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Abstract

In medical imaging, leveraging continual learning (CL)
is key for models to adapt to new classes and data distribu-
tions without forgetting prior knowledge. Existing CL meth-
ods often overlook the use of off-the-shelf pretrained models
that are equipped with informative and generalizable repre-
sentations, opting instead to learn from scratch. In this pa-
per, we propose Continual-Zoo, a novel CL paradigm that
smartly leverages a zoo of pretrained models for continual
medical image classification. For a given task, Continual-
Zoo distills pertinent knowledge from the fixed zoo through
cross-knowledge and semantic-knowledge attention mech-
anisms to obtain class prototypes. Since deploying a zoo
could lead to scalability issues with a large number of mod-
els, we propose a novel prototypical variational autoen-
coder, pVAE, as a zoo knowledge encoder. During infer-
ence, Continual-Zoo utilizes pVAE as a feature extractor
that maps images to the same space of class prototypes and
returns the class whose prototype has the shortest distance
in the latent space. To mitigate forgetting in CL, pVAE
leverages the class prototypes to synthesize images from
previously learned tasks before adapting to new ones. Ex-
perimental results on various clinical benchmarks demon-
strate the superiority of Continual-Zoo over SOTA methods
in class-incremental, domain-incremental, and domain and
class-incremental learning scenarios, distinguishing it from
most CL methods.Code is available at here.

1. Introduction

Deep learning (DL) models are rapidly gaining relevance
in medical imaging, excelling in computational tasks like
segmentation [14, 15], classification [5, 25], and anomaly
detection [50] of vital anatomical structures. In some cases,
their capabilities surpass even those of human experts [56],
making them a central tool in the advancement of using
imaging data for diagnosis. However, these models are typi-
cally trained in an offline batch setting, i.e., they assume that

all the training data are available at once. In the dynamic
healthcare industry, clinical imaging technology, diagnostic
workflows, and imaging markers of diseases are subject to
constant changes that can significantly impact the accuracy
and relevance of deep learning models in real-world appli-
cations. Therefore, it is crucial for deep learning models
to continuously adapt to the ever-evolving environment to
remain effective and relevant in clinical practice.

A significant challenge in this context is catastrophic for-
getting [39]. It occurs when a model, in the process of learn-
ing new tasks (e.g., new classes or domains), overwrites ex-
isting parameters with new data, leading to a loss of previ-
ously acquired knowledge. To address this problem, con-
tinual learning (CL) has emerged as a promising learning
strategy that enables models to learn new tasks sequentially
while retaining their performance on previously acquired
data [45]. However, existing CL methods usually begin by
training models from scratch, often neglecting the potential
advantages of integrating off-the-shelf pretrained models
into their frameworks. These pretrained models have shown
remarkable generalization capabilities and can achieve fa-
vorable performance across downstream tasks [34, 38].

Despite their proven effectiveness, adapting pretrained
models for continual learning in the medical domain
presents substantial challenges. First, the diverse range
of knowledge encapsulated in different pretrained models
varies considerably in its adaptability across the sequen-
tially introduced datasets, classes, or individual samples.
Inadequate handling of this diversity can result in nega-
tive forward knowledge transfer [65], leading to poorer
performance when compared to randomly-initialized net-
works [41]. The complexity is compounded by the abun-
dance of the publicly available pretrained models, each with
its own architecture, training method, and pretrained data.
The selection of a suitable pretrained model for a given task
is not a trivial undertaking, as the optimal choice for a cur-
rent task may not be the best decision for a new incoming
task. Second, medical image training datasets are often lim-
ited in size as data is collected gradually over time. This
presents a notable challenge in finetuning large-scale pre-
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trained models on small datasets, as it may result in instabil-
ity [47] and undermine the model’s generalizable represen-
tations [63]. Third, experimental evidence suggested that
directly adding a CL method on top of a pretrained model
may not necessarily lead to improved performance [32].
Consequently, how can we effectively integrate the knowl-
edge from a diverse set of pretrained models, without re-
lying on fine-tuning, to achieve robust representations suit-
able for continual medical imaging classification?

In this paper, we propose Continual-Zoo, a novel two-
stage CL pipeline developed to extract relevant knowledge
from a zoo of off-the-shelf pretrained models for continual
medical image classification. For each task in the train-
ing sequence, Continual-Zoo applies two attention tech-
niques on the features extracted from the model zoo to ob-
tain well-representative class prototypes (CPs). The first
technique, cross-knowledge attention (CKA), utilizes the
inter-knowledge from all models’ representations, adap-
tively emphasizing the most crucial ones for the down-
stream task. The second technique, semantic-knowledge
attention (SKA), utilizes prior, semantic information to fur-
ther enhance the knowledge obtained from CKA. To over-
come potential computational challenges of scalability to
a large number of pretrained models during inference, we
propose a new prototypical variational autoencoder, pVAE,
that acts as a zoo knowledge encoder; i.e., it is trained to
map input images to the same space of the prototypes, as il-
lustrated in Fig. 1. Thus, at inference, predictions are made
using only the pVAE by returning the class whose prototype
in the latent space is closest to the encoder’s latent represen-
tation of a test image. Furthermore, pVAE creates synthetic
samples of past tasks, which reduces forgetting as it adapts
to new tasks while also maintaining patient privacy. In sum-
mary, our contributions are as follows:
• To the best of our knowledge, Continual-Zoo is the first

work that utilizes a zoo of pretrained models within a CL
framework for medical image classification.

• We enable an efficient and effective way to leverage
the vast knowledge in existing pretrained models toward
building representative class prototypes through cross-
knowledge and semantic-knowledge attention blocks.

• We design a novel variational autoencoder as a zoo
knowledge encoder, used to facilitate inference by map-
ping a novel test image to the same space of prototypes.

• We assess the performance of Continual-Zoo against mul-
tiple baselines and CL methods on three different applica-
tions under three CL scenarios. We show that our model
achieves SOTA results consistently.

2. Related Work
Continual Learning (CL) models are designed to learn
with limited resources from sequentially presented tasks
without forgetting. Most techniques are based on regular-

Figure 1. Overview of the proposed framework for continual med-
ical image classification. Continual-Zoo creates class prototypes
by leveraging knowledge from a diverse set of pretrained models
(model zoo), mining the most beneficial knowledge for a given
task through cross-knowledge and semantic knowledge attention
mechanisms. These class prototypes are used to regularize the la-
tent space of the proposed pVAE, enabling the mapping of im-
ages into the same space as the prototypes. During inference,
Continual-Zoo classifies a novel test image by identifying the class
prototype closest to the image in the latent space.

ization or knowledge distillation to minimize changes in
parameters when learning new tasks [33, 37, 52]. Param-
eter isolation is another popular approach, where different
subsets of the model parameters are dedicated to different
tasks [4, 6, 29, 42]. Alternatively, other methods dynami-
cally expand the network for learning each new task [24].
Another body of work generates pseudo exemplars of the
training data for each old task [44, 57] or memorizes old
samples in a buffer [3, 49]. While the performance of such
replay-based methods is usually the best, several drawbacks
are associated with them, including the difficulty in prop-
erly selecting representative data or the inability to store real
data due to privacy concern, especially in the medical field.
Our work does not store exemplars but efficiently generates
them using the proposed pVAE.

Pretrained Models in CL. To the best of our knowledge,
there are only a few works in the literature that bridge the
gap between CL and pretrained models. L2P [59] and Du-
alPrompt [60] use a pretrained ViT-B/16 network and train
a small pool of prompts that update through the CL pro-
cess. TwF [7] proposes a new strategy that enables a con-
tinuous transfer between a source task and incrementally
learned tasks. However, L2P, DualPrompt and TwF rely
on a ‘single’ pretrained model and implicitly assumes pos-
itive knowledge transfer (i.e., pretrained on ImageNet and
evaluated on CIFAR-10). Zhang et al. [66] proposed learn-
able task-specific adapters within a fixed pretrained model
that is used as feature extractor to learn new knowledge of
diseases. Recently, CPs generated from large pretrained
models have emerged as a simple yet effective solution in
CL [28, 40, 46]. This is attributed to the fact that when
a model used for extracting representations remains un-
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changed, the CPs accumulated for all tasks remain identi-
cal, regardless of the number or order of tasks. Additionally,
CPs offer a significant advantage in terms of memory cost,
as they incur a lower memory footprint compared to using a
memory buffer of samples. In contrast to existing CP meth-
ods, Continual-Zoo stands out by obtaining CPs from a zoo
of diverse pretrained models, rather than relying on a single
one, opening up new possibilities for leveraging a wealth of
knowledge from multiple models.
CL for Medical Imaging. Prior works explored the appli-
cability of CL methods to medical imaging, mostly adapt-
ing existing regularization and generative-replay strategies
to the application at hand (e.g., [36, 43, 64]). Recently, Wu
et al. [61] proposed a feature-level knowledge distillation
technique with contrastive learning to maintain previously
acquired knowledge for continual nuclei segmentation. Roy
et al. [51] proposed another distillation strategy on mixed-
curvature space of the embedding vectors to preserve the
complex geometric structure of medical images. Chen et
al. [9] proposed a generative replay to substitute images
from old tasks with synthetic images. González et al. [17]
introduced Lifelong nnU-Net, a nnU-Net based framework
for continual training and evaluation of segmentation mod-
els in the medical field. Our work is different as it utilizes
the knowledge from a zoo of off-the-shelf models for con-
tinual medical image classification.

3. Continual-Zoo
We address the problem of leveraging relevant knowledge
from a zoo of available pretrained models, without fine-
tuning, for continual learning of medical images. The
pipeline of Continual-Zoo comprises two stages, demon-
strated in Fig. 2. In the first stage, given a zoo of pretrained
models (Section 3.2.1), Continual-Zoo applies the proposed
CKA and SKA attention techniques (Section 3.2.2, 3.2.3)
on the extracted features from the zoo to derive class-
specific knowledge, resulting in the formation of well-
representative class prototypes (CPs). These CPs are then
used in the second stage to regularize a novel prototypical
VAE (pVAE) (Section 3.3), which acts as a zoo knowledge
encoder to facilitate the inference and mitigate forgetting in
CL. At inference, we adopt a task-agnostic inference; pre-
dicting the corresponding target from all classes learned so
far regardless of the task identity (t) of a given test image
(Section 3.4). This differs from typical methods for Con-
tinual Learning (CL), where the assumption is that the test
input contains a pair (xtest, t). Yet, the task identity is not
always available in real-world environments.

3.1. Preliminaries

Continual-Zoo learns T tasks sequentially, one at a time,
where T is not pre-determined. The t-th task, comprises
Nt pairs of input samples xt ∈ X and their correspond-

ing label yt ∈ Ct. We use c to denote any class in Ct.
During the learning phase of the t-th task, Continual-Zoo
does not have access to old data. Continual-Zoo is, to
the best of our knowledge, the first comprehensive frame-
work to address three key scenarios in continual learning:
(i) Class-incremental learning (CIL), wherein a new task t′

involves new, not previously encountered classes, i.e., Ct′
s.t. Ct′ ∩ Ct = ϕ; (ii) domain-incremental learning (DIL),
wherein a data distribution gap is witnessed across tasks
(e.g., changes in scanner manufacturer) but Ct′ = Ct; as
well as (iii) both domain- and class-incremental learning
(DCIL), which is the most challenging scenario.

3.2. Stage 1: Attention-based Class Prototypes

3.2.1 Pretrained Models as Feature Extractors

We start with a pretrained model zoo F = {f i}Ni=1

with N pretrained models used as generic feature ex-
tractors. Given training data (xc, yc) of a class c from
a particular task, as shown in Fig 2 (Stage 1- Model
zoo), we extract a set of generic representations Ec ={
eic ∈ R1×d | eic = f i(xc), i = 1, ..., N

}
, which are used

to construct a relevant and well-representative CP, referred
to as pc, from the outputs of CKA and SKA, as explained
next. For notational clarity, we omit the subscript c here-
inafter, as the process is the same for all classes in all tasks.

3.2.2 Cross-Knowledge Attention (CKA)

We propose a multi-head cross-knowledge attention mech-
anism, inspired by [58], to enable inter-model complemen-
tary knowledge fusion. Concretely, we squeeze out the rel-
evant knowledge, denoted as bi, from model f i by using the
corresponding ei as the query component, while the rest of
the representations in E are used as the key and value com-
ponents (Fig. 2; Stage 1- CKA), enabling a more querying
knowledge from each model separately. Following [58], the
non-projected head of CKA is given in Eq. 1;

Atti =

N∑
j=1,j ̸=i

softmax(
q(ei) k(ej)T√

d
) v(ej) (1)

where q(ei) = eiW i
q , k(ej) = ejW j

k , v(ej) = ejW j
v , and

Wq,Wk,Wv ∈ Rd×d are the learnable query, key and value
matrices, respectively. The relevant knowledge bi is;

bi = ei + concat [ Atti1, ..., Attih ]Wo (2)

where h is the number of heads and Wo ∈ Rd×d is a learn-
able linear transformation matrix. We repeat this process for
N models to extract an averaged class-specific knowledge;

g =
1

N

N∑
i=1

bi. (3)
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Figure 2. Overview of the Continual-Zoo for the task of continual medical image classification. (Top) In learning stage 1, class-specific
knowledge related to each class is extracted from a model zoo and processed to form a prototype for each class using two attention
mechanisms: cross-knowledge attention (CKA) and semantic-knowledge attention (SKA), highlighted in yellow and green, respectively.
(Bottom-left) In learning stage 2, the class prototypes (CPs) obtained from stage 1 are used to regularize a novel variational autoencoder
(pVAE), which facilitates inference and mitigates forgetting in CL. (Bottom-right) During inference, the class with the shortest Mahalanobis
distance between its prototype and the test image encoder’s distribution is returned for classification.

3.2.3 Semantic-Knowledge Attention (SKA)

Medical images, specifically for skin lesion analysis,
presents a high intra-class heterogeneity with respect to
the diagnosis. The characteristics of each skin lesion class
can significantly change across tasks (Fig.3), requiring the
model to learn novel styles of known classes over time.
Therefore, inspired by [16], we propose a task-aware en-
coder, which incorporates prior knowledge derived from the
word embeddings of task labels to further enhance the at-
tention on g. To extract this prior knowledge from task la-
bels, we use a fixed pretrained word embedding model as
our semantic prior source to obtain an embedding w ∈ Rl.
Then, we feed w into the SKA block to obtain an atten-
tion vector a ∈ Rd. Our SKA is a simple MLP that
is equivalent to the excitation module in the SENet [23];
a = sigmoid (FCd(ReLU(FC d

r
(w)))), where FCd and

FC d
r

are fully connected layers with d and d
r neurons, re-

spectively, and r is a parameter choice. The attention vector

Figure 3. Example of intra-class heterogeneity: The same skin le-
sion class (e.g., melanocytic nevus) exhibits different appearances
across a sequebce of tasks in continual learning. Each task repre-
sents a different skin lesion image dataset.

a can be seen as a feature recalibration to obtain v = a
⊙

g,
where

⊙
is element-wise product operation (Fig. 2; Stage

1- SKA). Finally, we form the d-dimensional class proto-
type, p, as a Gaussian function modelling the distribution
of v over the images of the class, i.e; p ∼ N (µ, σ), where
p is parameterized by the mean µ and variance σ, which
are stored in memory Mp, with negligible storage. In the
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VAE realm, µ and σ will be the parameters of the posterior
distribution.

3.3. Stage 2: Prototypical Variational Autoencoder

The continuous updating of the CKA and SKA modules
with every incoming data leads to catastrophic forgetting.
As we do not store the parameters of these modules, de-
ciding which model parameters to use during inference be-
comes uncertain. Furthermore, given Continual-Zoo’s ca-
pability to accommodate an unlimited number of pretrained
models, deploying it may introduce scalability concerns,
particularly with a large number of pretrained models. To
address these challenges, we introduce a novel component:
prototypical variational autoencoder, or pVAE. Conceptu-
ally, the pVAE acts as a zoo knowledge encoder, enabling a
direct mapping of input images into the space of class pro-
totypes (CPs) acquired during the first stage. To achieve
this, we propose to regularize pVAE using the distributions
of CPs, rather than relying on the conventional VAE’s use
of a standard normal distribution (Fig. 2; Stage 2).

Additionally, pVAE serves as a crucial component to ad-
dress the challenge of forgetting in CL and eliminates the
need for a replay buffer. Initially, pVAE is trained with im-
ages from the first task only. For subsequent tasks, we use
the pVAE decoder from the recent learned task to generate
synthetic examples, often referred to as pseudo-examples,
from the CPs stored in Mp. These pseudo-examples, com-
bined with the training data of the new task, are used to up-
date the projection function such that images of any given
class (old or new) are mapped into their corresponding CPs.
This way, pVAE effectively retains knowledge from pre-
viously encountered tasks, preventing the undesirable loss
of information, and ensuring the continual adaptation and
learning as the model encounters new data.

3.4. Learning Pipeline and Inference

Optimization of Stage 1. All pretrained models, includ-
ing the model zoo and the word embedding model, re-
main fixed throughout the learning process, i.e., only the
CKA and SKA modules are optimized to construct the class
prototypes of each task. As in other classification prob-
lems, the optimization process is facilitated using a classi-
cal cross-entropy (CE); Lpred = 1

Nt

∑Nt

i=1 CE (h (vi) ,yi),
where h is a trainable linear layer. While the CE loss en-
courages features of each class to have a higher projec-
tion score on the true class-vector compared to the nega-
tive classes, it does not explicitly force different class fea-
tures to be well-separated. Thus, we add the orthogonal pro-
jection loss (OPL) [48], weighted by λ, as a regularization
term; Lopl = 1

Nt

∑Nt

i=1 OPL ((vi) ;yi). The OPL loss en-
forces inter-class separation alongside intra-class clustering
of the prototypes in the feature space through orthogonal-
ity constraints. To this end, we define Stage 1 hybrid loss;

Lhybrid = Lpred + λ Lopl .
Optimization of Stage 2. We use all the prototypes (i.e.,
from current and old tasks) to regularize the latent space
of pVAE. The regularization is expressed via the Kullback-
Leibler (KL) divergence between pVAE encoder’s distribu-
tion qθ(z, x) and the distribution of the CPs. The optimiza-
tion is thus achieved by minimizing LpV AE ;

LpV AE = Lrec + Lreg

Lrec = ∥xc − x̄c∥2

Lreg = KL (qθ (z | xc) ,N (µc, σc)) .

(4)

In Eq. 4, Lrec is the image reconstruction loss, Lreg is the
KL regularization loss between the encoder distribution and
the prototype distribution of class c, and xc are the training
images (real for the current task, pseudo-examples for the
old tasks) belonging to class c.
Inference. In our task-agnostic inference, Continual-Zoo
computes the Mahalanobis distance between the latent rep-
resentation of a novel test image, obtained from the pVAE
encoder, and all prototypes in Mp. It assigns the image
to the target class ŷ associated with the prototype with the
minimum distance (Fig. 2; Inference).

4. Experiments and Results
4.1. CL Evaluation Framework

Benchmarks. We evaluate Continual-Zoo on three classifi-
cation tasks: skin lesion classification from dermatoscopy
images (SKIN), peripheral blood cell classification from
microscopic images (BLOOD), and colon tissue classifica-
tion from H&E stained histopathology images (COLON).
SKIN: We use diverse publicly available skin lesion image
datasets: HAM10000 (HAM) [55], Dermofit (DMF) [2],
Derm7pt (D7P) [31], MSK [19] and UDA [19], which con-
sist of 7,470, 1,212, 959, 3,551, and 601 images, respec-
tively. Each dataset contains skin lesion images from differ-
ent clinical sites and includes a subset of seven classes.
BLOOD: We utilize the PBS-HCB [1] dataset for periph-
eral blood cell classification. The dataset includes 17,092
images that are categorized into eight classes.
COLON: We adopt the NCT-CRC-HE [30] dataset for colon
tissue classification. The dataset includes 107,180 images
belonging to nine tissues.
Setup of CL Scenarios. We assess the performance of
Continual-Zoo under three CL scenarios. For CIL, we par-
tition a given dataset into T tasks with non-overlapping
classes, denoted as CIL (‘dataset name’). For DIL, we cre-
ate DIL (SKIN) with four skin lesion image datasets (i.e.,
T = 4), each featuring a unique data distribution while
sharing the same classes. For DCIL, we establish DCIL
(SKIN) with five skin lesion image datasets (i.e., T = 5),
each with different distribution and potentially overlapping
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classes. Further details on datasets and CL setup are given
in Appendix 6.
Evaluation Metrics. We use the accuracy (A) and for-
getting measures (F ). The accuracy A = 1

T

∑T
i=1 aT,i,

where at,i is the balanced-accuracy on the test set of task
i after training on the first t tasks, measures the classi-
fication accuracy of the model at the end of training av-
eraged across all tasks. The forgetting measure F =

1
T−1

∑T−1
i=1 maxk∈{1,...,T−1} ak,i − aT,i measures the av-

erage difference between the maximum accuracy obtained
for task t and its final accuracy.
Baselines and Competitors. We investigate the perfor-
mance of Continual-Zoo by comparing it with three base-
lines: SINGLE, which trains separate models for different
tasks and deploys a specific model for each task during in-
ference; JOINT, which aggregates the data from all tasks as
a consolidated dataset to jointly train a single model (aka.
multitask learning); and SeqFT, which finetunes a single
model on the current task, without any countermeasure to
forgetting. We compare Continual-Zoo against several CL
competitors, including two regularization-based methods:
EWC [33] and LwF [37]; two generative-based method:
DGM [44] and BIR [57]; and two replay-based method:
iCaRL [49] and RM [3].

4.2. Implementation Details

Model Zoo. We build Zoo-A of pretrained models, which
contains six ResNet-50 models with heterogeneous pre-
trained data and pretraining schemes (Zoo details are given
in Appendix 7). In total, Zoo-A is trained on millions of
images across a wide range of computer vision and medical
imaging tasks. We also experiment with different zoos in
ablation study III.
Semantic Prior Source. We use BioSentVec [11], a
biomedical word embedding model trained on PubMed and
clinical notes from the Medical Information Mart database
to generate a 700-dimensional word vector w.
Implementation Details. We optimize stage 1 in
Continual-Zoo using an AdamW optimizer with a batch of
25 images for 100 epochs, having early stopping when over-
fitting. We set the number of heads h in CKA to 4 and r in
SKA to 4. We construct the representation bank E from the
last conv layer of ResNet-50 models, and we use a learn-
able fully connected layer with each pretrained model to
map the features into a lower dimension: 512. We set λ
in Lhybrid to 0.05. In stage 2, we use a ResNet-18 model
as the pVAE encoder, and a transposed convolutional net-
work as its decoder. We optimize it using an AdamW with
a learning rate of 1e-5 and batch size of 25 for 250 epochs.
For Continual-Zoo and other generative-based methods, we
generate 100 images for each past class. For replay-based
methods, comparison considered reserving 50-sample and
100-sample per old class settings. To ensure fairness in

comparisons, we use the same backbone as in Zoo-A in all
competing methods and we train them using an AdamW
optimizer for 100 epochs with early stopping. We initialize
all the models with ImageNet pretrained weights and sub-
sequently finetuned them in a supervised manner. We run
each experiment with the same set of hyperparameters as
in Continual-Zoo and we report the average value on three
random tasks ordering.

4.3. Results on SKIN

CIL, DIL, DCIL. The qualitative results of the skin lesion
benchmarks in different CL settings are presented in Ta-
ble 1. We observe the following: 1) In CIL, SINGLE (upper
bound) significantly outperforms JOINT in accuracy, which
is due to the high heterogeneity among skin lesion classes
that adversely affects JOINT’s performance. SINGLE ad-
dresses this by dividing learning into multiple tasks with
fewer classes, thereby minimizing the effect of heterogene-
ity (e.g., two, two, and three classes for T = 1, 2 and 3 in
CIL (HAM)). In DIL, SINGLE and JOINT show compa-
rable performance, while JOINT marginally exceeds SIN-
GLE in DCIL. 2) SeqFT suffers from the intense perfor-
mance degradation due to the challenging model forgetting
problem. 3) Zoo-A outperforms other CL methods, espe-
cially those relying on regularization techniques. For in-
stance, Zoo-A outperforms EWC by 18.31%, 26.63% and
19.54% on CIL (HAM), DIL (SKIN) and DCIL (SKIN), re-
spectively, indicating that regularization-based methods are
ineffective for continual learning of skin lesion images as
they are extremely prone to forgetting when learning new
tasks. Remarkably, Zoo-A also exceeds the performance of
replay-based methods, despite not storing old images. In the
context of forgetting, Zoo-A exhibits superior performance
with minimal forgetting scores. This can be attributed to the
robust image synthesis capability of pVAE that leverages
the well-representative and generalizable class prototypes.
Ablation Studies. We conduct diverse ablations to under-
stand the effectiveness of Continual-Zoo’s components:
I. Impact of Zoo Size. We explore the impact of the zoo size
(i.e., number of pretrained models) on Continual-Zoo’s per-
formance. We experiment on the DCIL (SKIN) by sequen-
tially adding ImageNet supervised, CT supervised, MoCo,
Mask R-CNN, DeepLabV3 and Keypoint R-CNN models
into model Zoo-A. As reported in Table 2, Continual-Zoo
outperforms most CL methods in DCIL (SKIN) (refer to
Table 1), even with a limited zoo size, i.e., one or two mod-
els, indicating its ability to extract compatible knowledge
from each model. We also observe a consistent performance
boost as the zoo expands, demonstrating Continual-Zoo’s
adaptability and scalability in leveraging an expanding set
of pretrained models.
II. Impact of Zoo Diversity. To assess if Zoo-A’s effec-
tiveness stems from the diversity of its pretrained models,
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Table 1. Performance evaluation of Continual-Zoo and others on skin lesion benchmarks in CIL, DIL and DCIL settings. Cells in green
and blue represent the best and second-best results, respectively.

Method CIL (HAM) CIL (DMF) CIL (D7P) DIL (SKIN) DCIL (SKIN)
A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓)

Baselines
SINGLE⋆ 88.35±0.92 - 85.01±0.17 - 73.74±0.11 - 75.12±0.51 - 77.15±0.11 -

JOINT 82.13±0.11 - 80.66±0.15 - 68.32±0.21 - 74.08±0.05 - 80.62±0.09 -
SeqFT 51.54±6.05 50.76±14.61 37.21±5.37 55.25±7.15 36.51±4.25 52.18±5.89 43.28±12.68 69.43±9.87 39.88±9.66 76.85±5.22

CL Methods
EWC 59.84±3.46 32.29±5.83 50.86±2.03 43.72±6.44 42.73±2.86 38.51±3.71 45.63±7.25 68.69±7.95 51.43±9.85 51.47±12.42
LWF 61.22±4.11 33.70±2.82 49.87±3.85 40.69±9.25 40.67±3.94 35.66±5.66 46.11±6.54 68.37±6.23 49.88±7.76 55.13±9.67
DGM 75.97±1.28 19.27±1.40 64.99±1.49 25.47±2.44 61.24±0.94 22.38±1.34 66.40±0.78 18.72±1.87 59.22±1.89 23.25±1.76
BIR 74.39±1.83 17.85±2.80 61.47±1.72 19.18±2.26 62.9±0.19 19.65±1.61 68.17±0.73 14.35±1.94 62.12±1.44 18.63±2.50

iCaRL (50) 70.80±1.95 18.44±1.26 64.32±1.35 20.17±1.52 60.84±1.86 24.78±1.32 67.03±0.24 15.87±1.18 64.80±1.38 12.51±1.86
iCaRL (100) 73.27±3.20 14.97±1.10 68.49±1.45 18.27±1.14 63.72±1.79 19.28±1.35 70.86±1.43 13.45±1.64 69.12±2.01 11.57±1.39

RM (50) 73.61±0.85 16.83±1.63 63.73±1.26 16.73±1.54 63.05±1.53 22.57±1.24 68.33±1.61 15.79±1.33 63.10±2.16 13.36±1.49
RM (100) 76.32±0.59 15.92±1.28 70.14±1.09 15.22±1.51 65.87±0.93 20.17±1.74 71.18±1.64 14.00±1.16 67.38±1.86 11.32±1.95

Proposed Continual-Zoo
Zoo-A 78.15±0.85 11.09±1.45 72.51±1.34 14.21±1.26 68.04±1.24 17.58±1.78 72.26±0.88 13.52±1.45 70.97±2.32 10.46±1.92

⋆ We report the average results of the different independent models.

Table 2. Impact of zoo size on DCIL (SKIN). Abbreviations in-
dicate the following: IS (ImageNet Supervised), CS (CT Super-
vised), MC (MoCo), MR (Mask R-CNN), D3 (DeepLabV3), and
KR (Keypoint R-CNN).

IS+CS IS+CS IS+CS+MC IS+CS+MC+Zoo-A IS IS+CS
+MC +MC+MR +MR+D3 MR+D3+KR

A (↑) 65.69 67.14 68.02 68.23 69.52 70.97
Parameters 1× 2× 3× 4× 5× 6×

Table 3. Impact of zoo diversity on DCIL (SKIN). Abbreviation
indicates the following: IS (ImageNet Supervised).

Zoo-A⋆ IS 2×IS 3×IS 4×IS 5×IS 6×IS
A (↑) 65.69 65.76 65.81 65.94 66.15 66.24

Parameters 1× 2× 3× 4× 5× 6×

we conduct an ablation study using Zoo-A⋆, where the di-
verse models in Zoo-A are replaced with solely ImageNet
supervised models. The findings, presented in Table 3, indi-
cate that the performance remains relatively stable despite
an increase in zoo size. Furthermore, comparing Zoo-A⋆

with Zoo-A in Table 2 shows a notable difference in per-
formance, despite both zoos having the same size/number
of parameters (all based on ResNet-50). This performance
contrast highlights that Continual-Zoo’s enhanced perfor-
mance is primarily driven by the rich and varied knowledge
aggregated from the diverse zoo, rather than an increase in
models/parameters count.
III. Impact of Model Zoo Choice. To test the influence of the
choice of the set of pretrained models, we construct four dif-
ferent zoos with a comparable original performance to Zoo-
A. Zoo-B contains CNN-based models with heterogeneous
backbones, all pretrained on ImageNet in a supervised fash-
ion. Zoo-C contains transformer-based models, with het-
erogeneous pretraining schemes (e.g., supervised and self-
supervised), all pretrained on ImageNet. Both Zoo-D and
Zoo-E have heterogeneous models (e.g., CNNs and ViTs)
pretrained on ImageNet but the pretraining scheme is su-
pervised in Zoo-D whereas it is self-supervised in Zoo-E
(Refer to Appendix 7 for details). The results in Table 4

indicate that Continual-Zoo with Zoo-E achieves the high-
est performance among all zoos and across all benchmarks
and scenarios. These findings are consistent with earlier
research [13, 54], suggesting that self-supervised pretrain-
ing plays a significant role in mitigating forgetting and im-
proving the quality of learning. Also, by comparing Zoo-C
with Zoo-A and Zoo-B, we notice that ViT-based architec-
tures offer better performance compared to CNNs, implying
stronger generalization capabilities on the skin data. For all
remaining experiments, we use Zoo-E.
IV. Effect of Cross-Knowledge Attention (CKA). To demon-
strate the efficiency of the proposed CKA technique, which
extracts relevant knowledge from each pretrained model
separately, we train Continual-Zoo, denoted as Continual-
ZooXXCKA, with a single multi-head attention block [58]
where the query, key, and value components are formed by
stacking all the zoo models’ embeddings Ec into one vector.
This setting creates a uniform attention mechanism across
all models, akin to turning off our model-adaptive atten-
tion approach. The results in Table 4 show a considerable
decrease in performance, especially in DIL (SKIN). The
stacked vector technique underutilizes each model’s com-
patibility with the downstream task, whereas Continual-Zoo
optimally queries knowledge from individual models, lead-
ing to enhanced performance.
V. Zoo Contribution. To understand each model’s impact
in Zoo-E, we calculate its contribution, calculated by divid-
ing its normalized CKA attention score by the total scores
from all models, for the different classes in CIL (HAM) and
tasks in DIL (SKIN), as shown in Fig. 4. Interestingly, these
visualizations reveal varying contribution in class and task
levels among models, which further emphasize the impor-
tance of our CKA technique.
VI. Effect of Semantic-Knowledge Attention (SKA). To study
the impact of leveraging SKA, we train Continual-Zoo
without SKA, denoted as Continual-ZooXXSKA. Table 4
demonstrates a performance drop compared to Zoo-E, em-
phasizing the importance of SKA in guiding the prototypes
in the presence of intra-class heterogeneity across tasks.
VII. Comparison Against Nearest Mean Classifier. Works

4134



Table 4. Performance results from ablation studies evaluating Continual-Zoo on skin lesion benchmarks in CIL, DIL and DCIL settings.

Method CIL (HAM) CIL (DMF) CIL (D7P) DIL (SKIN) DCIL (SKIN)
A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓)

Ablation study (III): Choice of Model Zoo
Zoo-B 73.86±1.36 14.25±1.59 68.92±1.54 15.14±1.37 63.11±1.92 16.22±1.11 67.01±1.13 14.67±1.91 62.58±2.86 15.10±1.87
Zoo-C 78.31±1.72 08.31±1.46 73.18±1.20 08.91±1.17 67.34±1.74 09.05±0.96 74.33±0.74 08.44±1.57 71.26±1.61 10.34±1.76
Zoo-D 76.22±1.14 11.10±1.28 69.50±1.26 11.82±1.67 64.21±1.57 12.33±1.59 68.51±1.46 10.51±1.45 63.71±1.34 11.62±1.49
Zoo-E 79.63±1.26 09.34±1.73 74.98±2.13 10.17±1.45 69.17±1.96 11.46±0.95 75.86±0.44 09.75±1.70 72.80±0.93 10.67±1.35

Ablation Study (IV): Continual-Zoo with Stacked Models’ Vectors

Continual-ZooHHCKA 77.56±1.65 08.45±1.24 72.82±1.54 08.21±1.43 66.31±0.81 11.03±1.54 71.39±1.76 11.76±1.44 70.53±1.47 10.25±1.73

Ablation Study (VI): Continual-Zoo without Semantic Knowledge

Continual-ZooHHSKA 75.61±1.30 10.18±1.35 73.11±1.64 09.92±1.46 67.24±1.87 10.38±1.22 69.95±1.83 10.34±1.70 67.12±1.32 11.26±1.69

Ablation Study (VII): Zoo-E with Nearest Mean Classifier (NMC)
NMC 72.62±1.25 – 69.91±1.30 – 63.73±1.50 – 65.48±1.14 – 62.71±1.27 –

in [28, 46] have shown that an off-the-shelf pretrained fea-
ture extractor itself can be strong enough to achieve a com-
petitive or even better continual learning performance on
different classification tasks. To assess this approach’s ef-
fectiveness in skin lesion classification and compare it with
our Continual-Zoo, we use the nearest mean classification
(NMC) strategy and calculate the mean features of each
class in a task, as following; µc = 1

|Nc|
∑

x∈Nc
estack(x),

where estack and Nc denotes the stacked features from Zoo-
E and the set of training images belonging to class c, respec-
tively. Only class mean features are saved in the memory
and are used during evaluation. At the test time, a test sam-
ple’s stacked feature is extracted from Zoo-E, and the pre-
dicted class label is taken as the class whose mean feature
is the closest (over all the seen classes so far) to the fea-
ture of a test sample; ŷ = argmin

c
∥estack(x)− µc∥ . Our

results in Table 4 demonstrate the NMC’s inferior perfor-
mance compared to our method across all benchmarks and
settings. This disparity is due to the domain gap between
the pretrained ImageNet data and the specialized skin le-
sion datasets, emphasizing the importance of incorporating
the attention mechanisms to enhance the compatibility with
the clinical downstream task.

4.4. Results on BLOOD and COLON

CIL. Table 5 reports the average accuracy and forgetting
metrics for CIL (BLOOD) and CIL (COLON). We note
that Zoo-E demonstrates superior performance compared to
other generative-based CL methods (DGM and BIR) with
a reduced forgetting score. This suggests Zoo-E’s long-
term capability to learn additional tasks while maintaining
a commendable overall performance compared to others.
Sequential Analysis. In Appendix 8, we report the running
average accuracy to show the performance of Continual-
Zoo over time.

5. Conclusion
We proposed Continual-Zoo, a new framework for con-
tinual medical imaging classification, which utilizes
off-the-shelf pretrained models as a source of knowledge.
Continual-Zoo adaptively incorporates attention mech-
anisms to extract relevant class prototypes for a given

Figure 4. Contribution of each model in Zoo-E on the different
HAM classes in CIL (HAM) (a) and tasks in Skin-DIL (b).

Table 5. Performance evaluation of Continual-Zoo and others on
four tasks of blood cell and colon tissue benchmarks in CIL set-
ting. Cells in green and blue represent the best and second-best
results, respectively, excluding baselines.

Method CIL (BLOOD) CIL (COLON)
A F A F

SINGLE⋆ 97.57±0.10 – 97.80±0.72 –
JOINT 98.13±0.21 – 92.95±1.81 –
SeqFT 33.17±7.65 66.35±14.22 35.16±6.43 76.28± 8.14

EWC 45.73±4.26 63.18±9.67 39.62±4.68 74.48±4.85

LWF 41.84±5.15 65.27±6.38 43.37±7.55 70.59±6.39

DGM 71.43±2.65 24.69±2.34 70.28±1.55 37.21±2.43

BIR 73.78±2.11 23.17±1.95 72.16±1.63 32.96±1.85

iCaRL (50) 78.65±1.67 13.52±2.93 74.22±1.48 10.40±1.72

iCaRL (100) 79.29±1.06 11.43±1.82 76.39±1.29 08.17±1.64

RM (50) 77.46±1.57 17.20±1.95 74.54±1.56 15.39±1.90

RM (100) 78.55±1.44 15.33±1.36 77.67±1.34 13.55±1.52

Zoo-E 80.26±1.88 10.23±1.57 76.58±1.33 09.25±1.42

⋆ We report the average results of four independent models.

task. The prototypes are instrumental for regularizing
a novel variational autoencoder, which in return maps a
test image to the corresponding prototype’s latent space
for classification. Through extensive experiments and
ablation studies, we demonstrate the superior performance
of Continual-Zoo on various CL scenarios and medical data
classification tasks while uncovering the factors, such as
the size and diversity of the model zoo, that could influence
its performance. We hope that this research inspires
continued investigation into the utilization of pretrained
models for continual learning in medical imaging tasks.
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