06 5.75+0.07 | 5.35+0.01 4.76+£0.04 5.36 £0.04
12-CS 0-FH w/ facial hair pixel aug. (male)

prob. 0.2 5.19 5.30 5.85 5.33 4.79 5.40

prob. 0.4 5.16 5.37 5.87 5.28 4.85 5.45

prob. 0.6 5.08 5.36 5.83 5.25 4.93 5.45

prob. 0.8 5.07 5.30 5.79 5.16 4.80 5.36

prob. 1.0 5.13 5.27 5.82 5.09 4.73 5.43
12-CS 0-FH w/ facial hair pixel aug. (male and female)

prob. 0.2 5.21 5.39 5.82 5.34 4.88 5.41

prob. 0.4 5.10 5.38 5.84 5.32 4.90 5.43

prob. 0.6 5.07 5.34 5.81 5.27 4.87 5.39

prob. 0.8 5.12 5.33 5.80 5.19 4.86 5.39

prob. 1.0 5.12 5.35 5.82 5.23 4.85 5.44
12-CS 0-FH w/ random pixel aug. (male)

prob. 0.2 5.10 5.32 5.83 5.37 4.95 5.49

prob. 0.4 5.19 5.40 5.90 5.29 4.84 5.47

prob. 0.6 5.22 5.33 5.84 5.22 4.76 5.36

prob. 0.8 5.20 5.34 5.85 5.22 4.81 5.36

prob. 1.0 5.00 5.13 5.63 5.13 4.60 5.20
12-CS 0-FH w/ random pixel aug. (male and female)

prob. 0.2 5.27 5.34 5.88 5.46 4.89 5.41

prob. 0.4 5.31 5.43 5.93 5.38 4.96 5.51

prob. 0.6 5.07 5.27 5.77 5.28 4.83 5.30

prob. 0.8 5.11 5.28 5.79 5.24 4.82 5.37

prob. 1.0 5.07 5.22 5.76 5.14 4.73 5.36

Table 1. Effect of data augmentation on beard area. D-prime values between genuine and impostor distributions of image pairs (CS-CS,
CS-FH and FH-FH) are given for African-American (AAM) and Caucasian (CM) males. The first three rows show the performance of
models trained with: only facial hair images (0-CS 12-FH), balanced set (6-CS 6-FH) and only clean-shaven (12-CS 0-FH) images. Four
data augmentation approaches are investigated on only clean-shaven set (12-CS 0-FH) with 5 different probability. Best performance gain
is observed with random pixel augmentation to beard area on all male and female images.

5 times with random initiation. Mean and standard devia-
tion is reported in Table 2. We first conduct an experiment
to investigate usage of random pixel values on a beard area,
instead of real facial hair pixels. A facial hair segmentation
model [24] is used to segment facial hair region on 490,623
images. Facial hair masks for 93,273 images are obtained.
Pixels labeled as facial hair are replaced with random pixel
values with the 5 levels of probability (0.2, 0.4, 0.6, 0.8,
1.0) for each image during training. It can be seen in Table
2 (Casia-WebFace w/ random pixel aug. instead of facial
hair (male)) that even replacing all real facial hair pixels
with random values does not have a significant effect over
the baseline (Casia-WebFace wo/ aug.). The best results for
CM CS-CS image pairs (6.94) is observed with this data
augmentation approach with the probability of 0.2.

Next, we apply random pixel augmentation procedure
to only mustache area and both beard and mustache area
to measure the importance of the particular face area to
be augmented. Comparison between data augmentation on
only male images against augmenting all male and females
images is also reported. 68 facial landmark points [4] are
used to define mustache and beard area for each image.
Lower performance is observed for all cases as the prob-
ability of applying augmentation increases. The best results
are achieved augmenting mustache and beard area on all
images with probability of 0.2.

6. Conclusion and Discussion

We investigate the recognition bias (accuracy difference)
that arises due to clean-shaven and facial hair face images.
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Train Test
AAM CM
CS-CS CS-FH FH-FH CS-CS CS-FH FH-FH

Casia-WebFace wo/ aug. | 6.20 £0.05 6.294+0.02 7.10+0.02 | 6.86 +£0.02 6.11+£0.09 6.82+0.05
Casia-WebFace w/ random pixel aug. instead of facial hair (male)

prob. 0.2 6.20 6.38 7.12 6.94 6.10 6.81

prob. 0.4 6.24 6.35 7.10 6.90 6.09 6.77

prob. 0.6 6.17 6.28 7.04 6.90 6.11 6.88

prob. 0.8 6.22 6.30 7.08 6.91 6.17 6.83

prob. 1.0 6.19 6.32 7.16 6.88 6.06 6.82
Casia-WebFace w/ random pixel aug. mustache area (male)

prob. 0.2 6.20 6.26 7.14 6.87 6.11 6.89

prob. 0.4 6.29 6.35 7.11 6.84 6.08 6.81

prob. 0.6 6.17 6.21 7.04 6.75 6.13 6.77

prob. 0.8 6.08 6.29 7.05 6.70 6.04 6.79

prob. 1.0 5.87 5.80 6.44 6.30 5.60 6.19
Casia-WebFace w/ random pixel aug. mustache area (male and female)

prob. 0.2 6.28 6.37 7.15 6.81 6.14 6.89

prob. 0.4 6.24 6.28 7.13 6.80 6.13 6.86

prob. 0.6 6.16 6.30 7.10 6.72 6.00 6.78

prob. 0.8 6.12 6.29 7.04 6.58 5.99 6.76

prob. 1.0 5.65 5.86 6.60 6.24 5.66 6.24
Casia-WebFace w/ random pixel aug. mustache and beard area (male)

prob. 0.2 6.23 6.34 7.13 6.83 6.24 6.93

prob. 0.4 6.16 6.27 7.05 6.81 6.17 6.80

prob. 0.6 6.15 6.39 7.09 6.71 6.02 6.66

prob. 0.8 6.02 6.26 6.95 6.62 6.05 6.67

prob. 1.0 5.54 5.54 6.05 5.99 5.14 5.57
Casia-WebFace w/ random pixel aug. mustache and beard area (male and female)

prob. 0.2 6.29 6.45 7.19 6.85 6.20 6.82

prob. 0.4 6.15 6.34 7.07 6.76 6.16 6.87

prob. 0.6 6.04 6.26 6.97 6.71 6.07 6.65

prob. 0.8 6.05 6.26 6.88 6.52 5.95 6.55

prob. 1.0 5.41 5.60 6.27 5.86 5.26 5.95

Table 2. Effect of data augmentation on beard and mustache area during training is analyzed on Casia-WebFace. Augmentation results are
reported for 5 range of probability. Comparison between augmentation on only male against all images is given.

First, we show that even though larger training sets in-
crease the performance for all image pairs, the accuracy gap
caused by facial hairstyles does not decrease; see Figure 1.
Going from 4M to 12M training images does not signifi-
cantly improve results for CM CS-FH. To investigate this
discrepancy, training sets with varying facial hair amount
are constructed. Results show that the accuracy gap does
not diminish even with a perfectly balanced set.

Our findings on the effect of facial hair show that bal-
anced training set construction either using only real images
or using a data augmentation method that targets only the fa-
cial hair area on face images does not significantly mitigate
bias caused by facial hairstyle. Note that the accuracy dis-

crepancy is observed on African-American and Caucasian
images in different amounts. While better recognition per-
formance is measured on CS-CS image pairs for Caucasian
male subjects, genuine similarity scores of CS-FH and FH-
FH pairs are higher for African-American resulting in better
accuracy. This suggests that judgement on whether recogni-
tion bias exists between demographics is heavily influenced
by the facial hair present in the evaluation set and rigorous
methodologies are necessary for bias assessment.
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