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Abstract

Few-shot class-incremental learning (FSCIL) aims to
adapt the model to new classes from very few data (5 sam-
ples) without forgetting the previously learned classes. Re-
cent works in many-shot CIL (MSCIL) (using all available
training data) exploited pre-trained models to reduce for-
getting and achieve better plasticity. In a similar fashion,
we use ViT models pre-trained on large-scale datasets for
few-shot settings, which face the critical issue of low plas-
ticity. FSCIL methods start with a many-shot first task to
learn a very good feature extractor and then move to the
few-shot setting from the second task onwards. While the fo-
cus of most recent studies is on how to learn the many-shot
first task so that the model generalizes to all future few-shot
tasks, we explore in this work how to better model the few-
shot data using pre-trained models, irrespective of how the
first task is trained. Inspired by recent works in MSCIL,
we explore how using higher-order feature statistics can in-
fluence the classification of few-shot classes. We identify
the main challenge of obtaining a good covariance matrix
from few-shot data and propose to calibrate the covariance
matrix for new classes based on semantic similarity to the
many-shot base classes. Using the calibrated feature statis-
tics in combination with existing methods significantly im-
proves few-shot continual classification on several FSCIL
benchmarks. Code is available at https://github.
com/dipamgoswami/FSCIL-Calibration.

1. Introduction

Continual Learning (CL) aims to learn from data in a con-
tinuous manner where the data distribution changes over
time and the model is expected to not forget the old classes
learned in previous tasks, a phenomenon known as catas-
trophic forgetting [19, 30, 37]. Class-incremental learning
(CIL) refers to learning new classes incrementally over time
with the goal of classifying all classes seen so far without

any task information [6, 29, 46, 49]. While many recent
studies focus on many-shot CIL (MSCIL) [11, 31, 34, 61]
assuming the availability of sufficient training data for all
classes, a more challenging setting is few-shot CIL (FS-
CIL), which considers very few training samples for each
class [1, 33, 43, 45, 50, 54, 57, 58]. In this work, we ad-
dress the FSCIL problem.

Existing FSCIL methods consider a many-shot first task
where a good feature extractor is trained. After the first task,
all subsequent tasks are few-shot. The standard practice is
to freeze the backbone after the first task and then com-
pute the class-wise prototypes [47] by averaging the feature
embeddings and classifying using the nearest class mean
(NCM) classifier [35]. While most FSCIL [7, 33, 40, 57, 58]
methods are dependent on the base task learning and fo-
cus on how to effectively train the many-shot first task to
learn more compact representations of base classes in order
to generalize better in future few-shot steps, fewer meth-
ods [11, 50] propose how to better model the few-shot data
in new tasks independent of the first task training. Recently,
pre-trained ViTS have been extensively studied for many-
shot CIL [11, 31, 55, 59, 60]. Unlike the conventional FS-
CIL settings using ResNet architectures [13] (without pre-
training on large-scale datasets), we study how the ViTs [9]
pre-trained on large-scale datasets like ImageNet21k [36]
can be exploited for FSCIL.

With the availability of pre-trained weights, a more real-
istic approach to solving FSCIL would be to focus on how
to better use the few-shot data, irrespective of how the base
task is adapted. We propose to adapt the pre-trained ViT
model to the base classes in the first task with an adap-
tor [4], similar to [59]. After adapting the model in the
first task, we study different ways of classifying the test
features in the few-shot steps by exploring recent concepts
from the many-shot CIL domain which works on a frozen
feature space [11, 31]. Recently, FeCAM [11] explored the
heterogeneous nature of feature distributions in CL settings
and proposed to use the anisotropic Mahalanobis distance
in the feature space for classification. Another recent work
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Figure 1. Performance of different prototype-based classification methods on FSCIL settings with ViT-B/16 pre-trained on ImageNet-21k.
All the methods - NCM, TEEN [50], FeCAM [11] and RanPAC [31] are biased towards the base task classes. While TEEN improves
the performance on the few-shot classes by prototype calibration, methods using second-order feature statistics - FeCAM and RanPAC
performs much poorly on the few-shot classes compared to the many-shot base task classes. This drop in performance for new classes
can be attributed to the poor estimates of second-order statistics from few-shot data. We propose to calibrate the covariance matrix of
few-shot classes by using the strong covariance estimates of base classes. We observe that on using our proposed calibration, C-FeCAM
and C-RanPAC improve performance significantly on the new classes, leading to an overall better accuracy.

- RanPAC [31] proposed random projections to a very high-
dimensional feature space and classified features using a
shared Gram matrix instead of the covariance matrix. We
use both FeCAM and RanPAC after adapting the pre-trained
ViT to the base task and observe poor performance in the
few-shot classes (see Fig. 1), suggesting that few-shot class
statistics are poorly calibrated.

A recent work in FSCIL, TEEN [50] proposed to cali-
brate the prototypes for the new classes based on semantic
similarity to the base classes, which resulted in better NCM
classification of the new classes. In a similar fashion, we
hypothesize that the covariances of new classes can be cali-
brated based on the covariances of many-shot base classes.
This has some evidence in previous works [34, 38, 52]. We
propose to calibrate the covariance matrices of new classes
based on the similarity to the base classes. Finally, we
use the calibrated statistics with FeCAM and RanPAC and
achieve significant improvement over the baseline methods.

We perform experiments on CIFAR100 [23] and fine-
grained classification datasets like CUB-200 [48], Stanford
Cars [22], and FGVC-Aircraft [28], which are very good
use cases of few-shot data. We study the commonly used
settings with a big first task and also introduce challenging
settings with a small first task (equally splitting the dataset
into tasks). We demonstrate that calibrated higher-order
statistics enable better classification of few-shot classes,
which is reflected in the harmonic mean accuracy. The main
contributions can be summarized as:

1. We explore how knowledge from pre-trained ViTs can
be transferred to new few-shot classes in FSCIL settings
instead of conventional approaches to training ResNets
from scratch.

2. We identify that higher-order statistics-based classifica-
tion approaches perform poorly in classifying few-shot
classes due to poor estimates of statistics from very few
samples.

3. We propose feature covariance calibration for few-shot
classes, exploiting strong covariance estimates of many-
shot base classes, thus enabling better classification of
few-shot classes using recent state-of-the-art MSCIL
methods like FeCAM and RanPAC.

2. Related Work

Class-Incremental Learning. Class-Incremental Learn-
ing [6, 29, 46, 49] learns new classes in incremental tasks
and aims to preserve the knowledge of old classes with-
out access to task-ID at inference. While many meth-
ods [3, 8, 10, 15, 27, 35] store samples/exemplars from
old classes in memory, recent methods [11, 31, 34, 61]
propose exemplar-free solutions to CIL. The main chal-
lenge of exemplar-free CIL is to prevent forgetting of old
classes since it is difficult to distinguish classes from dif-
ferent tasks [41]. CIL methods typically focus on either
regularization approaches [10, 21, 24, 26]. Several meth-
ods [5, 11, 12, 16, 31, 32] show that using prototypes and
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higher-order statistics for classification approaches is very
efficient. In this work, we explore how these state-of-the-
art MSCIL methods perform in FSCIL settings.
Few-Shot Class-Incremental Learning. A common prac-
tice in existing FSCIL methods [7, 14, 33, 40, 45, 57, 58]
is to use a simple NCM classifier based on the class-wise
prototypes on the frozen model (where the model is only
trained on the first task). FACT [57] reserves space in the
embedding space during the base task training for future
classes by allocating virtual prototypes. To enable bet-
ter model generalization in future few-shot tasks, during
the base task training SAVC [40] proposes using semantic-
aware fantasy classes, ALICE [33] uses angular penalty
loss, LIMIT [58] uses fake incremental tasks and EHS [7]
uses expanding the hyperspherical space. Some methods
update the network in the few-shot tasks by learning a neu-
ral gas network [43], learning soft masks [18], by weight
space rotation process [20], by self-supervised stochastic
classifiers [17] or by training a two-branch network with
class-aware bilateral distillation [56]. Different from these
methods, inspired by neural collapse, NC-FSCIL [53] fixes
the prototype positions in a simplex equiangular tight frame
and trains a model to map the features to their correspond-
ing prototypes. While all these works use resnet architec-
tures, pre-trained ViTs have been recently used [44] for FS-
CIL.

Recent methods [2, 50] propose to calibrate new-
class prototypes using semantic information of base
classes. Akyürek et al. [2] propose a semantic subspace
regularization-based objective to calibrate new class proto-
types. Wang et al. [50] observe that while the base class
prototypes are well-calibrated due to abundant training sam-
ples in the many-shot first task, the new class prototypes
are biased, resulting in high false-positive classifications of
new classes to their most similar base classes. Based on
this observation, they propose to simply calibrate the new
class prototypes by simply fusing them with the base class
prototypes, which are weighted based on their similarity.
Motivated by these prototype calibration methods, we pro-
pose to extend calibration to include higher-order statistics
of few-shot classes.

3. Method
The main objective of FSCIL methods is to improve the
classification of few-shot classes while not forgetting the
base classes. The most commonly studied classification
method for FSCIL is to perform NCM and assign the test
sample to the closest prototype mean in the feature space
using euclidean distance. We observe that while cali-
brated prototypes using TEEN [50] improve performance
marginally compared to naive NCM, the higher-order statis-
tics (covariance matrix or Gram matrix) for new classes
are still poorly estimated from a few samples and thus af-
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Figure 2. Illustration to demonstrate how the similarity of the co-
variance matrices of classes vary based on the distance between
the class prototypes. We train the model on 28 base classes on the
Stanford Cars dataset, and plot the covariance similarity with re-
spect to the prototype distance of a new class (from task 1) with the
base classes. We observe that the classes with similar prototypes
(lesser distance between the prototypes) have higher covariance
similarities.

fect classification with methods like FeCAM and RanPAC.
We show in Fig. 1 that directly applying these methods
to FSCIL settings results in poor performance on few-shot
classes. The main contribution of our work is to show how
to get better estimates of the feature distributions of the few-
shot classes by calibrating their covariances based on the
base class covariances.

We explore how these various methods work with few-
shot data when using ViT models pre-trained on large-scale
datasets like ImageNet-21k. While pre-trained models have
been found to provide very good classification accuracy
without any training on the downstream datasets [11, 16],
it is important to adapt the model to the downstream
datasets [31, 59]. Conventionally, FSCIL methods are eval-
uated with ResNet models (without large-scale pretraining).
However, it is more intuitive to use pre-trained knowledge
in FSCIL settings due to the availability of very few train-
ing samples. In this work, we adapt the pre-trained ViT
model on the dataset in the many-shot base task by optimiz-
ing the adaptor, similar to [4] and then use the prototype-
based methods for classification in the new tasks without
any further adaptation.

3.1. Motivation

Prototype calibration in TEEN [50] aims to exploit the se-
mantic relationships between the base classes on which the
model is adapted and the new classes, which have very few
samples. The relationships between the means and vari-
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ances of different classes have been explored in few-shot
learning [38, 52]. In few-shot learning [51], class distribu-
tions have been calibrated in different forms by simply av-
eraging from few most similar base classes while discarding
the current class covariance matrices [52] or by iteratively
learning the distribution calibration [25]. Following the re-
cent success of using higher-order feature statistics for clas-
sification [11, 31], we explore how the covariance matrix
of each new class can be calibrated based on their semantic
relations to all base classes.

We analyze in Fig. 2 how the covariance matrices vary
for classes with varying prototype similarities. We observe
that the covariances are similar for classes with higher co-
sine similarity between their prototypes. Thus, we propose
to exploit these semantic relationships to calibrate the co-
variance matrices of new few-shot classes using the strong
covariance estimates of many-shot base classes, weighted
based on their prototype similarities.

3.2. Statistics Calibration

The similarity between a pair of base class prototype µb

and a new class prototype µn can be used to compute the
weights for averaging all the old class statistics with new
ones. We obtain the cosine similarity Sb,n between µb and
µn as follows:

Sb,n =
µb · µn

∥µb∥ · ∥µn∥
· τ (1)

where τ controls the sharpness of the weight’s distribution.
Following [50], we consider τ = 16 in our experiments.

The weightage of a new class prototype µn correspond-
ing to a base class prototype µb can be obtained by perform-
ing softmax over all the base class prototypes as follows:

wb,n =
eSb,n∑B
i=1 e

Si,n

(2)

such that
∑B

b=1 wb,n = 1 for a new class n, where B is the
number of base classes.
Prototype Calibration. Similar to [50], the biased proto-
type means of new classes µn can be calibrated as follows:

µ̂n = αµn + (1− α)

B∑
b=1

wb,nµb (3)

where α controls the degree of calibration.
Covariance Calibration. Similar to Eq. (3), we propose to
use the softmaxed similarity weights from Eq. (2) to cali-
brate the new class covariances Σn by averaging with the
base class covariances Σb as follows:

Σ̂n = β (Σn +

B∑
b=1

wb,nΣb) (4)

where β controls the scaling of the covariance matrix.

3.3. Calibration with existing methods

3.3.1 FeCAM

Goswami et al. [11] propose to use a Mahalanobis distance-
based classifier to classify feature embeddings at test time.
They demonstrate that the anisotropic Mahalanobis distance
is more effective than the commonly used Euclidean dis-
tance in CL settings for classification in the embedding
space. To compute the Mahalanobis distance, FeCAM uses
the covariance matrix of the feature embeddings for all
classes. In the few-shot setting, the covariance matrix has
to be obtained using only 5 samples per class resulting in
very poor estimates. To get better estimates of the few-shot
class distributions, we propose to use FeCAM with cali-
brated statistics.

Calibrated FeCAM. In order to complement FeCAM for
FSCIL, we use calibrated prototypes and covariances for
each new class. Similar to [11, 31], we perform covari-
ance shrinkage to obtain an invertible full-rank covariance
matrix. To account for the shift in feature distributions be-
tween base classes on which the backbone is trained and
new classes that are not used for training, we follow [11]
and obtain the correlation matrix from the shrunk covari-
ance matrix by performing correlation normalization.

We compute the Mahalanobis distance between the pro-
totypes and the test features by using the correlation matrix
of each class as follows:

DM (f(x), µ̂y) = (f(x)−µ̂y)
T (N(Σ̂y + γI))−1(f(x)−µ̂y)

(5)
where µ̂y refers to the calibrated prototypes, Σ̂y refers to the
calibrated covariances obtained using Eq. (4), f(x) refers to
the features obtained using the test samples, and N denotes
the correlation normalization. For the base classes, we ap-
ply Σ̂y = Σy .

The features are then classified based on the Maha-
lanobis distance as follows:

y∗ = argmin
y=1,...,Y

DM (f(x), µ̂y) (6)

3.3.2 RanPAC

McDonnell et al. [31] randomly project the features using
non-linear activations to a very high dimensional space and
perform classification in high dimensions where the linear
separability of features are better. They advocated using the
Gram matrix of features for prototype-based classification
due to reduced off-diagonal correlations among the class
prototypes, which enables better separability of classes.
RanPAC proposed to compute the probability scores as fol-
lows:

Sy = ϕ(f(x)W )(G+ λI)−1cy. (7)
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Small First Task (10 tasks) Big First Task (11 tasks)

AHM Alast Ainc AHM Alast Ainc

Task 1 3 5 7 9 2 4 6 8 10

C
U

B
20

0

NCM 88.48 80.95 77.75 72.19 66.23 70.25 79.68 75.9 84.21 82.16 78.35 71.33 79.43 84.24
TEEN [50] 89.77 81.33 78.57 71.76 67.25 70.52 80.04 78.01 85.34 82.89 79.44 73.06 80.24 84.83
FeCAM [11] 91.14 80.33 76.59 70.55 65.24 70.25 79.93 71.05 82.0 77.65 74.36 64.42 79.43 84.03
C-FeCAM 92.45 82.94 79.29 74.01 69.45 72.68 81.87 80.56 86.59 83.36 81.59 74.35 81.86 86.12
RanPAC [31] 91.87 83.54 79.23 75.11 70.23 74.65 82.91 70.94 81.65 80.76 80.12 67.72 79.96 84.87
C-RanPAC 92.09 84.16 81.47 76.72 72.77 76.22 83.73 84.63 86.47 85.30 85.07 78.23 83.72 87.43

FG
V

C
-A

ir
cr

af
t NCM 27.21 20.85 17.1 13.07 15.01 13.98 21.37 24.31 5.6 16.88 18.86 25.75 27.45 33.93

TEEN [50] 29.31 21.65 18.35 14.04 15.02 14.16 21.82 26.02 5.6 18.71 19.39 27.67 27.63 33.95
FeCAM [11] 25.85 23.09 21.33 14.29 16.38 15.42 23.54 19.08 1.2 10.32 12.59 22.58 29.49 37.87
C-FeCAM 32.42 26.39 23.63 15.71 17.55 16.38 24.9 30.19 15.81 20.78 24.96 29.42 31.17 39.13
RanPAC [31] 33.37 27.78 25.88 17.21 21.89 21.12 32.0 26.15 6.81 21.32 14.84 35.94 38.22 48.53
C-RanPAC 41.61 32.54 28.79 19.97 24.33 21.87 33.63 43.26 20.61 29.77 25.52 43.89 40.32 50.43

Table 1. Evaluation of methods in FSCIL settings on CUB200 and FGVC-Aircraft datasets with small and big first task settings. Best
results in bold and second-best results are underlined.

where W refers to the random projection weights which are
kept frozen after the first task, ϕ(.) denotes element-wise
non-linear activation function, G refers to the summation of
gram matrices of all classes, λ refers to the shrinkage pa-
rameter and cy refers to the summation of features of class
y. The Gram matrix G and the class prototypes (without
averaging) cy are updated in every task.

Calibrated RanPAC. In the FSCIL scenario, the estimates
of G and cy are not good and biased for the new few-shot
classes, which results in high scores for the base classes and
poor classification for the new classes. We propose to use
the calibrated means and covariances (from Eq. (4)) to as-
sume gaussian distributions of new classes and then sample
features from these calibrated distributions as follows:

f̂(x) ∼ N (µ̂y, Σ̂y) (8)

We compute G and cy from these sampled features as
follows:

G =

T∑
t=1

Nt∑
i=1

ht,n · ht,n, C =

T∑
t=1

Nt∑
i=1

ht,n · yt,n (9)

where ht,n = ϕ(f̂(x)W ) and (·) refers to the outer prod-
ucts. Thus, we use the calibrated feature distributions of
new few-shot classes and perform classification in the ran-
domly projected high dimensional space.

4. Experiments
Datasets. We perform experiments on several publicly
available datasets. CIFAR100 [23] contains 50,000 training
images and 10000 images for testing, divided among 100
classes. CUB-200 [48] contains 5994 training images, 5794

testing images and covers 200 classes of birds. Stanford
Cars [22] consists of 196 classes of car models with 8144
images for both training and testing. FGVC-Aircraft [28]
has 10,200 images covering 102 classes of aircraft variants,
out of which we use randomly selected 100 classes.

Settings. We use all available samples for each class in the
many-shot base task and only 5 samples from each class in
the few-shot tasks. We follow both the commonly used set-
ting of having a big first task (50% of the classes in the first
task) as well as the challenging small start setting (equally
split the dataset in all tasks). In the big start setting, we use
50 classes in the base task for the FGVC-Aircraft dataset,
100 classes for CUB-200 and 98 classes for Stanford Cars.
For the small start setting, we use 10 classes in the base
task and all subsequent tasks for CIFAR-100 and FGVC-
Aircraft datasets, 20 classes for CUB-200 and 28 classes
for Stanford Cars in all tasks.

Implementation Details. Similar to [59], we use the ViT-
B/16 model from the timm library which is pre-trained on
ImageNet-21K and then finetuned on ImageNet-1k. We fol-
low [4, 59] and use a ViT adaptor for adapting the pretrained
ViT to the dataset in the first task for 40 epochs. We adapt
the model in the base task and use the same model weights
for different methods to ensure fair comparison. We fol-
low the code-base from [42]. Different from [59], we do
not merge the embeddings obtained using the old model
with the current model embeddings and use only the current
ones. For the prototype calibration in TEEN, C-FeCAM,
and C-RanPAC, we use α = 0.9 for CUB-200, Stanford
Cars, and FGVC-Aircraft and α = 0.75 for CIFAR-100.
For the covariance calibration, we use β = 1 for C-FeCAM
and β = 0.5 for C-RanPAC for all datasets. For C-RanPAC,
we sample 800 points in the feature space for each class us-
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Small First Task (7 tasks) Big First Task (8 tasks)

AHM Alast Ainc AHM Alast Ainc

Task 1 2 4 6 1 3 5 7

NCM 44.15 35.66 24.22 23.59 25.71 39.52 47.72 41.17 41.64 41.48 48.91 57.74
TEEN [50] 45.66 37.57 25.49 24.57 26.46 40.20 51.48 45.15 44.14 43.47 49.83 58.49
FeCAM [11] 41.71 32.63 24.22 23.4 27.07 41.61 39.12 33.69 34.37 30.95 50.39 62.43
C-FeCAM 54.18 43.61 31.87 28.86 30.71 45.65 57.91 52.15 50.03 49.16 57.21 66.77
RanPAC [31] 58.58 48.14 39.13 35.65 38.3 54.15 53.22 54.62 48.13 47.61 61.85 72.12
C-RanPAC 62.63 51.97 43.64 38.18 40.73 56.05 65.98 62.24 58.78 57.82 65.3 74.32

Table 2. Evaluation of methods in FSCIL settings on Stanford Cars dataset with small and big first task settings. Best results in bold and
second-best results are underlined.

AHM Alast Ainc

Task 1 3 5 7 9

NCM 92.26 88.42 81.92 76.79 80.18 79.46 86.57
TEEN [50] 93.45 89.44 81.71 75.83 80.95 79.39 86.95
FeCAM [11] 92.19 87.99 79.37 74.26 78.94 78.42 86.04
C-FeCAM 94.16 89.63 81.23 76.11 81.31 79.73 87.24
RanPAC [31] 91.79 85.25 80.24 75.37 79.85 78.96 85.73
C-RanPAC 92.51 88.89 82.88 77.49 81.84 81.32 87.55

Table 3. Evaluation of methods in FSCIL settings on CIFAR100
dataset (small-start setting with 10 tasks). Best results in bold and
second-best results are underlined.

ing Eq. (8) to compute the matrix G and class-wise proto-
types C in Eq. (9).

For FeCAM, we use γ = 100 following the original im-
plementation from [11]. We do not use the tukey’s trans-
formation from [11] since the pre-trained ViTs do not have
a final ReLU activation layer and can have negative values
in the feature representations. For RanPAC, we follow the
original implementation [31] and randomly project the fea-
tures to 10,000 dimensional space. Following [31], we op-
timize the shrinkage parameter by computing G and cy on
80% of the training set for some value of λ and then select-
ing the value which leads to minimum mean squared error
between the predictions and the labels on the other 20% of
the training set. However, since the training set is very small
due to the few-shot nature of new tasks, the optimization of
λ in new tasks leads to instability and performance collapse.
In order to avoid this collapse, we optimize the λ value in
the first task and then fix it for all tasks.

Note that FeCAM stores one (768×768) covariance ma-
trix per class and RanPAC stores one big shared Gram ma-
trix (10000×10000) across tasks in addition to the class pro-
totypes. For the proposed calibration, we need to addition-
ally store the covariance matrices of only the base classes of
(768× 768) size, to use them for calibration in future tasks.
Evaluation. We evaluate the performance of NCM [16, 35,

39], TEEN [50], FeCAM [11] and RanPAC [31] with the
proposed statistics calibration. We refer to the calibrated
versions as C-FeCAM and C-RanPAC. We evaluate in terms
of the average accuracy after the last task (Alast), the av-
erage of the incremental accuracy from all tasks (Ainc)
and the harmonic mean accuracy (AHM ) after each task.
The harmonic mean accuracy better reflects the stability-
plasticity trade-off. It is computed as

AHM =
2AoldAnew

Aold +Anew
(10)

Where Aold refers to the accuracy of all classes seen be-
fore the current task and Anew refers to the accuracy of the
current task classes. The AHM is low if the current task
performance is poor, irrespective of the performance of the
old classes. Thus, it is a good metric for evaluation in FS-
CIL benchmarks and is used in previous works [33, 50].
We show the AHM after multiple tasks which reflects on
the improved performance of the few-shot classses.

4.1. Quantitative Evaluation

We evaluate how the different methods discussed above per-
form in different settings in Tabs. 1 to 3. For each setting,
we report the AHM after alternate tasks, the average ac-
curacy after the last task and the average incremental ac-
curacy. We observe that TEEN [50] improves the harmonic
mean accuracy marginally compared to NCM across all set-
tings. While FeCAM shows similar performance to TEEN,
it has a lower harmonic mean accuracy (64.42 compared
to 71.33 in NCM for big-start CUB-200) due to poor esti-
mates of covariance matrix for new classes. On using the
proposed calibration, C-FeCAM improves significantly on
the last task AHM (from 64.42 to 74.35 for big-start CUB-
200). Similarly, RanPAC has a lower last task AHM (67.72
compared to 71.33 in NCM for big-start CUB-200) and on
calibration, we see that C-RanPAC improves over RanPAC
by 10.51 percentage points (pp).

Having a big first task helps to adapt the model better
to the dataset and thus the big first task settings show bet-
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Figure 3. Accuracy after each incremental task for big-start settings on CUB-200, Stanford Cars and FGVC-Aircraft. Our proposed
statistics calibration improves the average accuracy consistently after all tasks.

C-FeCAM C-RanPAC

β AHM Alast Ainc AHM Alast Ainc

0.5 27.4 30.05 44.57 38.18 40.73 56.05
1.0 28.86 30.71 45.65 37.21 40.0 55.45
1.5 28.81 30.26 45.55 35.55 38.09 54.04

Table 4. Ablation on the impact of β in Eq. (4) for Stanford Cars
(small-start setting). Best results in bold.

µn Eq. (3) Σn Eq. (4) AHM Alast Ainc

FeCAM × × 23.4 27.07 41.61
C-FeCAM ✓ × 24.45 28.16 42.65
C-FeCAM ✓ ✓ 28.86 30.71 45.65

RanPAC × × 35.65 38.3 54.15
RanPAC* × × 36.13 39.63 55.45
C-RanPAC ✓ × 37.32 39.85 55.39
C-RanPAC ✓ ✓ 38.18 40.73 56.05

Table 5. Ablation on the impact of prototype calibration and co-
variance calibration for Stanford Cars (small-start setting). Best
results in bold.

ter performance compared to the small first task. Also, for
the proposed statistics calibration, having more base classes
will help to better calibrate the new few-shot class statistics.
We observe this trend for all settings with higher margin
of improvement in big-start settings. Using the challeng-
ing FGVC-Aircraft dataset in Tab. 1, we notice that all the
methods struggle more in the small-start settings but still
both C-FeCAM and C-RanPAC improve the last task AHM

by 1.17 pp and by 2.44 pp respectively, over the uncali-
brated variants. For the big-start setting on FGVC-Aircraft,
we see a bigger improvement of 6.84 pp and 7.95 pp for
C-FeCAM and C-RanPAC respectively.

In Tab. 2, we observe a similar trend for Stanford Cars,

where C-FeCAM improves the last task AHM significantly
over FeCAM by 5.46 pp for small-start setting and by 18.21
pp for big-start setting. Similarly, C-RanPAC improves
over RanPAC by 2.53 pp and 10.21 pp for small-start and
big-start settings respectively. We observe the same trend
for CIFAR-100 in Tab. 3, where C-FeCAM outperforms
FeCAM by 2.37 pp and C-RanPAC outperforms RanPAC
by 1.99 pp for last task AHM . These quantitative evalua-
tions suggest that simply calibrating the second-order fea-
ture statistics by exploiting the base class statistics can im-
prove few-shot classification significantly without any extra
training complexity.

4.2. Ablation Studies

We perform ablation studies to observe the impact of the
covariance scaling factor β in Tab. 4 and also the impact
of the prototype calibration and the covariance calibration
separately in Tab. 5. We observe both prototype calibration
and covariance calibration improves the harmonic mean ac-
curacy. The covariance calibration has a significant impact
on the improvement of performance using both FeCAM and
RanPAC. We also compare with the variant of RanPAC (de-
noted by RanPAC*) where we sample points from the class
distributions and compute the probability instead of using
just the available embeddings from few-shot training data.

Furthermore, to analyze how the average accuracy
changes after every task, we show the accuracy plots
in Fig. 3. We observe that using higher-order feature statis-
tics, FeCAM and RanPAC already achieves better accuracy
in the base task. In the incremental tasks, the proposed
statistics calibration further improves both the methods and
achieves a significant improvement after the last task. While
the calibration improves the average accuracy after each
task, the main improvement with the calibration is reflected
in the harmonic mean accuracy in Tabs. 1 to 3 due to signif-
icantly better classification of few-shot classes.
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5. Conclusion

In this work, we explore how prototype- and higher-
order statistics-based classification methods work in FS-
CIL settings when using ViT models pre-trained on large
scale datasets. We identify that although the higher-order
statistics-based methods like FeCAM and RanPAC per-
forms very well with many-shot data and in existing MSCIL
benchmarks [11, 31], these methods struggles with few-shot
data due to poor and biased estimates of distribution statis-
tics (see Fig. 1). We propose to perform a simple yet effec-
tive statistics calibration by using the strong statistics esti-
mates which are computed for the many-shot base classes.
We demonstrate that using the proposed calibration out-
performs all existing methods across multiple settings and
datasets by a significant margin. We highlight the improve-
ment in the classification of few-shot classes using the har-
monic mean accuracy which is consistently better after all
tasks with our proposed calibration method.
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