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Abstract

Nowadays, deep learning models have reached incred-
ible performance in the task of image generation. Plenty
of literature works address the task of face generation and
editing, with human and automatic systems that struggle to
distinguish what’s real from generated. Whereas most sys-
tems reached excellent visual generation quality, they still
face difficulties in preserving the identity of the starting in-
put subject. Among all the explored techniques, Semantic
Image Synthesis (SIS) methods, whose goal is to generate
an image conditioned on a semantic segmentation mask,
are the most promising, even though preserving the per-
ceived identity of the input subject is not their main concern.
Therefore, in this paper, we investigate the problem of iden-
tity preservation in face image generation and present an
SIS architecture that exploits a cross-attention mechanism
to merge identity, style, and semantic features to generate
faces whose identities are as similar as possible to the input
ones. Experimental results reveal that the proposed method
is not only suitable for preserving the identity but is also ef-
fective in the face recognition adversarial attack, i.e. hiding
a second identity in the generated faces.

1. Introduction
In recent years, deep learning models have reached out-
standing results in image generation, with several archi-
tectures standing out in the field of human face genera-
tion [17, 18, 28] and editing [1, 40, 44]. Indeed, through
such powerful models, both humans and automated systems
struggle to distinguish between real and generated face im-
ages [13, 29]. However, even the most realistic generative
model has difficulty in preserving the perceived identity of
the generated subject after reconstructing or manipulating a
real face image of a specific individual [7, 24, 34]. Whereas
this aspect is often neglected or partially discussed in re-
lated works, preserving the perceived identity is crucial to
make synthetic data exploitable in biometrics applications.

Thus, in this paper, we investigate a possible solution to

Figure 1. Overview of the proposed architecture. Starting from
a face image, style and identity features are extracted through the
encoders (Style Encoder (Es), Identity Encoder (Eid) and Mask
Embedder (Em)) and used by the Generator (G), together with the
semantic segmentation mask to generate the final image.

maximize the identity preservation property without sacri-
ficing the generation quality, with a specific focus on face
editing models. In this context, one of the most effective
techniques to perform this task is through Semantic Image
Synthesis (SIS) [43]. The goal of SIS is to generate realistic
face images conditioning the model with a semantic mask,
i.e. an image in which each pixel represents a semantic class
e.g. hair, eyes, or mouth. Therefore, the semantic mask is a
key element in defining the final shape of the edited face.

The clearest advantage of SIS methods is that the seman-
tic mask can be used to learn explicit mappings between
each semantic class and its style i.e. texture. In doing so,
modern SIS methods can independently generate, control,
or manipulate the style of local face regions [11, 12, 36, 46].
Whereas most SIS methods aim at learning such mapping
to generate new images conditioned on the mask (noise-
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based) [20, 25], some literature methods such as [12, 46]
focus on extracting styles from a real (reference) image in
order to map them in the corresponding semantic regions
(reference-based). In this manner, it is specifically possible
to perform editing of real images, for example by changing
the hair color, makeup, and other different attributes in the
generated samples. In this particular scenario, where the
edited face belongs to a real individual, the ability to pre-
serve the perceived identity is of utmost importance both if
presented to a human observer or an automatic face recog-
nition system [26].

Unfortunately, we observe that in semantic-based meth-
ods, especially for reference-based ones, the identity preser-
vation of the edited face is not taken into account (e.g. [36,
46]). The large majority of available models neglect this
aspect and grasp the input subject identity only to a limited
extent, so lacking the ability to preserve it in the edited face
as we show in our experimental evaluation (see Table 1).
As a consequence, state-of-the-art Face Recognition (FR)
systems [6, 30] would struggle to match the identity of the
reconstructed face with that in the input.

Therefore, in this paper, we propose a solution to inject
the identity information into a reference-based semantic im-
age synthesis architecture. In particular, the proposed ar-
chitecture builds upon that proposed in [12], and is com-
posed of four different modules, as depicted in Figure 1:
the Style Encoder and Identity Encoder models are respon-
sible for extracting style and identity features, respectively,
from the input face image. These features are then concate-
nated and fed as input to the Generator, responsible for the
image generation. The Generator receives as input also the
output of the Mask Embedder, which embeds the semantic
information of the mask through a fully connected network;
style, identity, and semantic information are finally merged
through a cross-attention mechanism for face generation.

By exploiting the versatility of cross-attentions, we are
able to condition the image generation with high-level in-
formation such as the identity, in addition to low-level style
features, ultimately improving the identity similarity with
respect to the input face. Nonetheless, another noticeable
feature that arises with this design choice is the ability to
change the identity embedding. In [12], the model can be
used to swap specific style embeddings, so to perform “lo-
cal” style transfer, even if not explicitly trained to do so.
Thus, we expect our design to let us change the identity em-
bedding, so conditioning the generation of a face belonging
to a subject A with the identity of another subject B.

Therefore, when injecting the identity embedding of the
input face image, our model helps in preserving its per-
ceived identity during the whole generation process. As a
result, the generated face presents an identity that is closer
to the input one, which can be appreciated both visually
and quantitatively when it is presented to a face recogni-

tion model. Conversely, we can also use our method to
swap the identity between two different subjects. In other
words, we can concatenate the style embeddings of a sub-
ject A with the identity embedding of another individual
B. As a result, the generated face qualitatively looks like
A, but it actually conceals the identity embedding of B.
We wish to highlight here that, despite looking conceptu-
ally similar, this paradigm is different than common face-
swapping methods [21]. In fact, face swapping approaches
aim at changing the perceived identity of a subject in a way
such that a human observer easily recognizes the new iden-
tity i.e. the one that was swapped. Differently, our solu-
tion “hides” the identity in a way that a human observer can
hardly tell the difference, but at the same time, it will fool
recognition algorithms. In both tests, the proposed method
achieves competitive results, overcoming the large part of
literature methods. To summarize, the main contributions
of this paper are listed in the following:
• We explore the use of attention-based mechanism to

merge identity, semantic and style information into the
generation process of Semantic Image Synthesis (SIS);

• We test the proposed method in the task of identity preser-
vation, and show our solution is promising in preserving
the input identity during the generative process.

• We investigate the use of the proposed architecture in the
task of adversarial attacks on face recognition, presenting
an alternative pathway to achieve this goal.

2. Related Work
Semantic Image Synthesis. SIS models aim at generating
images starting from a semantic mask. Several approaches
were proposed to solve this task.

Firstly, SPADE [25] proposed a spatially adaptive de-
normalization module to modulate the activations with se-
mantic information. Later, MaskGAN [20] proposed a
method to manipulate human faces with semantic masks.
MaskGAN was introduced simultaneously with SEAN [46]
which allowed to extract semantic styles from a reference
images and apply them to the generated samples. Along this
line, multiple methods were developed, like CLADE [37]
and INADE [36], which introduced the concept of instances
in the semantic masks. Recently, Semantic-StyleGAN [32]
allowed to control the generation of StyleGAN images [17]
through semantic information. Finally, Semantic Diffusion
[39] adapted a diffusion model adding SPADE normaliza-
tion layers in order to control the generation with semantic
masks. Methods for semantic image synthesis are domain
agnostic, meaning that they can be applied to several differ-
ent scenarios e.g. faces, outdoor scenes, objects. For this
reason, domain-specific information such as the perceived
identity as in the human face domain are neglected. Dif-
ferently, the proposed model is specifically tailored for the
human face domain.
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Adversarial attack on face recognition. Deep learning
architectures have been proven susceptible to adversarial
attacks [35], which are slightly-perturbed versions of the
original examples that eventually trick the networks into
outputting a wrong prediction. The peculiar characteris-
tic of adversarial examples is that they are hardly distin-
guishable from their “clean” counterpart for the human eye,
because they have been specifically optimized to have the
minimum possible perturbation. Adversarial attacks can be
broadly divided into two categories: white-box or black-
box. The former ones are the most difficult to counteract, as
they assume full knowledge of the attacked system includ-
ing model parameters, so that the attacker can exploit the
model’s gradient to craft the adversarial example. Black-
box attacks are instead more difficult to craft since they only
have access to the classifier prediction. Both can be also
targeted or un-targeted. Targeted attacks aim at making the
attacked model predict a specific class, while un-targeted
methods only care for making the model predict a wrong
class. Despite being applicable whenever a classification
task is involved, attacks can also be designed for specific do-
mains and tasks, such as face recognition. Attacks on face
recognition can be divided in multiple categories. Firstly,
gradient-based methods like [9, 14, 23] aim at adding per-
turbations in the pixels, but suffer from common denoising
models. Next, patch-based methods focus on printing on
the images adversarial hat [19] or glasses [31], but in this
case the attack is easily spottable. Finally, stealthy-based
methods inject the adversarial attack in the face attributes
[15, 27, 42]. On the other side, our system treats identity in-
formation as an additional style and therefore the generated
samples will not be changed by adding glasses or makeup
making the attack almost invisible. Recently, a new type
of attack was proposed by Li et al. [22] which utilizes an
additional Attribute Recognition (AR) task to improve the
attacking transferability.

3. Identity-conditioned Image Synthesis
The proposed system builds upon the very recent SIS model
proposed by Fontanini et al. [12] named CA2SIS. We
chose this specific architecture as, differently from the
vast majority of SIS models that employ SPADE layers
e.g. [25, 46], it uses spatial transformer blocks to condition
the image generation with style features extracted from a
RGB reference.

The versatility of the cross-attention layers included in
the spatial transformer blocks allowed us to design an alter-
native solution to inject identity information into the gen-
erator. This could not be done with standard SIS models
based on SPADE as they require an explicit spatial mapping
of the style features. While this mapping is straightforward
when style features represent a well-defined class e.g. hair,
eyes, that becomes challenging if using features related to

high-level concepts such as identity. In fact, there is no clear
prior on such information; in other words, which face parts
influence the the identity perception the most? To what ex-
tent? Whereas some literature works do provide some hints
in this regard [10, 33], what contributes to recognizing an
individual is actually a combination of facial features. This
makes SPADE-like layers difficult to use. Cross-attentions
instead provide a nice alternative since the spatial mapping
is implicitly learned by the attention mechanism. This al-
lows the model to learn how to optimally map the identity
information into the generated face image without requiring
prior intervention (Fig. 4).

3.1. Architecture

The objective of the original architecture is that of generat-
ing a photo-realistic image given a semantic segmentation
mask and a reference image. It is composed by three mod-
ules: a Cross-Attention Generator G, a Multi-Resolution
Style Encoder Es, and a Mask Embedder Em. Necessary
details are provided in the paragraphs below so to make the
paper self-contained, but we refer the reader to [12] for a
detailed description.

Mask Embedder. Let a semantic mask be a C-channel im-
age M ∈ NC×H×W , where each channel Mj is a binary
image encoding the pixel-wise spatial location of a specific
class e.g. eyes, lips, hair. The module is an MLP that re-
ceives M and outputs C embeddings of size 256, one for
each semantic class. These are reshaped to form 16 × 16
feature maps, and then stacked to form a mask descriptor
mx = Em(M) ∈ R16×16×C . The descriptor mx will be
the input to the generator G.

Style Encoder. The Style Encoder Es extracts style fea-
tures from the input RGB reference images x. Specifically,
it is equipped with Grouped Convolutions, Group Normal-
ization layers and skip connections, and is designed to ex-
tracts a style code sc ∈ R256 for each semantic class c
by exploiting the mask M. The style codes are concate-
nated to form a combined style code of size 256 × C, i.e.
sx = Es(x) ∈ R1280.

Generator. Finally, the generator G receives the mask de-
scriptor as input and the style codes as condition, ultimately
outputting a realistic image having the shape defined by the
semantic mask, and the styles of the reference image, that
is x̂ = G(mx, sx). More in detail, style codes are injected
in the cross-attention (CA) layers of the Generator that are
defined as follows:

CA(Q,K, V ) = S
(
QKT

√
d

)
V (1)

where Q = W
(i)
Q · ϕ(i) is obtained from the projection of

the flattened features ϕ(i) of previous convolutional layers,
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while K = W
(i)
K · Es(xi) and V = W

(i)
V · Es(xi) are com-

puted from the style codes. The Generator is also paired
with a Discriminator D to exploit the adversarial loss.

3.2. Identity Module

Despite the original model itself can already preserve the
perceived identity of the input face x way better than other
approaches, it does not allow for manipulating or chang-
ing it explicitly, although it is possible to swap style codes
of a different face image y for generating diverse images
i.e. x̂ = G(mx, sy). Given that the goal of this work is
to explore an alternative pathway to preserve the identity
of a subject A or to conceal the identity of an individual A
into a face image of another subject B without making the
change being perceivable, we augmented this architecture
by adding a pre-trained face recognition model Eid. This
module is used to extract an identity embedding from the
input face x i.e. idx = Eid(x), which is then used as addi-
tional style code for the generator (see Fig. 1). The idea is
that in doing so, we can both increase the capability of the
generator to preserve the original identity, while also being
able to swap the identity code so to condition the genera-
tion with the identity embedding of a different individual.
Ultimately, this leads the generated image to qualitatively
appear as the original subject, at the same time concealing
the identity information of a different subject.

3.3. Identity Preservation Loss

In order to inject identity information into the Generator,
we treat the identity embedding as an additional style code.
In particular, we employed a pretrained face recognition
model to extract an identity embedding from a reference
image x of some subject i. The embedding is then con-
catenated to the style codes extracted from Es, and the
new identity-style representation is injected in the cross-
attention layers of G. Formally, we indicate this addition as
x̂ = G(mxi

, sxi
, idxi

) During training, an identity preser-
vation loss Lid is employed in order to force the model to
utilize this additional information. Lid is as follows:

Lid = 1− cos (Eid (G (mxi , sxi , idxi)) , Eid(xi)) (2)

where G(mxi
, sxi

, idxi
) is the generator output starting

from reference mask mxi
, style codes sxi

and identity em-
bedding idxi

. The term cos is the cosine similarity function.
This loss forces the generated samples to match the identity
embeddings that are injected in the model during training.
At inference time, the style codes and identity can be ex-
tracted from two difference images xi and xj resulting in a
sample having the same appearance as xi but that will be
recognized as xj by a FR network.

3.4. Training Objective

In addition to the identity preservation loss, during training,
we employ a set of losses as in [12]. More in detail, we
implemented an adversarial loss Ladv , a feature matching
loss LFM [38] and a perceptual loss Lprc [16]. The full
training objective becomes:

Ltot = Ladv + λFMLFM + λprcLprc + λidLid (3)

where λFM , λprc and λid are the weights for feature match-
ing, perceptual and identity preservation loss, respectively.
More in detail, they are set during training as follows:
λFM = 10, λprc = 10 and λid = 10.

4. Experiments
The proposed approach is thoroughly validated through a
set of experiments aimed at verifying the ability of our
model to (i) improve the identity preservation when it is ap-
plied to the task of reconstructing a face image; (ii) hide the
identity of another individual while maintaining the face vi-
sually unchanged as in an impersonation attack. We employ
three different FR models during evaluation: IR152 [6],
MobileFace [3] and FaceNet [30]. The pre-trained weights
for these models are the same as those used in [42].

In order to verify the robustness of our solution to dif-
ferent FR networks, we train two different models: one
employs a pre-trained FaceNet model (referred to as Ours-
FaceNet) using the implementation and weights from the
repository1. The other uses a pre-trained ArcFace model
[6] (Ours-ArcFace) taken from the InsightFace repository2.
Note that the pre-trained weights of these models differ
from those used for evaluation.

We carry out the experimental validation on the
CelebMask-HQ dataset [20], which comprises 30k face im-
ages, of which 28k for training, and 2k for testing. Each
image is paired with its own semantic segmentation mask,
comprising 19 semantic classes.

4.1. Identity Preservation

Injecting the identity embedding in our system has an im-
mediate positive effect: the perceived identity is better pre-
served during the image generation. This is incidentally a
critical issue in generative models for human face genera-
tion which often lack this property. To prove that, in Table 1,
we report the average cosine similarity obtained between
original and reconstructed faces for different SIS methods
on several FR models, which is computed as:

C =
1

N

N∑
i=1

cos (Eid (xi) , Eid (x̂i)) (4)

1https://github.com/timesler/facenet-pytorch
2https://github.com/nizhib/pytorch-insightface
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Method IR152 ↑ MobileFace ↑ FaceNet ↑ FID ↓
SEAN [46] 0.51 0.73 0.74 18.7

V-INADE [36] 0.23 0.49 0.43 18.3
Semantic StyleGAN [32] 0.38 0.66 0.62 26.8

CA2SIS [12] 0.52 0.75 0.74 15.8

Ours - FaceNet 0.64 0.80 0.90 18.1
Ours - ArcFace 0.62 0.83 0.81 16.5

Table 1. Cosine similarity metric and FID comparison between original x and reconstructed x̂ faces when conditioning with its own
identity embedding idx. Injecting the identity information increases the similarity to a great extent for various FR models (see Sect. 4.1).
Bold=best result, underlined=second best. Italic font indicates the validation FR architecture is the same as that used to train our model,
but the pre-trained weights differ.

where x̂i = G (mxi
, sxi

, idxi
) is the reconstructed face.

A higher cosine similarity score implies an automatic face
recognition system will likely verify the two faces as be-
longing to the same individual. Maintaining higher simi-
larity scores is crucial since face verification systems rely
on fixed thresholds to reject or accept face image pairs; the
larger the score for genuine pairs, the less the number of
false negatives that is returned from the system.

As expected, state-of-the-art SIS methods struggle to
maintain the identity in the generated results. This is es-
pecially true for StyleGAN-based methods that, in order
to reconstruct and manipulate a given input, rely on GAN-
inversion techniques [45] to find an embedding in the Style-
GAN latent space that is as similar as possible to the real
image. On the other side, our method exhibits superior per-
formance in identity preservation both w.r.t. to the baseline
model CA2SIS [12] and the state of the art.

In Table 1 we also report the Frechet Inception Distance
(FID), which measures the similarity between real and gen-
erated data distributions. This is usually employed for vali-
dating the quality of the fake samples generated by a model.
This is intended to verify that, by conditioning the genera-
tion with an identity embedding, we do not compromise the
realism of the generated faces. Overall, this conditioning
actually negatively impacts on the FID score to a little ex-
tent. Although we cannot prove this formally, we believe
this is likely due to the way in which FID is calculated:
the additional information carried in the identity embedding
that is mapped into the pixel space by the generator might
shift the fake image distribution, hindering such score.

Nevertheless, even if FID is widely employed to com-
pare different image generation methods, it has also drawn
a several criticism [4] and should therefore be always paired
with a qualitative evaluation of the results. For this reason,
in Fig. 2 we report a qualitative example of the effect that
the identity injection elicits to our model. At first glance,
the results produced by the model with and without iden-
tity preservation seem almost identical. Things change if

Figure 2. Qualitative comparison between the original CA2SIS
model [12] and the proposed architecture with cross attention-
based identity injection (see Sect. 4.1). Identity-related details
such as the color of the eyes, the eyebrows, and mouth shape or
subtle details such as the teeth are better preserved when condi-
tioning with identity embedding. Better seen on screen.

some details are zoomed in and better highlighted. In par-
ticular, the eyes and mouth region are the most affected by
the identity injection, and more closely resemble the origi-
nal image. On the other side, the identity information looks
almost completely hidden in the generated samples, open-
ing the way to inconspicuous identity swapping as it will be
presented in the next section.
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4.2. Adversarial Attack on Face Recognition

In this section, we show that the proposed architectural
change leads to the possibility of generating a face image
of some subject i (attacker) conditioned with the identity
embedding of another individual j (target) i.e. x̂i→j =
G
(
mxi

, sxi
, idxj

)
. When doing so, this will be almost com-

pletely hidden in the output image, but FR models will rec-
ognize the image as belonging to identity j. This is very
similar to an adversarial attack as in [15], where the goal is
to exploit semantic clues to attack state-of-the-art FR sys-
tems. At the same time, there are some key differences:
a) our model is not explicitly trained to perform adversar-
ial attacks, but simply for reconstructing an image given its
semantic mask, styles and identity; b) it does not require ad-
ditional training for each attack, but simply swaps the iden-
tities of target and attacker at inference time; and, finally,
c) the proposed model does not hide the identity into a spe-
cific attribute, like eyeglasses as in [15], but treats it as an
additional style that is applied globally to the attacker face.

Given this task similarity, we evaluate the performance
using standard metrics in the field and adopt the Attack Suc-
cess Rate (ASR) as metric, which is computed as:

1

N

N∑
i=1

cos
(
Eid

(
G
(
mxi , sxi , idxj

))
, Eid (xi)

)
> τ (5)

where mxi , sxi are the mask and style codes associated to
the attacker i, idxj

= Eid(xj) is the identity embedding as-
sociated to the target identity j. Finally, τ value is taken
from [15] and is set considering a False Acceptance Rate
(FAR) of 0.01 w.r.t. the attacked FR system. Briefly, this
metric quantifies how many times a face recognition sys-
tems accepts the input face image as belonging to the target
identity and not the attacker.

In Fig. 3 several qualitative results of the adversarial at-
tack are presented: an attacker picture is injected with the
identity of a target face. Indeed, the difference between
the attacker face generated with the correct identity and the
one generated with the target identity is negligible and a
human eye would almost certainly fail when asked to rec-
ognize which one was forged with the incorrect identity.
The last column of Fig. 3, where heatmaps of the pixel-wise
L1 difference between the two different generated samples
are shown, further highlighting this characteristic, exhibit-
ing values close to zero almost everywhere. Still, at a closer
look, some minor changes in the swapped samples can be
appreciated. In particular, the eyebrows and eyes shape is
slightly altered (see third and fourth rows) as well as the
nose appearance (see first row). In addition, sometimes also
the eye color is affected (see last row). This is in line with
the considerations made in [10] that the identity information
is concentrated in the eyes and eyebrows areas of the face.

In Fig. 4, we show the cross-attention maps estimated by

Figure 3. Results of our architecture obtained as described in
Sect. 4.2. The first column is the attacker, the second column is
the target, the third column is the reconstruction result of the at-
tacker using the correct identity embedding, fourth column is the
reconstruction result when injecting the identity of the target in the
attacker. Finally, the last column represents the pixel difference
between the two reconstruction results, highlighting that the iden-
tity information is effectively concealed in the manipulated face.

the model when injecting identity information, in order to
visualize in which face areas the identity gets mapped by
the attention layer. This figure suggests our intuition was
correct, that is a high-level complex information such as
the identity influences several different regions of the face,
making state-of-the-art SIS methods based on SPADE un-
suitable for this task.

Finally, in Table 2 an extensive comparison with state-of-
the-art methods for adversarial attack on human face recog-
nition is presented. All the numbers are taken from [15],
and our results are calculated using the same settings and
pre-trained FR models. Our method is able to improve the
ASR score of the state-of-the-art, by a great margin in some
cases. When the attacked FR architecture is the same as
that used to train our model, the improvement is clearly
larger. We note this is a fair setting since the architecture
is the same, but the pre-trained weights are not. Thus, it
resembles a transferable adversarial attack (or gray-box)
scenario, that is when the attacker is aware of the victim’s
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Figure 4. Cross-Attention layer visualization when swapping the
identity of a target face to the attacker. The areas that are most
affected by the identity injection are the eyes, eyebrows, nose, and
mouth. This result suggests the perceived identity is complex in-
formation that is carried by several different facial traits.

architecture but does not have access to its internal weights.
In the other cases (the attacked FR model is different from
that of our architecture), our solution still obtains largely
higher ASR score in all the cases except one. Other than
demonstrating that our solution is highly effective, it sug-
gests that a significant overlap across recognition models
to the relevant facial features useful for recognition occurs.
Compared to the state-of-the-art, our results are quite im-
pressive considering that we do not specifically train our
system to perform adversarial attacks (nor it requires fine-
tuning). Differently, all the compared methods perform a
specific optimization.

4.3. Style Transfer Effect on Face Recognition

The SIS architecture, which was adapted to include iden-
tity information during generation, extracts a set of styles
sxi via Es from each semantic region of an RGB image and
maps them to the corresponding semantic class in the input
mask (see Sect. 3). This allows the style transfer between a
source xi and a target xj image by mixing their correspond-
ing style codes sxi

and sxj
e.g. hair color.

In this section, we explore how style transfer affects the
attacks on FR. More in detail, the objective is to verify if
swapping some styles can boost the ASR. To prove this,
firstly, we performed style transfer on a set of styles com-
bined with identity swap. In particular, Skin, Eyes, Eye-

Method IR152 ↑ MobileFace ↑ FaceNet ↑
FGSM [14] 2.70 5.10 1.90
PGD [23] 26.00 29.90 3.50

MI-FGSM [8] 26.80 21.70 4.60
C&W [2] 27.30 28.20 3.30

Adv-Hat [19] 2.50 8.40 4.70
Adv-Glasses [31] 4.50 5.60 9.10

Gen-AP [41] 19.50 24.40 15.80

Adv-Face [5] 31.40 36.40 21.60
Adv-Makeup [42] 10.80 14.60 10.50
Semantic-Adv [27] 10.30 19.40 9.00
Adv-Attribute [15] 44.30 50.20 31.80

Ours - FaceNet 48.30 40.60 77.60
Ours - ArcFace 67.80 98.10 72.20

Table 2. ASR comparisons against adversarial attacks methods
targeting different models on CelebA-HQ, as detailed in Sect. 4.2.
Bold=best result, underlined=second best. Italic font indicates
the attacked FR architecture is the same as that used to train our
model, but the pre-trained weights differ.

brows, Mouth, Hair and Full S. Swap (i.e. all the styles are
swapped) were chosen. Then, the results for each different
style transfer experiment were evaluated using two different
metrics: ASR and LPIPS. More in detail, the LPIPS metric
was calculated between the images reconstructed with the
correct identity and the ones generated with style transfer
and identity swap. By doing so, we can measure how much
the style transfer alters the overall appearance of the gen-
erated samples. Ideally, the best results are those in which
the system is able to fool the FR models while maintaining
the attack almost invisible to the human eye; in other words,

Figure 5. Graph showing different Attack Success Rate (ASR)
and LPIPS metric values when swapping different styles along the
identity. The style swapping procedure is described in Sect. 4.3.
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Figure 6. Results of different types of style swaps as described in Sect. 4.3.

we want the ASR to be as high as possible, while the LPIPS
remains as low as possible

Quantitative results of this experiment can be seen in
Fig. 5, while qualitative results can be seen in Fig. 6. In
both figures, the “No S. Swap” value represents the base-
line, i.e. the identity swapping is performed without any
style transfer. As expected in this case, the LPIPS value is
very low enforcing our claim of inconspicuous attacks. On
the other side, when performing style transfer, ASR results
increase for every different transferred part. This proves
that the capability of pairing identity and style swaps can
strengthen the attacks against FR systems giving our model
an additional edge w.r.t. current state-of-the-art.

Interestingly, the parts that increased the ASR results the
most are also the ones with the lower LPIPS. Indeed, they
are also the ones that contain the most identity information.
More in detail, the single semantic classes that obtained the
highest ASR results were Eyes, Eyebrows and Mouth. This
is in line with the results presented in Fig. 2. These find-
ings prove that is possible to combine style and identity
swaps maintaining the attack almost invisible to the human
eye, which is of paramount importance for this kind of sys-
tem. Finally, when swapping all the styles together (“Full
S. Swap” in the figure), the ASR reaches 98.4% but, at the
same time, LPIPS value is the highest.

5. Conclusions and Ethical Concerns

In this paper, we proposed a novel Semantic Image Syn-
thesis (SIS) method for image manipulation that also em-
ploys identity information during the generation process.
The identity injection into the model is based on the iden-
tity embedding, extracted from a pre-trained FR system, as
an additional style that is concatenated to the other styles
obtained by a style encoder from a reference RGB image.
Then, a cross-attention mechanism is used in the generator.
We observe the proposed identity injection procedure has
two main effects: firstly, when the same identity of the input
subject is used, it greatly improves the identity preservation
during generation. Secondly, if the identity is swapped (i.e.

the injected identity is different with respect to the input
one), the model is able to perform an adversarial attack to
FR systems hindering their results. Extensive experiments
on these two contributions were performed proving the ef-
fectiveness of the proposed architecture.

As a future work, we plan to further develop the identity
injection mechanism, so as to have a strategy for making the
identity of the second subject in the final generated image
visible or not. This is important both for controlling the
extent of the identity injected into the system and for the
development and study of biometric systems based on facial
identification, such as face swapping and morphing.

Lastly, we are aware that these types of systems could be
used in malicious or criminal ways. On the other side, we
strongly believe that studying and publicly sharing results
in this field can increase awareness of the use of these sys-
tems in the academic community (and beyond), stimulate
the development of new countermeasures, and lead to the
creation of new datasets for training future systems.
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