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2Computer Vision Center, Barcelona {skamath, albin, joost, bogdan}@cvc.uab.es

Abstract

Recent research identified a temporary performance
drop on previously learned tasks when transitioning to a
new one. This drop is called the stability gap and has great
consequences for continual learning: it complicates the di-
rect employment of continually learning since the worse-
case performance at task-boundaries is dramatic, it limits
its potential as an energy-efficient training paradigm, and
finally, the stability drop could result in a reduced final per-
formance of the algorithm. In this paper, we show that the
stability gap also occurs when applying joint incremental
training of homogeneous tasks. In this scenario, the learner
continues training on the same data distribution and has
access to all data from previous tasks. In addition, we show
that in this scenario, there exists a low-loss linear path to
the next minima, but that SGD optimization does not choose
this path. We perform further analysis including a finer
batch-wise analysis which could provide insights towards
potential solution directions.

1. Introduction

Deep neural networks demonstrate remarkable performance
across numerous machine-learning tasks. Nevertheless,
when trained on non-IID streaming data these networks
struggle to accumulate knowledge, and tend to forget pre-
viously acquired knowledge. Continual learning develops
theory and methods to address this problem [3, 12]. It
aims to develop algorithms that prevent catastrophic for-
getting [13] and achieve a more favorable trade-off between
stability and plasticity [14] while learning on a data stream.

A typical test setting that continual learning considers is
learning from a sequence of tasks (each task with another
data distribution) [3]. Usually, continual learning method
performance is evaluated at the end of each of the tasks.
Recently, researchers [1, 10] have observed an interesting
phenomenon that went unnoticed in this standard evalua-
tion setup: at the start of training a new task, the perfor-

mance of previous tasks drastically drops, and only slowly
recovers during the subsequent training of the new task. De
Lange et al. [10] coined the term stability gap for this phe-
nomenon. This observation should be taken into account
for the application of continual learning systems (especially
in safety-critical contexts) since it significantly lowers the
worst-case performance of these algorithms. Furthermore,
it can potentially worsen the final accuracy of the learner,
since it might not recover totally from the knowledge loss
incurred during the stability gap. Addressing the stability
gap is therefore of utmost importance [6, 18].

The underlying mechanism responsible for the stabil-
ity gap remains the subject of lively scientific debate, with
no clear explanation available yet. Originally, Caccia et
al. [1] hypothesized that the cause for the stability gap is
because old class prototypes receive a large gradient from
closely lying new class prototypes. However, this hypoth-
esis could not fully explain the phenomenon, because the
stability gap had also been observed in domain incremental
learning (where the set of classes remains the same) [10]. A
possible remaining explanation is the following. When op-
timizing on new data, the objective is to minimize the loss
on both the available new data and unavailable old data. The
loss on the unavailable previous data is then approximated
with various continual learning strategies, such as regular-
ization [9, 11] and data rehearsal [2, 16]. An explanation
for the stability gap could be the failure to approximate this
ideal joint loss on previous and current task data. Surpris-
ingly, a recent paper [8], showed that even in the case of
joint incremental training the stability gap occurred (in this
case, we do have access to both old and new task data and
can minimize the joint loss on both old and new data). They,
therefore, came to the important realization that we should
not only focus on what to optimize but more importantly on
how to optimize our objective.

Hess et al. [8] made their important observation when
learning on heterogeneous tasks, referring to the fact that
each task is drawn from a different distribution. In this pa-
per, we show that the stability gap is even present in the case
of joint incremental learning on homogeneous tasks (where
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Paper Type Tasks
Caccia et al. [1] CI: c1 ̸= c2 disjoint heterogeneous
Lange et al. [10] DI: c1 = c2 disjoint heterogeneous
Hess et al. [8] CI: c1 ̸= c2 joint incr. heterogeneous
Ours DI: c1 = c2 joint incr. homogeneous

Table 1. Summary of the expanding scope of the stability gap:
from heterogeneous to homogeneous tasks.

each task is drawn from the same distribution). This re-
sult in presented in Figure 1. So, even in the case that both
tasks have the same distribution, SGD optimization does not
succeed in going to the ‘nearby’ optimal position without
derailing through a high-loss region. The only difference
between the new and old data is that the network has seen
the old data (typically for 100 epochs here) and has not yet
seen the newly arriving data. We think that this further con-
firms the fundamental nature of the stability gap in continual
learning: it even occurs in the most simple continual learn-
ing setting when training from an increasing amount of data
drawn from the same distribution. The main contributions
of this work are:
1. We show that the stability gap also occurs during joint

incremental learning from homogeneous tasks, arguably
the least challenging continual learning setting.

2. We show that there exists a linear low-loss path to the
optimal loss, but that SGD is not following this path (this
was hypothesized in [8] but was not demonstrated).

3. We perform an analysis at mini-batch level, and discover
that the gradient just after the task boundary successfully
decreases the mini-batch loss but results in an overall
loss increase on the test set. Addressing this might po-
tentially lead to a solution to the stability gap problem.

This manuscript does not provide a new possible explana-
tion for the stability gap. We think the observation that it
occurs even for joint incremental learning of homogeneous
tasks is relevant. Our results, confirm those of Hess et al. [8]
and we agree with them that the focus should shift to how
to optimize rather than what to optimize.

2. Stability Gap Analysis

2.1. Experimental setup

Datasets: We use the standard benchmark train-test split for
all the datasets used in this work, that is publicly available.
CIFAR-10 dataset consists of 60, 000 images of 32 × 32
size, divided into 10 classes: 50, 000 used for training and
10, 000 for testing. CIFAR-100 dataset consists of 60, 000
images of 32 × 32 size, divided into 100 classes: 50, 000
used for training and 10, 000 for testing.
Architectures: We consider two convolutional network ar-
chitectures, VGG-16 [17] and ResNet-18 [7] for our study.
Training Setup: Our code base uses the pytorch library.

For training we use the SGD optimizer with hyperparame-
ters: learning rate (lr) of 0.01, momentum (m) of 0.9, batch
size (bs) of 64.
Notation: In this work, we mainly study the two-task set-
ting. All results reported will be in the homogeneous task
setting, where the various tasks are drawn from the same
distribution. We use the notation of A-B to indicate task
A will contain A% of the data and task B will contain B%
of the data from the original training dataset. We will use
the notation A-B∗ to identify the joint incremental learning
setting. In this case when training task B, the algorithm has
access to all the data of task A. In practice, for this setting
for task B, we just combine the data of both tasks, and con-
tinue training on the combined dataset. Note, that the data
of task A and B in our paper are disjoint data sets and do
not contain the same data samples.
Note on plots: Most plots in this paper are with a warm-
started model. This means a model trained on task A with
the data as prescribed in the setting was used to continue
training on task B. The starting point of the x-axis is then
the iterations directly after the task-switch. This was done
to better study the effect of the actual stability gap. Note,
that we do not show the end of training on task B.

2.2. Stability Gap in Joint Incremental Learning of
Homogeneous Tasks

To establish the occurrence of the stability gap in the set-
ting of joint incremental learning of homogeneous tasks, we
study the 50-50* setting. This setting divides the training set
into two equally sized tasks, A and B. Both tasks are drawn
from the same distribution. The test accuracy is provided
for two datasets in Figure 1. We can observe that even in
for this case, there is a clear stability gap. The performance
drops from 0.89 to 0.74 on CIFAR-10 and from 0.65 to 0.38
on CIFAR-100. We posit a larger gap on CIFAR-100 to be
related to the smaller number of samples per class. Note
that for both these graphs performance has not returned to
its task A level consistently even after the 2000 iterations
showing the long-lasting impact of the stability gap. Af-
ter continued training for around 3500-4500 iterations the
models start to achieve more consistently a performance
above 0.89 and 0.65, respectively.

In Table 1 we provide a summary of the main papers on
the stability gap. The stability gap has been observed in in-
creasingly general settings. Here, we show that it is also ob-
served for joint incremental training of homogeneous tasks,
which is arguably the most simple continual learning set-
ting. This observation is relevant since it discards explana-
tions for the stability gap which are based on characteristics
that are not present (e.g. it cannot be uniquely explained
by the presence of disjoint tasks or heterogeneous distribu-
tions).
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Figure 1. Occurrence of the stability gap in joint incremental learning with homogeneous tasks in the 50-50∗ setting on (left) CIFAR-10
and (right) CIFAR-100 datasets on a ResNet-18 model. This plot starts after training with task A, and the x-axis represents the number of
iterations of training on task B.

2.3. Linear Mode Connectivity

Garipov et al. [5] were the first to study the mode con-
nectivity properties of neural networks weights by connect-
ing two independent minima obtained through differently
seeded optimization processes using a simple curved path of
low loss. Frankle et al. [4] later showed that a simpler kind
of path naturally emerges early in training. They observed
that models that are trained from a warm-started model ver-
sion on the same dataset but with different SGD-noise lead
to two checkpoints that are connected by a linear path of
low loss. Mirzadeh et al. [15] later extended that property to
optima of multitask models trained on incrementally larger
datasets. Hess et al. [8] hypothesized that there exists a low-
loss path between the optima when doing joint incremen-
tal learning of heterogeneous tasks. However, they do not
demonstrate this in their paper. In this article, we investigate
whether it is the case that training on incremental homoge-
neous tasks leads to linearly connected optimas or not (and
we verify this). To do so, we take the initial checkpoint with
weights θ1 and final checkpoint with weights θ2 and inter-
polate between the two by taking θλ = λθ1+(1−λθ2) with
λ ∈ [0, 1]. We later compute and report the test accuracy of
each θλ to determine if the linear path is of low loss.

Figure 2 compares the loss of the models obtained by
linearly interpolating between the initial and final model to
the ones of the model checkpoints along the SGD optimiza-
tion trajectory. Unsurprisingly, the path taken by SGD dur-
ing optimization is not linear. More surprisingly, it goes
through areas of higher loss especially during the initial pe-
riod that corresponds to the stability gap, while the linear
path between the initial and final model is of low loss. The
linear path results confirm that a low-loss path exists be-

Figure 2. In the 50-50* setting, we present the loss path with
SGD and the linear connectivity loss path between the warm-start
and final models using with ResNet-18 model on (left) CIFAR-10,
(right) CIFAR-100 dataset. In order to observe the stability gap,
we zoom in on the first few iterations of the new task.

tween the minima achieved after training task A, and the
minima after training task B. Surprisingly, SGD does not
take this path and instead passes through a high-loss area
before converging towards the minima which is optimal for
task A and B data. We have shown here the first few itera-
tions after the task-switch.
Per mini-batch loss analysis. In Figure 3, we observe with
a microscope the learning of the model per mini-batch. In
this plot we show the training batch accuracy for the current
mini-batch before (blue line) and after (red line) the SGD
update. We observe that the SGD update results in a loss
decrease(or accuracy increase) for the particular mini-batch
(the blue line is below the red line). However, when we look
at the test accuracy (black line), we see that even though ini-
tial steps lead to a lower loss on the mini-batch, they do not
result in better test performance. The black line goes down
in the initial iterations. This means that the SGD update
moves the network parameters away from the optimal path.
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Figure 3. Using CIFAR-100 with ResNet-18, we present the finer
analysis of the local improvement obtained at the batch level by
observing the train accuracy per batch before (blue line) and after
(red line) SGD update is applied for the batch in the 50-50* setting.
The black line is the corresponding test accuracy.

Figure 4. Using CIFAR-100 with VGG-16, stability gap in (left)
50-50* (right) 75-25* setting.

2.4. Additional Analysis

Here we verify if the stability gap also occurs for several
other settings.
Stability gap using other architectures. While we present
a detailed study of the stability gap on ResNet-18 archi-
tecture, in Figure 4 we show this phenomenon is not re-
stricted to a specific architecture by using another well-
known VGG-16 architecture on the CIFAR-100 dataset.
Stability gap in other settings. In Section 2.2, we mainly
considered the 50-50* setting which is the joint incremen-
tal training with homogeneous task. Here, we look at the
stability gap with different first task size and include results
for the setting 10-90* and 75-25* in Figure 5. We observe
that the gap is larger when starting from a smaller first task.

In addition, we conduct experiments with the splits 50-
50 and 75-25 which is equal to incremental training with
new data from the same distribution (without access to all
previous data). We observe in Figure 6 that the stability
gap occurs in this setting too and is more pronounced than
the corresponding 50-50* and 75*-25* setting studied be-

Figure 5. Using CIFAR-100 with ResNet-18, stability gap in (left)
10-90* (right) 75-25* setting. We can see that the stability gap
increases for a smaller-sized first task.

Figure 6. Using CIFAR-100 with ResNet-18, stability gap in
(left) 50-50, (right) 75-25 setting. We can see that the stability
gap increases when comparing (left) with the 50-50* setting in
Fig. 1(right) and (right) with the 72-25* setting in Fig. 5(right).

fore. The gap is larger from 0.65 to 0.20 and 0.70 to 0.23 as
against 0.65 to 0.38 and 0.70 to 0.44, respectively.

3. Conclusions
In this article, we present compelling insights into the sta-
bility gap phenomenon. In particular, we show that it also
manifests when applying joint incremental training on a se-
quence of homogeneous tasks, which is often considered
the simplest scenario for continual learning. Through exper-
imental evidence, we demonstrate that while the loss along
the SGD path displays a stability gap, this discrepancy is
not mirrored in the loss along the linear trajectory between
checkpoints. An analysis at the mini-batch level showed
that the gradient computed on the initial mini-batches (after
the task-switch) does reduce the loss for each mini-batch
but it results in an increased loss on the test data. We also
observe that in the incremental learning with homogeneous
tasks, when we remove rehearsal (going 50-50* to 50-50),
the stability gap increases. In further research, we will ex-
plore this direction to possibly discover the cause of the sta-
bility gap and possible remedies.
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