This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Generalized Single-Image-Based Morphing Attack Detection Using Deep
Representations from Vision Transformer

Haoyu Zhang'*

Raghavendra Ramachandra’

Kiran Raja’

Christoph Busch!?
! Norwegian University of Science and Technology, Norway
2 Darmstadt University of Applied Sciences, Germany
{haoyu .zhang, raghavendra.ramachandra, kiran.raja, christoph. busch}@ntnu .no
christoph.busch@h-da.de

Abstract

Face morphing attacks have posed severe threats to Face
Recognition Systems (FRS), which are operated in border
control and passport issuance use cases. Correspondingly,
morphing attack detection algorithms (MAD) are needed to
defend against such attacks. MAD approaches must be ro-
bust enough to handle unknown attacks in an open-set sce-
nario where attacks can originate from various morphing
generation algorithms, post-processing and the diversity of
printers/scanners. The problem of generalization is further
pronounced when the detection has to be made on a single
suspected image. In this paper, we propose a generalized
single-image-based MAD (S-MAD) algorithm by learning
the encoding from Vision Transformer (ViT) architecture.
Compared to CNN-based architectures, ViT model has the
advantage on integrating local and global information and
hence can be suitable to detect the morphing traces widely
distributed among the face region. Extensive experiments
are carried out on face morphing datasets generated using
publicly available FRGC face datasets. Several state-of-
the-art (SOTA) MAD algorithms, including representative
ones that have been publicly evaluated, have been selected
and benchmarked with our ViT-based approach. Obtained
results demonstrate the improved detection performance of
the proposed S-MAD method on inter-dataset testing (when
different data is used for training and testing) and compa-
rable performance on intra-dataset testing (when the same
data is used for training and testing) experimental protocol.

*This work was supported by the European Union’s Horizon 2020 Re-
search and Innovation Program under Grant 883356.

1. Introduction

Face recognition systems (FRS) have been widely deployed
in various security applications, such as passport issuance
and automated border control (ABC)[7]. However, with
the development of image manipulation techniques, FRS
are becoming vulnerable to different kinds of attacks that
may lead to security lapses [21] [29]. Morphing attack is
one type of the attacks that targets to subvert FRS by com-
bining biometric samples from 2 or more individuals into a
single morphed image. Morphing attacks have been illus-
trated as an evolving threat to the FRS [2]. Morphing attack
detection algorithms (MAD) have been therefore proposed
to detect these attacks to improve the security of FRS.
Single-image-based morphing attack detection (S-
MAD) aims to detect the face morphing attack based on
a single image presented to the algorithm. The most com-
mon application scenario of S-MAD is validating the face
photos submitted in passport or visa applications (physi-
cally/through online services) [29]. Another possible used
case for S-MAD is the validation of an existing face image
database, to validate that no morphed images are contained.
Hence, the S-MAD algorithm should well generalize for
different types of face images and anticipated image pro-
cessing, such as digital, print-scanned and print-scanned-
compression. In addition, there are various types of morph-
ing algorithms that generate morphed face images with dif-
ferent characteristics, such as realistic texture and high face
structure similarity. While many previous works have de-
veloped MAD approaches that can detect attacks efficiently
for known kinds of morphing attacks, the performance tends
to degrade when testing involves data stemming from dif-
ferent morphing methods and which were unseen during
training. Fig. | illustrates an example of such a scenario
when the S-MAD algorithm trained on the known attack
(i.e., known morphing generation type) can easily miss de-
tecting an attack from the unknown generation type [11].
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Figure 1. Hypothesised illustration of S-MAD as open-set problem: A model trained on known morphing attacks may fail at unknown

morphing attacks.

Given the envisioned application scenario, it is crucial to
improve the generalizability of S-MAD algorithm and to
evaluate the detection performance in an open-set scenario
by cross-dataset testing.

The existing S-MAD approaches are based on texture
features [22], residual noise features, hybrid features, and
deep learning features [29] [4] [18] [23]. With the achieve-
ment of deep convolutional neural networks (CNNs) in the
field of image recognition, many researchers have applied
pretrained CNNSs and transfer learning to solve the S-MAD
problems as binary classification problems [15] [4]. Al-
though it has been shown that CNN-based methods may
achieve better performance than S-MAD methods based
on hand-crafted features, the generalizability of these ap-
proaches to print-scan images tends to be limited [11].

Recently, Vision Transformer (ViT) [1] has become pop-
ular in computer vision and has achieved impressive re-
sults on existing image recognition challenges. Transformer
models [25] apply the concepts of natural language process-
ing directly to images where an image is split into small
patches and then projected as a sequence of linear embed-
dings, which further are treated as the input to a Trans-
former model. By applying the self-attention mechanism
and without introducing strong image-specific inductive bi-
ases as CNNs, ViT has shown the capability to integrate in-
formation globally from low layers and has achieved state-
of-the-art (SOTA) performance in different tasks with large-
scale training data. Consequently, many works have been
investigating the possibility of applying ViT to other tasks.
In the case of MAD, the traces of morphing are widely dis-
tributed among the face region, and hence the algorithms
should have a large receptive field and the capacity of inte-

grating local and global information to be robust and gen-
eralized. Hence, We assert that the advantages of ViTs can
improve S-MAD and investigate further if they improve the
generalizability of the developed S-MAD algorithm.

Our Contributions: 1) We propose an S-MAD algo-
rithm based on the deep representation from a pretrained
vanilla ViT against other works using CNNs. 2) We in-
vestigate the applicability of the pure self-attention-based
model in S-MAD tasks by conducting comprehensive cross-
dataset testing with various morph generation types and dif-
ferent dataset types (digital/print-scan/print-scan compres-
sion). The generalizability and detection performance of
the proposed approach is quantitatively evaluated and re-
ported 3) We benchmark the proposed method together with
other state-of-the-art S-MAD algorithms based on the en-
semble of hand-crafted features [27], hybrid scale-space
colour texture features [16] (reported in the testing report
from National Institute of Standards and Technology [8]),
deep CNN features [15], steerable features [17], Multi-
modality approach (tested in Bologna Online Evaluation
Platform [10]', residual AutoEncoder [12], and Multi-level
Deep Features [26] respectively. The analysis result indi-
cates an improved generalizability on digital inputs.

2. Proposed Method

An overview of our proposed S-MAD method is described
in Fig. 2. We first crop the face region using MTCNN [31]
to detect face regions and then resize the cropped face image
into 384 x 384 pixels to fit the input of ViT model. Then,

Inttps://biolab . csr.unibo . it / fvcongoing / UI /
Form/BOEP.aspx
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Figure 2. Overview of our proposed method using pretrained Vision Transformer model.

the input image is split into small patches x,, with the size
of 32 x 32 pixels and then flattened and projected as patch
embeddings through a learned linear projection layer with
one layer of fully connected blocks for each embedding.
Then an extra learnable classification embedding x 45 1S
attached to the other patch embeddings as the learned im-
age representation for further classification tasks. Similar
to the design of the vanilla ViT, 1-D positional encoding
is applied to generate position embeddings E,,,, with the
same length of the patch embeddings using sinusoidal func-
tions. Each position embedding is added to the correspond-
ing patch embedding hence the positional information can
be encoded. Then the processed input 2y can be noted as:

20 = [Tetass; Tp B 22 E; s a0 E] + Epos (1)

where N = 144 is the number of patches and F indi-
cates the linear projection process. After processing the
image into a sequence of embeddings, they are fed for-
ward through the transformer encoder stacked with 24 lay-
ers of encoder blocks. Each encoder block includes a multi-
head self-attention layer and a Multilayer Perceptron (MLP)
block.

2l = MSA(LN(z_1)) + 21, l=1,.,L. (2

2 =MLP(LN(2]))+7, l=1,...,L. 3)

The multi-head self-attention layer extends the key-query-
value triplet into 16 sub-triplets and executes the computa-
tion of the self-attention mechanism in parallel, hence the

model can learn to extract features from multiple different
aspects.

During Pretraining of the ViT model, the classifica-
tion token is linked to an extra MLP with a dimension of
4096 and then a softmax classifier for image classification.
The model is pretrained on ImageNet21k [19] and Ima-
geNet2012 dataset [20] with 1000 classes. To avoid du-
plicated training processes and achieve sustainability, we
use the settings of hyper-parameters inspired by the origi-
nal ViT paper [1]. As for model selection, we selected the
ViT-L model with the large parameter size for higher capac-
ity generalizability and large patch size to extract more lo-
cal information. For the S-MAD task, we use the pretrained
model to extract the classification tokens with the dimen-
sion of 1024 on our face morphing dataset. The extracted
classification tokens will be considered as general deep rep-
resentations and then we train a linear SVM classifier to
solve the S-MAD problem as a binary classification task.
The SVM classifier is chosen over training a deep-learning-
based binary classifier due to its efficiency and robustness
in preventing overfitting for small-to-medium size datasets.

3. Dataset

In order to conduct the cross-dataset testing comprehen-
sively and simulate the operational use case, we use a
database generated by various morphing algorithms and in
different image processing methods (digital, print-scanned,
print-scanned-compression). To simulate the passport use
cases with face photos, our database is constructed based on
selected morphed images from FRGC-V2 dataset [9] with
high image quality and well-controlled capturing conditions
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(e.g., pose variations). 140 unique subjects, including 93
male subjects and 47 female subjects are selected. For each
subject, 7-24 mated samples with similar capturing condi-
tions (image resolution, neutral expression, pose, illumina-
tion, etc.) are chosen. In total, 1270 bona fide samples are
included.

As for the morphing algorithms, we selected the fol-
lowing five representative morphing algorithms includ-
ing, two landmark-based algorithms Landmark-I [14] and
Landmark-II [3], and 3 GAN-based algorithms StyleGAN-
IWBF[28], MIPGAN-I and MIPGAN-II [30] to establish
a diversity of unknown attacks. The samples are pre-
processed to meet the ICAO 9303 requirements [5]. Pairs
of parent images for the morphing process are selected fol-
lowing guidelines suggested in [14] [21] (e.g., isolating be-
tween different genders, pairing based on similarity score
of an FRS model), as the attacker may spend as much as an
effort to generate the morphing attacks in real cases. As our
target is to train the model to learn patterns generated from
morphing instead of general patterns from GANs, recon-
structed bona fide images are applied to the datasets with
GAN-based morphing algorithms. In this way, we can re-
duce the bias between bona fide and morph samples and
can make the trained classifier generalize to other types of
attacks that are not generated by the same GAN model.

To evaluate the generalizability of S-MAD algorithms
on different types of images, 3 types are included in our
database:
 Digital: Morph images are obtained from the morphing

algorithms given digital parent images as input.

* Print-scan: Both generated morphs and bona fide images
are printed using DNP-DS820 dye-sublimation photo
printer and then re-digitized using the Canon office scan-
ner with 300 dpi as suggested in ICAO 9303 requirements
[5]. This is to simulate the process of a passport applica-
tion.

e Print-scan with compression: Print-scanned images
(morphs and bona fide) are compressed into less or equal
to 15 KBs to simulate the images stored in the e-passport.

Overall, each dataset has 2500 morphed images and 1270

bona fide images. Given the 5 included morphing algo-

rithms and 3 image processing types, in total 15 datasets
are used in the database for further cross-dataset testing on

S-MAD algorithms.

4. Experiments and Results

To evaluate the generalizability and robustness of our ap-

proach, we apply cross-dataset testing on different morph-

ing algorithms within each dataset of different image pro-

cessing types and benchmark it with the other selected SO-

TAs:

¢ Ensemble Features [27] uses ensembled features includ-
ing LBP, HoG, and BSIF. The algorithm has been evalu-

ated by public testing and included in NIST report [8]

* Hybrid Features [16] uses scaled colour space and trains
independent classifiers based on the extracted LBP fea-
tures.

* Deep Features [15] use pretrained VGG and AlexNet to
extract transferable features and apply feature-level fu-
sion for further classification.

» Steerable Features [17] extracts steerable pyramids from
illuminance components and trains classifiers based on
high-frequency components.

* Multi-Modality [13] crops the face image into different
regions and extracts BSIF and LBP features. Independent
classifiers are trained and score-level fusion is applied to
output the final classification result. The algorithm has
been evaluated in the Bologna Online Evaluation Plat-
form [10] 2.

» Residual AutoEncoder [12] is a deep learning approach
that consists of a skip-connected AutoEncoder and a
ResNet18 Classifier. Guided by the designed loss func-
tions, the model is trained to extract learnable residuals
which can be used for further classification by the ResNet.

* Multi-level Deep Features [26] applies multi-level fusion
on features extracted from AlexNet and ResNet50.

The selected baselines cover approaches based on hand-

crafted features, deep-learning-based transferable features,

different fusion strategies, and trained deep-learning mod-
els.

More specifically, for each dataset generated with a spe-
cific morphing algorithm, we train the S-MAD algorithm on
it and test with the datasets (generated by different morph-
ing algorithms). This shows how the detection algorithms
can generalize and to which extent they are robust with
respect to unknown attacks. The performance of testing
across different image processing types is not included as
considering a model trained on print-scan data is often not
used to detect attacks from digital data rather an ensemble
is used. Instead, we report the performance of cross-dataset
testing for the same image processing types (e.g., digital
versus digital) to evaluate the generalizability of MAD al-
gorithms.

To report the performance of each test, we employ stan-
dardized metrics such as Bona fide Presentation Classifica-
tion Error Rate (BPCER) and Morphing Attack Classifica-
tion Error Rate (MACER) following ISO/IEC CD 20059.2
[6] and measure the detection error trade-off by reporting
BPCER@MACER=5% and BPCER@MACER=10%. To
simplify and scalarize the results, Detection equal error rate
(D-EER) is also reported. The lower D-EER numbers indi-
cate better detection performances.

For the evaluation protocol, we evaluate both intra-
dataset testing and inter-dataset testing but without crossing

2nttps:/ /biolab . csr . unibo . it /FvcOnGoing / UI /
Form/AlgResult.aspx?algld=8422
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Table 1. Statistical analysis on the D-EER(%) computed for all cross-dataset testing results on FRGC morphing dataset.

S-MAD Digital Print-scan P.S. with Compression
Algorithms W o W o 0 o
Ensemble 21.03 17.55 16.73 14.90 17.24 15.78
Features [27]
Hybrid 26.11 20.26 19.07 16.04 16.28 14.23
Features [16]
Deep 21.16 17.50 11.38 16.23 16.77 13.19
Features [15]
Steerable 35.97 16.57 15.72 18.44 31.49 11.20
Features[17]
Multi- 18.05 15.51 7.63 12.27 13.57 13.72
Modality [13]
Residual 15.95 17.38 16.01 15.25 14.92 13.97
AutoEncoder [12]
Multi-level 14.78 13.90 9.51 12.44 13.38 12.36
Deep Feature [20]
Proposed Method 13.63 11.61 18.33 14.32 19.09 13.61

image types (digital, print-scanned, and print-scanned and
compressed). Detailed quantitative analysis is included in
the supplementary material. To measure the overall gener-
alizability of the MAD algorithms and establish the signifi-
cance of the obtained results, we propose to conduct statisti-
cal analysis on the D-EER of the cross-dataset testing cases
within each type of image, and also visualize this analysis
as a boxplot. From the quantitative analysis in Tab. 1, it is
shown that our approach has the lowest mean and standard
deviation of D-EER for digital images. The mean value of
D-EERs from the proposed method has decreased 1.15%
compared to the best among the baselines. As visualized in
Fig. 3, a similar observation can also be noticed by the simi-
larly low median value as Residual AutoEncoder and Multi-
level Deep Features. However, the range of error rate from
our approach during testing is more narrowed, which indi-
cates better robustness. In print-scan and print-scan with
compression cases, a degradation of the detection perfor-
mance of our algorithm can be noticed compared to the
digital case. We reason this by 1) the Vision Transformer
model is pretrained only with digital images and hence the
extracted representation is less effective when transferred
to another image processing type 2) compared to the digital
images, print-scan and print-scan compression images are
in a much lower resolution and can provide less information
for the Vision Transformer model (which takes the input
size of 384 x 384). For print-scan inputs, the Multi-modality
approach and multi-level Deep Features approach achieved
the best performances. As for further compressed print-
scanned images, the multi-modality approach and Residual
AutoEncoder approach are similar.

It is also shown that different algorithms perform incon-

sistently for the same testing cases. Ensemble Features, Hy-
brid Features, Deep Features, and Steerable Features are not
generalizing well for most of the cross-testing cases, even
for inter-testing among GAN-based morphed images. Our
approach has shown considerable generalization when the
test is crossing between landmark-based and GAN-based
morphs in digital cases. The Residual AutoEncoder ap-
proach has also shown similar performance, while some ex-
treme cases can be noticed for example in when the model
is trained by MIPGAN-I dataset and tested on Landmark-II
dataset. This might be caused by the randomness during the
training process of the network. The multi-Modal approach
in general has impressive performances on Print-scan and
print-scan compression images. Compared with Deep Fea-
tures approach with transferable CNN features, it is shown
that the ViT-based features can achieve improvement in the
generalizability of MAD for digital images. Meanwhile, the
multi-level fusion of CNN features has shown an overall im-
provement in the Deep Features approach. It also achieves
comparable results with ViT-based features in the digital
case with considerable generalizability for print-scan and
print-scan compression images.

Additionally, the interpretation of the proposed method
and obtained results is studied. As shown in Fig. 4 - Fig. 6,
T-SNE [24] plot is used to visualize the feature space of
the proposed method with data using different processing
processes.

Similarly as what we’ve observed in the cross-
dataset testing results, features from morphs generated
by StyleGAN-IWBF, MIPGAN-I and MIPGAN-II can be
well-separated between the features from bona fide images,
which indicates good generalization on cross-dataset test-
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ing. Features of Landmark-I morphs are shown to be less one to classify and generalize. This shows that the post-
seperable than GAN-based morphs. The overlap between processing on morphs can effectively make the generated
features of morphed samples generated by Landmark-II attacks stronger. Meanwhile, when the processing type is
method and features of bona fide samples also follows de- changed from digital (Fig. 4) to print-scan (Fig. 5) and then
tection accuracy where this method is the most challenging to print-scan compression (Fig. 6), it becomes more difficult
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to find sharable boundaries for classifying different types of
morphs between bona fide samples.

5. Limitations

In this work we have applied a specific pretrained ViT
model in order to be sustainable on computational pow-
ers, however, the influence of different hyper-parameters in
the ViT model on the final performance of S-MAD tasks is
still worth to be studied. Meanwhile, for the cross-dataset
testing, we only conducted experiments with leave-one-out
training. It is also interesting to evaluate S-MAD trained
on a dataset mixed with multiple morphing algorithms and
study on the learning capacity. By using the pretrained ViT
model, our model has shown an improvement in generaliz-
ability for digital images, while it can be noticed that for
intra-dataset testing the detection accuracies are overall less
or equal for the other algorithms. Also as shown in our
evaluation, the different algorithm performs inconsistently.
Hence, it is reasonable to further explore fusion strategies
or combine them with the multi-modality approach.

6. Conclusion

In this work, we proposed an S-MAD algorithm based on
pretrained Vision Transformer model instead of existing
deep-learning-based methods using CNNs. Motivated by
the real application scenario of open-set testing, we use a
morph dataset with three different image processing types
and five different representative morphing algorithms, in-
cluding both GAN-based and landmark-based algorithms
for the cross-dataset testing. The proposed method is bench-
marked against two selected SOTA algorithms. Based on
the statistical analysis of the obtained results, it can be con-
cluded that the proposed method based on the pure self-
attention model can achieve notable improvement in the
generalizability of the digital use cases. Despite the low per-
formance for some cases in print-scan and print-scan com-
pression images as noticed, one can note overall detection
accuracy gain in cross-dataset testing while remaining com-
parable with the other SOTA algorithms.

To conduct a comprehensive evaluation of the detec-
tion performance of the proposed method, we have bench-
marked several existing SOTA targeting generalized S-
MAD tasks. Besides constructing a representative morph
database we are trying to simulate the operational applica-
tion scenario, further we will submit the algorithms to third-
party tests such as NIST (National Institute of Standards and
Technology) Face Analysis Technology Evaluation (FATE)
[8] or Bologna Online Evaluation Platform (BOEP) [10].
In this work, the proposed method has not been submitted,
but the selected reference algorithm based on hybrid fea-
tures [16] has been tested in FRVT MORPH and the perfor-
mance is reported in [8], and the Motimodality-based algo-

rithm [13] has been evaluated in BOEP.

Meanwhile, it should also be noted that in this work
we only applied the vanilla Vision Transformer model pre-
trained with digital images on the image classification task.
Hence it remains future works to plug in improved Vision
Transformer models or replace the pretraining strategy with
MAD-related tasks on different types of images.
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