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Abstract

Anomaly Detection is a relevant problem in numerous
real-world applications, especially when dealing with im-
ages. However, little attention has been paid to the issue of
changes over time in the input data distribution, which may
cause a significant decrease in performance. In this study,
we investigate the problem of Pixel-Level Anomaly Detec-
tion in the Continual Learning setting, where new data ar-
rives over time and the goal is to perform well on new and
old data. We implement several state-of-the-art techniques
to solve the Anomaly Detection problem in the classic set-
ting and adapt them to work in the Continual Learning
setting. To validate the approaches, we use a real-world
dataset of images with pixel-based anomalies to provide a
reliable benchmark and serve as a foundation for further
advancements in the field. We provide a comprehensive
analysis, discussing which Anomaly Detection methods and
which families of approaches seem more suitable for the
Continual Learning setting.

1. Introduction

Anomaly Detection (AD) is an important and challenging
problem in the fields of Machine Learning and Computer
Vision. Anomalies are patterns characterized by a notice-
able deviation from the so-called normal data, where nor-
mal means compliant with some typical or expected fea-
tures [44]. A significant advantage of the unsupervised
techniques is that they do not require labeled data to learn
from, making them easily deployable in many real-world
applications. Indeed, in many applications, avoiding label
collection is crucial, considering that this process is time-

expensive and resource-intensive, often requiring signifi-
cant human effort and expertise. This becomes even more
pronounced when our focus lies on details at the pixel-level,
which can incur considerably higher costs than at the image-
level [25]. Therefore, many approaches based on neural
networks have been developed recently to address the prob-
lem of Unsupervised AD in the Computer Vision domain
at the image-level and pixel-level [7, 49, 50]. Despite these
advancements, significant challenges still prevent these ap-
proaches from being deployed. A significant issue is that
shifts in the input data distribution can occur over time in
real-world scenarios. For example, in the industrial sector,
novel objects continually emerge, necessitating the identi-
fication of defects, while in the medical field, newly exam-
ined body structures require analysis to detect anomalies.

However, the neural networks are prone to the effect
known as Catastrophic Forgetting: when learning a new
task, artificial neural networks frequently forget the previ-
ous ones [42]. This aspect significantly hinders the adoption
of these approaches in real-world scenarios. A new branch
of Machine Learning has been introduced, known as Con-
tinual Learning (CL) [10] to address this issue. It focuses
on learning from a stream of tasks to adapt to the new in-
coming tasks while remembering the previous ones.
Therefore, in this work, we study the use of Continual
Learning strategies in the framework of Anomaly Detection
on a data stream, focusing on Anomaly Localization, also
known as Pixel-Level Anomaly Detection. We implement
and test several well-known methods for AD that are con-
sidered state-of-the-art in the field. In particular, we adapt
these AD techniques to work in the CL setting by employing
the well-known CL strategy Replay [30, 36] when the meth-
ods allow it or perform ad hoc modifications of the original
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Figure 1. Considered CL setting for the AD problem. Each task corresponds to a new item. Our AD Model must be able to detect the
anomalous products (image-level) and the defects inside the image (pixel-level) of a new item while remembering to perform well on
previously seen items.

methods to let them work properly in the CL setting. There-
fore, we perform a broad analysis by considering at least
one approach for each category of the AD approaches in
order to identify if some categories are more prone to for-
getting than others. Then, we discuss which methods are
more easily adaptable to the CL setting, which are more
prone to forgetting, and which seem more fitting for the CL
scenario. To summarize, this paper presents the following
contributions:
• We explore the most well-known and state-of-the-art

approaches for solving Pixel-Level Anomaly Detection
within the Continual Learning setting.

• We adapt these AD techniques to work in the CL setting
by employing the well-known CL strategy Replay when
the methods allow it or performing ad hoc modifications
of the original methods to enable them to work well.

• We provide a comprehensive analysis, discussing which
AD methods and which families of approaches seem
more suitable for the CL setting.
Moreover, to promote further research in the field and

facilitate the rapid development of new methods along
with comparisons with state-of-the-art approaches, we have
made the code used available 1. The paper is structured as
follows: Sec. 2 provides an overview of the related work
in the fields of CL and AD for Computer Vision. Sec. 4
details the AD methods implemented in our study and their
adaptation for the CL setting. Sec. 5 presents the Experi-
mental Setting, which includes information on the metrics
used for evaluation and the benchmark dataset employed in
our experiments. The Results of our experiments are pre-
sented in 6, where we analyze and discuss the performance
of the adapted AD methods in the CL setting. Finally, in

1https://github.com/dallepezze/clad

7, we provide the Conclusion and discuss potential future
research directions.

2. Related Work

We delineate the relevant literature as follows: Sec. 2.1
presents the CL framework. In Sec. 2.2, we outline the ap-
proaches for Unsupervised AD. Conversely, Sec. 2.3 delves
into the intersection of CL and AD, highlighting previous
research in this area.

2.1. Continual Learning

In the traditional Machine Learning setting, models are
trained on fixed datasets. However, when considering real-
world applications, it is easy to assume that the environ-
ments where the model is deployed could see new data with
a different data distribution than the training distribution.
CL addresses this by allowing DL models to update and ex-
pand their knowledge over time, with minimal computation
and memory overhead [10]. Thus, an effective CL solution
is expected to have low forgetting, require low memory con-
sumption, and be computationally efficient.
The methods in the CL literature can be grouped into
three big families of techniques known as rehearsal-based
[3, 9, 26, 37, 40], regularization-based [18, 33, 35], and
architecture-based approaches [28, 34, 41]. Rehearsal-
based techniques assume storing and reusing past data
samples during training. Within this category, numerous
methodologies are available, yet one particularly distin-
guished approach is Experience Replay, also known as Re-
play [37]. Regularization-based approaches consider addi-
tional constraints or penalties during training to maintain
the memory of old tasks [21, 24]. Architecture-based ap-
proaches, as the name suggests, focus on changing the orig-
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inal model’s architecture to help maintain the old knowl-
edge, and the methods to perform this differentiate signifi-
cantly among them [12, 27, 39].
The related literature suggests that the Experience Replay
approach appears to be the most effective and practical solu-
tion to reduce Catastrophic Forgetting [8, 20, 31, 47] when
considering the image classification problem. However,
when delving into CL strategies, it is essential to recognize
that what works for one problem may not seamlessly trans-
late to another. For instance, while rehearsal-based methods
have shown remarkable efficacy in addressing issues like
image classification, their applicability in domains such as
Object Detection results could be limited, and distillation-
based approaches like Lwf prove to be more effective [16].

Therefore, this highlights the importance of examining
whether established methods, like Replay, are suitable for
novel problems, such as Unsupervised AD. Moreover, the
AD approaches vary greatly among them (they are split into
several categories and sub-categories). This implies that
a deep examination of how each AD technique performs
based on a specific CL technique is necessary. Therefore,
in this work, we provide a deep analysis of the use of the
Replay approach in the problem of Pixel-Level Anomaly
Detection, examining which methods are more suitable to
work in a stream scenario. Moreover, as discussed below,
while some AD techniques are well-suited to be used in the
CL framework with the Replay approach, other methods are
not adaptable to this technique. In these cases, we propose
ad hoc modifications to let them operate in a continual sce-
nario.

2.2. Anomaly Detection

Unsupervised AD approaches find many applications in
Computer Vision (CV), encompassing manufacturing, the
medical domain, autonomous vehicles, security systems,
and more. In these contexts, detecting anomalies is crucial
for safety, security, and efficiency. Many approaches pro-
posed in the literature consider a model able to identify if a
sample is anomalous. This information is then provided to
users to help them in their decision-making process. How-
ever, they require more than just a binary outcome; they
need an understanding of the reasons that brought the model
to classify samples as anomalous. Without this understand-
ing, decision-makers may struggle to formulate appropriate
responses or interventions. Ensuring the interpretability of
these systems can lead to safer and more efficient opera-
tions in various fields. This is achieved by the capability to
extend the model’s predictions beyond image-level and into
pixel-level granularity.
The advantage of providing an interpretable mechanism is
not the only key advantage. Their unsupervised nature elim-
inates the need for a laborious label collection phase. This
phase is typically time-consuming and resource-intensive,

demanding substantial human effort and expertise.
We can split most of the Pixel-Level AD approaches into
two main families: reconstruction-based methods and Fea-
ture Embedding-based methods [4, 46].
Reconstruction-based methods learn to reconstruct nor-
mal images during training. The idea is to use generative
models for data reconstruction, where a large error during
reconstruction indicates the presence of an anomaly. This
is the most historically significant research area, with ap-
proaches such as AutoEncoder and GANs [1, 6, 51, 52].
Feature Embedding-based methods consider data repre-
sentations of images produced by a neural network, which
is usually pre-trained. These approaches can be further cat-
egorized as Teacher-Student based, Normalizing Flow, and
Memory Bank.
Teacher-Student approaches, as the name suggests, are
based on two networks, a teacher and a student architecture.
It exploits the knowledge distillation approach to transfer
the learned knowledge, and when the features deviate, it is
assumed the presence of an anomaly [5, 43].
Memory Bank approaches capture the features of nor-
mal images and store them in a feature memory bank
[11, 22, 38]. Belonging to the category, three approaches
are studied: Padim, PatchCore, and CFA (described with
the rest of the methods in Sec. 4). All of these cannot
be directly used for the Replay mechanism; therefore, ad
hoc modifications are proposed to allow them to work ef-
fectively on a data stream. Normalizing Flow approaches,
as implied by the name, are based on the normalizing flow
models to transform the complex input data distribution into
a normal distribution [17, 49]. Then, it becomes possible to
use the probability of the data under the distribution as a
measure of its normality.

Figure 2. Scheme of the classic Replay approach employed to
solve the Anomaly Detection problem in the Continual Learning
setting.

2.3. Continual Learning and Anomaly Detection

Even though AD is highly relevant in practice, only a few
works in the literature address the problem of data distribu-
tion shifts for AD in the CL scenario. Most of the existing
works consider tabular data or time series. For example,
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[29] studied the industrial domain, while [19] considers the
financial domain. In the domain of Network Intrusion De-
tection, a series of works have been proposed in the litera-
ture [44], [2], [15].
When considering the CLAD topic (Continual Learning for
Anomaly Detection) in the field of Computer Vision, few
works have been conducted. A study considering a se-
quence of tasks for AD was performed in [13] proposing a
meta-learning approach, but they operate only at the image-
level Nevertheless, it is crucial to note that their method-
ology exclusively operates at the image-level and involves
treating an entire class as anomalous, resulting in a scenario
that diverges significantly from realistic situations.

A series of works are proposed that work at image-level.
For example, [14] consider X-ray computed tomography
images for a nuclear power plant. While they study and
solve a realistic problem, their study exclusively examines
image-level AD through supervised classification. On the
contrary, [23] advocates for an unsupervised AD technique
that retains samples from previous tasks. Despite mov-
ing from the supervised paradigm to the unsupervised one,
this method exclusively operates at the image-level, dimin-
ishing its usefulness in real-world scenarios that demand
interpretability. A comprehensive exploration of various
AD techniques was performed in [45] by assessing multi-
ple paradigms, including the CL setting. The study com-
pared several AD methods, demonstrating how employing
these methods using the Fine-Tuning strategy (without CL
solutions) leads to forgetting. Notably, the study does not
present any solutions for adapting these methods to func-
tion effectively within the CL setting. Finally, [32] studies
a series of AD techniques in the CL setting, but most of the
approaches are classic approaches and far from the state-of-
the-art in the field.
Most of the work in the Computer Vision field focuses on
predicting whether an image is normal or abnormal. How-
ever, Pixel-Level AD is frequently required in practice,
given its several advantages, such as interpretability. There-
fore, in our work, we implement several state-of-the-art AD
techniques and make them work effectively in a data stream
using the Replay approach when possible, or when the AD
technique doesn’t allow it, we propose some ad hoc modifi-
cations to make them work.

3. Continual Learning Approach
Among the CL strategies proposed in the literature, the Re-
play approach appears to be the most effective and practical
solution to reduce Catastrophic Forgetting [8, 31, 47] when
considering the image classification problem. Therefore, it
is natural to consider it to be used to solve the AD problem
in a data stream. The Replay strategy consists of storing
some randomly selected samples from the previous tasks in
raw format and using them to maintain knowledge about

previous tasks when training a new task. During training,
each batch of data from the current task is combined with a
batch of data from the memory of the previous tasks (sam-
pled among them with the same probability). The entire
process of the Replay approach is shown in Fig. 2.
It is crucial to note that this approach needs additional space
for memorizing the subset of images from previous tasks.
This implies that memory storage capacity is a major limita-
tion; the model’s performance decreases as memory capac-
ity decreases. Replay serves as a highly versatile approach
that, as we’ll see, can be readily implemented across most
Anomaly Detection (AD) techniques. Hence, unless spec-
ified otherwise, we employ the Replay approach for each
AD technique, as depicted in Figure 2.
However, this approach is unsuitable to work (entirely or
partially) when considering the Memory Bank approaches:
Padim, PatchCore, and CFA. This is because these meth-
ods require a Memory Bank module that is not consid-
ered in the standard Replay approach. Therefore, for
these approaches, specific ad hoc modifications are re-
ported to let them work in a stream scenario. In other
words, when discussing reconstruction-based approaches
(DRAEM), Student-Teacher approaches like STFPM and
EfficientAD, and distribution map-based approaches like
FastFlow, Replay is implemented without particular chal-
lenges. Instead, when considering the Memory Bank ap-
proaches, ad hoc modifications are required as described
below.

4. Anomaly Detection Methods

We tested all the following AD methods, briefly describing
their characteristics and how they were adapted to work in
the CL setting.

4.1. DRAEM

The Discriminatively Trained Reconstruction Embedding
for Surface Anomaly Detection (DRÆM) method [52] is
a reconstruction-based method. It is introduced to address
a common drawback of generative AD methods. These
methods only learn from anomaly-free data and lack op-
timization for discriminative AD since positive examples
(anomalies) are unavailable during training. Training with
synthetic anomalies leads to overfitting to synthetic appear-
ances, resulting in poor generalization to real anomalies. To
reduce overfitting, DRAEM proposes to train a discrimina-
tive model that considers the joint appearance of both re-
constructed and original data, including the reconstruction
subspace. Since it is purely based on learnable weights from
neural network architectures, the classic Replay approach
depicted in Fig. 2 is employed here.
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4.2. STFPM

As the name suggests, Student-Teacher Feature Pyramid
Matching (STFPM) [43] utilizes an architecture comprising
two separate models for student and teacher, respectively. In
contrast to typical Knowledge Distillation methods, here the
teacher and student networks in STFPM share the same ar-
chitecture. The distinction is that the teacher network is pre-
trained on Imagenet dataset, while the student network be-
gins with random initialization. During the training phase,
the objective is to enable the student network to reproduce
the feature maps generated by the teacher. During the test
phase, differences across different network levels are com-
puted to produce the anomaly map of an image.

4.3. EfficientAD

EfficientAD [5] employs a Student-Teacher methodology
similar to STFPM. However, it introduces a novel approach
for feature extraction from a pre-trained neural network us-
ing a significantly reduced-depth model called Patch De-
scription Network (PDN). Notably, Efficient AD utilizes a
single teacher and a single student network based on the
PDN architecture. Furthermore, to address logical anoma-
lies such as misplaced objects, an autoencoder is integrated
into the EfficientAD architecture. As for STPFM, the clas-
sic Replay approach is employed.

4.4. Padim

Patch Distribution Modeling (PaDiM) is introduced by [11].
Similar to other feature embedding-based techniques, it
leverages a pre-trained CNN to extract patch embeddings.
They propose that each position of a patch in the image
can be characterized by a multivariate Gaussian distribu-
tion. During the inference process for a given test image,
the Mahalanobis distance is computed for each patch, pro-
viding the anomaly score. In this approach, there are no
weights from a neural network to be updated, only a set
of multivariate Gaussian distributions, one for each patch.
Typically, this implies considering a different set of Gaus-
sian distributions for each task, but this violates constraints
on the memory size that should not increase linearly with
the number of tasks.
Therefore, to allow the Padim approach to be updated with
constant memory size, we propose an incremental averag-
ing of Gaussian parameters when introducing new tasks (see
the Supplementary Material 2 for more details). The sum of
old and new Gaussian distributions allows the memory to
remain constant over time while allowing the model to have
a representation of all tasks seen so far using a single Gaus-
sian distribution per patch.

2Supplementary Material can be found at
https://github.com/dallepezze/clad

4.5. PatchCore

PatchCore [38] is a Memory Bank-based approach where
patch features are stored within a memory bank. However,
to enhance efficiency, a coreset-reduction approach is em-
ployed to reduce the number of patches to be stored. In this
approach, there are no weights from a neural network to be
updated, only the memory bank that needs to be addressed.

Upon the encounter of a new task, the coreset-reduction
algorithm is utilized to identify m patches to be retained,
where m = 1

Nmemory size, with N denoting the num-
ber of tasks seen so far. The newly identified m patches
are incorporated into the memory bank. At the same time,
the number of patches associated with the previous tasks is
reduced to maintain only m patches for each old task. To
achieve this, the patches associated with each task undergo
coreset-reduction until m patches are attained. (More de-
tails in the Supplementary Material 2 )

4.6. CFA

In [22], a novel Memory Bank approach called Coupled-
Hypersphere-Based Feature Adaptation (CFA) is proposed.
Initially, a memory bank is created based on the features
extracted from the training set. Then, a trainable Patch
Descriptor Network (PDN) is proposed with the aim of in-
creasing the density of normal features (in alignment with
the content stored in the memory bank). The intuition is that
this will allow us to distinguish the abnormal features more
clearly.
In this method, two distinct sources are identified that may
contribute to the phenomenon of forgetting, the memory
bank and the PDN network. To address the memory bank
problem, we propose to update the memorized patch fea-
tures using an incremental average across batches of the
current task training dataset (further elaboration provided
in the Supplementary Material). After completing this ini-
tial procedure upon receiving the new task, we proceed to
update the network parameters of the Patch Descriptor. To
perform the update of this part, we consider the Replay ap-
proach, consistent with its application in previous methods
like DRAEM, STFPM, and EfficientAD. The combination
of these two mechanisms enables the model to learn from a
stream of tasks while maintaining a constant memory size
over time.

4.7. FastFlow

FastFlow [49] utilizes 2D normalizing flows as a probability
distribution estimator. It takes as input the features obtained
from a deep feature extractor. During training, FastFlow
learns to transform the input visual features into a tractable
distribution, which is used to recognize anomalies in the
inference phase. This model employs the Replay approach
as described in Sec. 3 and as represented in Fig. 2.
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Figure 3. Each plot shows an AD technique tested in the CL setting. In detail, each plot shows the behavior of the f1 pixel-level metric over
time, where each point represents the average performance on all the tasks seen so far. The considered strategies are the same as defined in
Sec. 5.

5. Experimental Setting
In the following part, we delineate the experimental setup
employed in our conducted studies. Specifically, we outline
the CL scenario in Sec. 5.1. Following this, in Sec. 5.2, we
explain the metrics under consideration, which are shown
in Tab. 1. Lastly, we describe the methods present in Fig. 3
used as comparison with the CL approaches.

5.1. Benchmark Dataset

The MVTec Dataset [6] is regarded as an extensive reposi-
tory of images designed specifically for evaluating AD algo-
rithms. This dataset encompasses ten objects and five tex-
tures, making it suitable for assessing the robustness and
generalization capabilities of various AD techniques. In the
given CL scenario, we consider a sequence of ten tasks,
where each task corresponds to a different object (similarly
as depicted in Fig. 1). Specifically, the evaluation includes
the following objects: Bottle, Cable, Capsule, Hazelnut,
Transistor, Metal Nut, Pill, Screw, Zipper, and Toothbrush.

5.2. Metrics

5.2.1 Anomaly Detection metrics

Various evaluation metrics are commonly employed to as-
sess the performance of AD techniques using the MVTec
dataset. The first important categorization is based on how
the evaluation is performed, whether on the image or pixel

level. For both of them, we consider the ROC and f1 met-
rics, as reported in Tab. 1. For the pixel-level, we also con-
sider the Per-region-overlap (PRO) metric, which ensures
equal weighting of ground-truth regions regardless of their
sizes, as explained in [48]. This stands in stark contrast
to simplistic per-pixel metrics, where a single large cor-
rectly segmented region can compensate for numerous in-
accurately segmented smaller ones.

5.2.2 Continual Learning metrics

The metrics described earlier are proposed within the CL
setting. For each metric listed in Tab. 1, the final value is
averaged across the set of tasks, as it is standard practice in
CL evaluations, such as accuracy metric. Furthermore, the
percentage of forgetting is reported to quantify the extent
of forgetting across tasks. Additionally, to provide a more
comprehensive assessment, the relative gap between the CL
approach and the Joint Training strategy is highlighted. This
comparison is essential as a model may exhibit low forget-
ting but substantially lower performance compared to the
Join Training strategy, which is the upper bound for all the
CL approaches.
As previously stated, in the CL framework we are inter-
ested in updating and expanding their knowledge over time,
avoiding forgetting, while at the same time we want to ob-
tain this goal with minimal computation and memory over-
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Table 1. Performance comparison of Anomaly Detection strategies in the Continual Learning setting. Green reports the best value for
each metric, while red shows the worst. All the metrics considered are described in Sec. 5, while each tested AD method is explained in 4.

Reconstruction
based Memory Bank Student Teacher Normalizing

Flow

Performance
Strategy DRÆM PatchCore PaDiM CFA STPFM EfficientAD FastFlow

Replay CL CL Replay Replay Replay Replay

Image - level AUC ROC 0.75 0.97 0.56 0.92 0.87 0.81 0.84
f1 0.87 0.97 0.83 0.94 0.89 0.89 0.89

Pixel - level

AUC ROC 0.82 0.98 0.73 0.93 0.93 0.88 0.91
f1 0.32 0.58 0.17 0.53 0.48 0.49 0.42

PR AUC 0.11 0.55 0.29 0.49 0.43 0.43 0.35
AU PRO 0.65 0.89 0.53 0.75 0.85 0.67 0.73

Time training 11h 46min 8min 6min 2h 16min 27min 5h 26min 2h 19min
Architecture memory [MB] 389.6 275.6 275.6 301.2 93.6 82.8 440.80
Additional memory [MB] 59.0 184.3 1541.0 67.7 59.0 59.0 59.0
Relative gap (δ) [%] 7.50 0.01 35.00 7.33 2.00 7.00 9.00
Average forgetting [%] 27.08 0.72 19.12 -4.70 14.78 19.11 17.39

head [10]. Hence, the values for memory and computation
are also provided in Tab. 1. For memory, we report the Ar-
chitecture Memory and Additional Memory, indicating with
Total Memory their combination. With Additional Memory
we refer to the memory necessary to store images for the
Replay approach of patches for the Memory Bank based
approaches. Instead, Training Time is provided to assess
computation.

5.3. Considered CL Strategies

During our work, we considered the comparison among the
following CL approaches:
• Joint Training: The model is trained on all tasks simulta-

neously, which is usually considered as an upper baseline
for the CL strategies since they are not affected by the
phenomenon of Catastrophic Forgetting.

• Fine-tuning: As a lower bound, we consider the fine-
tuning approach, in which a model is presented sequen-
tially only with data from the current task.

• Replay: The approach as described in Sec. 3. Specifi-
cally, we consider 300, 100, and 40 images that can be
stored in the Replay memory, representing respectively
10%, 5%, and 2% of the entire dataset.

• CL: We report this generic signature for all the memory-
bank approaches like Padim and PatchCore that do not
fit the Replay category and have required ad hoc modi-
fications to perform well in a data stream. In particular,
for PatchCore, we vary the memory bank size to 30000,
20000, 10000.

6. Results
This section analyzes the results outlined in Tab. 1 and Fig.
3. For each AD method, a different plot is shown in Fig.

3, and a comprehensive comparison for each method and
metric is also provided in Tab. 1. We specifically examine
the AD performance, memory consumption, and training
time in Sec. 6.1, 6.2, and 6.3 respectively. Subsequently,
in Sec. 6.4 a generic analysis is provided for each method
and AD families of techniques when considering all three
factors together.

6.1. Analysis on the performance metrics

A general observation, as notable from Fig. 3, is that for
all AD methods (except Padim) the degree of forgetting is
not particularly pronounced. The obtained performance re-
sembles the ones of the upper bound Joint Training. No-
tably, the PatchCore method demonstrates no sign of forget-
ting, which is likely attributed to its reliance on a memory
bank. Of particular interest is the surprising performance
of the CFA method, which appears to have improved in-
stead of experiencing a decline in performance. This phe-
nomenon could be attributed to the methodology of the CFA
approach, which facilitates the gradual convergence of fea-
tures from old and new tasks while effectively isolating
anomalies.
In contrast, all methods reliant on large networks with learn-
able parameters show some level of forgetting, typically
falling within the range of 14.78% to 19.11%, except for
DRAEM, which exhibits a higher forgetting rate of 27.08%.
Notably, for most approaches, the gap concerning the up-
per bound is low and around 7%. Consequently, the Re-
play approach effectively addresses the AD problem within
the CL framework. In greater detail, the PatchCore method
emerges as the optimal choice, achieving a f1 pixel-level
score of 0.58. Good performance is also shown in CFA,
STFPM, and Efficient AD (0.54, 0.49, 0.48, respectively).
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The lower performance is encountered with FastFlow (0.42)
and DRAEM (0.32).

6.2. Analysis on the memory consumption

As discussed before, it is crucial to consider memory con-
sumption when evaluating methods. On this front, we can
observe that PaDiM is the least efficient technique for an-
alyzing memory consumption, consuming a total memory
of 1816MB. Following are the methods PatchCore, CFA,
DRAEM, and FastFlow that have medium memory usage
falling in the 369MB - 500MB range. Then, the clear win-
ners are the student teacher-based methods, i.e., Efficien-
tAD and STFPM, which require only 142MB and 153MB,
respectively. These observations are made when consider-
ing the Total Memory, i.e., the combination of Architecture
Memory and Additional Memory.
Focusing on the Additional Memory component, which pre-
serves data representations in methods like Replay or Mem-
ory Bank, can yield some interesting insights. Despite the
significant memory consumption, Padim continues to ex-
hibit poor performance, utilizing 1541MB. In contrast, the
method boasting the highest f1 pixel-level score, PatchCore,
also demands the most memory, totaling 184.3MB. Notably,
CFA follows with 67.7MB, followed by all Replay-based
approaches (STFPM, EfficientAD, DRAEM, FastFlow),
each requiring 59MB of Replay memory. Essentially, Mem-
ory Bank-based approaches tend to require more memory
than student-teacher-based, normalizing-flow-based, and
reconstruction-based methods.

6.3. Analysis on the Training Time

When considering only the Training Time, Padim shows
the fastest training time but consistently shows the poor-
est performance in terms of AD and Total Memory. Then
Patchcore shows a training time of just 8 minutes. Another
noteworthy method, STPFM, distinguishes itself with its
rapid training duration of only 27 minutes. This contrasts
with EfficientAD, another student-teacher-based approach,
which requires considerably longer training time, totaling
5 hours and 26 minutes. Additionally, FastFlow and CFA
demonstrate relatively good training times, each taking ap-
proximately 2 hours. Conversely, DRAEM emerges as the
slowest option, necessitating 11 hours and 46 minutes.

6.4. Comprehensive Evaluation

In this part, we provide a comparison, considering in con-
junction all three critical factors: AD Performance, Mem-
ory, and Training Time. The optimal choice depends on the
specific requirements defined by the user. For instance, we
can assess PatchCore as the main winner when considering
performance and training time. However, other approaches
could be adopted when including additional considerations,
such as Total Memory, like the STFPM technique, which

shows a good trade-off among all factors evaluated. When
considering the families of approaches in general, the Mem-
ory Bank-based approaches exhibit excellent AD perfor-
mance and training efficiency but slightly higher memory
consumption. In contrast, student-teacher-based, normaliz-
ing flow-based, and reconstruction-based approaches seem
to be good choices when the memory consumed is critical.
Nevertheless, the reconstruction-based approaches do not
offer a good choice regarding AD and training time.

7. Conclusions and Future Work
In this work, we studied the Continual Learning Setting for
the Pixel-Level Anomaly Detection problem. This scenario
is of paramount importance since traditional AD methods
often operate under the assumption of stationary data distri-
butions, which is not realistic in many practical scenarios.
In our study, we effectively integrate several state-of-the-art
AD techniques into the CL framework. To make these AD
techniques operate effectively in the CL setting, we propose
using the well-known Replay approach to make them oper-
ate in a data stream or perform ad hoc modifications when
Replay is not possible. In particular, we provide insights
into each method’s strengths and weaknesses, highlighting
its performance, memory consumption, training time, and
resilience to forgetting.
An interesting future research direction is the evaluation
of additional AD techniques not considered in this study,
which could provide a different insight concerning the ap-
proaches considered in this work. Furthermore, it would
be of extreme relevance an investigation of CL approaches
that are not rehearsal-based. Indeed, while Replay proved
a viable and effective solution to solve the AD problem in
the CL setting, we do not know the behavior of other ap-
proaches like distillation-based approaches (e.g., LwF) or
methods like EWC. Moreover, as pointed out in our study,
future studies should focus on methods that try to opti-
mize AD performance, memory, and training time simul-
taneously to guarantee deployment feasibility when consid-
ering resource-constrained environments.
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Gabriel Gómez. Steps towards continual learning in multi-
variate time-series anomaly detection using variational au-
toencoders. In Proceedings of the 22nd ACM Internet Mea-
surement Conference, pages 774–775, 2022. 4

[16] Linting Guan, Yan Wu, Junqiao Zhao, and Chen Ye. Learn
to detect objects incrementally. In 2018 IEEE Intelligent Ve-
hicles Symposium (IV), pages 403–408. IEEE, 2018. 3

[17] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka.
Cflow-ad: Real-time unsupervised anomaly detection with
localization via conditional normalizing flows. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 98–107, 2022. 3

[18] Ya-nan Han and Jian-wei Liu. Online continual learning via
the meta-learning update with multi-scale knowledge distil-
lation and data augmentation. Engineering Applications of
Artificial Intelligence, 113:104966, 2022. 2

[19] Hamed Hemati, Marco Schreyer, and Damian Borth. Con-
tinual learning for unsupervised anomaly detection in con-
tinuous auditing of financial accounting data. arXiv preprint
arXiv:2112.13215, 2021. 4

[20] Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Im-
balanced continual learning with partitioning reservoir sam-
pling. In European Conference on Computer Vision, pages
411–428. Springer, 2020. 3

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 2

[22] Sungwook Lee, Seunghyun Lee, and Byung Cheol Song.
Cfa: Coupled-hypersphere-based feature adaptation for
target-oriented anomaly localization. IEEE Access, 10:
78446–78454, 2022. 3, 5

[23] Wujin Li, Jiawei Zhan, Jinbao Wang, Bizhong Xia, Bin-Bin
Gao, Jun Liu, Chengjie Wang, and Feng Zheng. Towards
continual adaptation in industrial anomaly detection. In Pro-
ceedings of the 30th ACM International Conference on Mul-
timedia, pages 2871–2880, 2022. 4

[24] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017. 2

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 1

4073



[26] Yongle Luo, Yuxin Wang, Kun Dong, Qiang Zhang, Erkang
Cheng, Zhiyong Sun, and Bo Song. Relay hindsight expe-
rience replay: Self-guided continual reinforcement learning
for sequential object manipulation tasks with sparse rewards.
Neurocomputing, 557:126620, 2023. 2

[27] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018. 3

[28] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 67–82, 2018. 2

[29] Benjamin Maschler, Thi Thu Huong Pham, and Michael
Weyrich. Regularization-based continual learning for
anomaly detection in discrete manufacturing. Procedia
CIRP, 104:452–457, 2021. 4

[30] Gabriele Merlin, Vincenzo Lomonaco, Andrea Cossu, Anto-
nio Carta, and Davide Bacciu. Practical recommendations
for replay-based continual learning methods. 1

[31] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco,
and Davide Maltoni. Latent replay for real-time continual
learning. In 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 10203–10209.
IEEE, 2020. 3, 4

[32] Davide Dalle Pezze, Eugenia Anello, Chiara Masiero, and
Gian Antonio Susto. Continual learning approaches for
anomaly detection. arXiv preprint arXiv:2212.11192, 2022.
4

[33] Jary Pomponi, Simone Scardapane, Vincenzo Lomonaco,
and Aurelio Uncini. Efficient continual learning in neural
networks with embedding regularization. Neurocomputing,
397:139–148, 2020. 2

[34] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan,
Fahad Shahbaz Khan, and Ling Shao. Random path selec-
tion for continual learning. Advances in Neural Information
Processing Systems, 32, 2019. 2

[35] Jason Ramapuram, Magda Gregorova, and Alexandros
Kalousis. Lifelong generative modeling. Neurocomputing,
404:381–400, 2020. 2

[36] ANTHONY ROBINS. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146, 1995.
1

[37] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-
licrap, and Gregory Wayne. Experience replay for continual
learning. Advances in Neural Information Processing Sys-
tems, 32, 2019. 2

[38] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter Gehler. Towards total
recall in industrial anomaly detection. arXiv:2106.08265,
2022. 3, 5

[39] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 3

[40] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. Advances in
neural information processing systems, 30, 2017. 2

[41] Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. Spacenet: Make free space for continual learn-
ing. Neurocomputing, 439:1–11, 2021. 2

[42] Gido M. van de Ven and Andreas S. Tolias. Three scenarios
for continual learning. CoRR, abs/1904.07734, 2019. 1

[43] Guodong Wang, Shumin Han, Errui Ding, and Di Huang.
Student-teacher feature pyramid matching for anomaly de-
tection. arXiv:2103.04257, 2021. 3, 5

[44] Felix Wiewel and Bin Yang. Continual learning for anomaly
detection with variational autoencoder. In ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3837–3841, 2019.
1, 4

[45] Guoyang Xie, Jinbao Wang, Jiaqi Liu, Jiayi Lyu, Yong Liu,
Chengjie Wang, Feng Zheng, and Yaochu Jin. Im-iad: Indus-
trial image anomaly detection benchmark in manufacturing.
arXiv preprint arXiv:2301.13359, 2023. 4

[46] Guoyang Xie, Jinbao Wang, Jiaqi Liu, Jiayi Lyu, Yong Liu,
Chengjie Wang, Feng Zheng, and Yaochu Jin. Im-iad: Indus-
trial image anomaly detection benchmark in manufacturing.
IEEE Transactions on Cybernetics, 2024. 3

[47] Qihan Yang, Fan Feng, and Rosa Chan. A benchmark and
empirical analysis for replay strategies in continual learning,
2022. 3, 4

[48] Yifei Yang, Shibing Xiang, and Ruixiang Zhang. Im-
proving unsupervised anomaly localization by applying
multi-scale memories to autoencoders. arXiv preprint
arXiv:2012.11113, 2020. 6

[49] Jiawei Yu, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu,
Rui Zhao, and Liwei Wu. Fastflow: Unsupervised anomaly
detection and localization via 2d normalizing flows, 2021. 1,
3, 5

[50] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Recon-
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