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Abstract

In the field of Class Incremental Object Detection
(CIOD), creating models that can continuously learn like
humans is a major challenge. Pseudo-labeling methods,
although initially powerful, struggle with multi-scenario
incremental learning due to their tendency to forget past
knowledge. To overcome this, we introduce a new approach
called Vision-Language Model assisted Pseudo-Labeling
(VLM-PL). This technique uses Vision-Language Model
(VLM) to verify the correctness of pseudo ground-truths
(GTs) without requiring additional model training. VLM-
PL starts by deriving pseudo GTs from a pre-trained de-
tector. Then, we generate custom queries for each pseudo
GT using carefully designed prompt templates that combine
image and text features. This allows the VLM to classify
the correctness through its responses. Furthermore, VLM-
PL integrates refined pseudo and real GTs from upcoming
training, effectively combining new and old knowledge. Ex-
tensive experiments conducted on the Pascal VOC and MS
COCO datasets not only highlight VLM-PL’s exceptional
performance in multi-scenario but also illuminate its effec-
tiveness in dual-scenario by achieving state-of-the-art re-
sults in both.

1. Introduction
The pursuit of artificial intelligence that mimics human-

like continuous learning has led to significant exploration

in Class Incremental Learning (CIL). CIL aims to develop

methods that enable models to incorporate new classes

while maintaining expertise in ones already learned. This

endeavor seeks to tackle a central challenge: how to ex-

pand a model’s knowledge base without eroding its current

knowledge, a phenomenon known as catastrophic forget-

ting [73].

To address this challenge, the academic community

has predominantly adopted three strategies: regulariza-
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Figure 1. Workflow of our proposed method: This schematic

illustrates the sequential steps of our method. It starts with

pseudo-labeling by a pre-trained model Mold, followed by re-

fining through the Vision-Language Model. Custom-generated

prompts are used for each pseudo ground-truth (GT). This refining

process filters out incorrect pseudo GTs to yield reliable pseudo

GTs. These annotations are then used to train a detector Mnew,

incorporating previous knowledge with the updated dataset.

tion, knowledge distillation, and replay. Regularization

methods [34, 38, 59, 62, 90, 92] aim to preserve previ-

ous learning by penalizing changes to critical parameters.

Knowledge distillation [27, 51, 61, 70, 79] techniques, on

the other hand, focus on transferring knowledge from an

older model version to its updated form, ensuring that

the new model retains the ability to perform well on old

tasks. Replay approaches, categorized into partial expe-

rience replay [8, 15, 28, 70, 75] and deep generative re-

play [13, 24, 31, 76, 83, 84], combat catastrophic forget-

ting [73]. The former retains a subset of previous tasks’

data, utilizing it as a memory buffer while training new

tasks. The latter uses generative models to re-experience

past tasks’ data.

Class incremental learning (CIL) strategies, designed to

embrace new knowledge while retaining previous learnings,

often encounter limitations when applied to the more in-

tricate class incremental object detection (CIOD). CIOD,

which is considered a separate domain, deals with the com-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4170



plex challenge of detecting multiple labels within a scene.

As a result, CIOD necessitates advanced methodologies to

enhance detection capabilities across varied labels without

compromising on the accuracy of identifying previously

learned classes.

In the field of CIOD, pioneering researches [1, 23,

55, 78] have played a crucial role in advancing the field.

These innovations extend methodologies initially crafted

for single-class classification to the multifaceted challenges

of CIOD, yielding notable advancements. Furthermore, the

transition of detection frameworks from traditional CNN-

based [48, 72] towards transformer-based [5, 44, 97], in-

troducing research directions that capitalize on the atten-

tion mechanism’s ability to enhance model generalization

capabilities. In this base-frameworks transition, pseudo-

labeling has been utilized to boost model performance in

many CIOD strategies for alleviating forgetting. For ex-

ample, techniques like class-wise distillation using pseudo

ground-truth (GT) in CL-DETR [58], along with methods

used in OW-DETR [26] and SDDGR [36], involve pseudo

labeling approach using the confidence score from the clas-

sification branch of object queries. Despite their innovative

applications, these techniques are fundamentally dependent

on the performance of previously trained models. This re-

liance introduces significant limitations, especially in multi-

incremental scenarios. As the complexity of scenarios in-

creases, the retention of knowledge from earlier tasks weak-

ens, leading to a discernible decline in performance. This

decline is attributed to inaccuracies in pseudo GTs gener-

ated based on prior models’ knowledge.

To address the problems mentioned earlier, we intro-

duce VLM-PL, a new approach method that uses Vision-

Language Models [18, 54, 87] (VLMs) to enhance pseudo-

labeling by refining incorrect pseudo GTs. This method en-

sures the consistent use of accurate pseudo ground-truths

(GTs) in various scenarios. Drawing inspiration from re-

cent studies [16, 31, 36, 80] in pre-trained foundation mod-

els [50, 69, 74], our approach utilizes the vast knowledge

of these models. This counters the significant performance

drop that pseudo-labeling strategies often face due to re-

liance on previously trained models, especially in multi-

class incremental object detection settings. Specifically,

we employ prompt-tuning with VLMs to identify reliable

pseudo GTs, eliminating the need for model retraining for

classification tasks. This strategy effectively reduces error

accumulation in complex scenarios and exhibits strong per-

formance in both multi and dual scenarios. Moreover, it

achieves state-of-the-art results for both Pascal and COCO

datasets without the need for a replay strategy. The flow of

the proposed approach is illustrated in Figure 1. Our contri-

butions are organized as follows:

• To the best of our knowledge, we are pioneers in integrat-

ing VLM into CIOD, addressing challenges not primarily

tackled in this field before.

• Our method introduces effective prompt-tuning of VLM

and input-output flows that accommodate scenarios with

multiple incremental class additions, thus combating the

usual performance declines seen in such challenging sit-

uations.

• Extensive experiments show that our approach excels not

only in multi-incremental scenarios but also sets a new

state-of-the-art in single incremental scenarios, thereby

revealing the impact of VLM assistance on object detec-

tion.

2. Related works

2.1. Continual learning

Continual learning represents a broad spectrum of machine

learning strategies designed to equip models with the capa-

bility to learn continuously, accumulating knowledge over

time without catastrophic forgetting [73] the previously ac-

quired information. Within this broad domain, class incre-

mental learning (CIL) is a critical subset, focusing specifi-

cally on the model’s ability to integrate new classes seam-

lessly.

Class incremental learning. CIL primarily addresses the

challenge of classification, where models learn to identify

new classes over time while retaining accuracy on previ-

ously learned classes. The essence of CIL is based on its

methodologies, which can be broadly categorized into three

key strategies: regularization, distillation, and replay. Reg-
ularization methods, such as [34, 38, 59, 62, 90, 92], aim to

restrict the model’s parameter updates to preserve knowl-

edge across tasks. Distillation methods [27, 51, 61, 79] fo-

cus on the transfer of knowledge from a teacher model to

a student model, where the teacher model, which encap-

sulates prior knowledge, guides the student model to re-

tain old information while learning new. Replay involves

reusing a subset of original data (partial experience re-

play [3, 7, 25, 39, 68, 70]) or generating new data sam-

ples mimicking the old data distribution (generative re-

play [13, 24, 76, 83, 84]), to prevent the learned knowledge

forgetting. However, expanding the principles of CIL to

object detection introduces a harder challenge: class incre-

mental object detection(CIOD). Unlike CIL, where the fo-

cus is on classifying single objects within an image, CIOD

involves detecting and classifying multiple object instances

across various classes within the same image. Conse-

quently, researchers have started investigating the specific

strategy for CIOD.

Class incremental object detection. Recent developments

in CIOD have explored both methodologies, such as CNN-

based [4, 6, 10, 22, 53, 57, 63, 64, 72] and transformer-

based [17, 26, 35–37, 58]. In general, transformer-based

methods have been more focused on their superior gen-
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eralization ability compared to CNN-based. Within this

context, CL-DETR [58], OW-DETR [26], and Open-

world DETR [17] have effectively utilized the architec-

tural strengths of transformers, such as pseudo-labeling and

class-wise distribution replay, while kang et al. [35] sug-

gested both fine-grained distillations (i.e. DMD and IFD)

strategy. Despite these innovations, such methods [17, 26,

58] often over-depend on the performance of the previous

model when trained in multi incremental scenarios. To ad-

dress this, we propose a new approach employing a Vision-

Language Model (VLM), integrating the capabilities of a

large language model and vision model, aiming to surpass

the limitations inherent in reducing the dependency on the

previously trained models within the pseudo-labeling strat-

egy.

2.2. Vision-Language Models

In recent years, the performance of large language models

(LLMs) has been advancing rapidly, leading to active re-

search in vision models based on the superior performance

of LLMs. Initially, models in the form of BLIP [45, 46] or

GLIP [47] were investigated, focusing on simple caption-

ing of images. Recently, research has progressed beyond

image captioning to various tasks such as question answer-

ing [2, 12, 14, 19, 42, 54, 86, 96] using CLIP [69] and

visual encoder [21, 45, 46]. Specifically, InternLM [19]

achieved superior performance by proposing to train only

modules that extract visual features using LoRA [30].

Alongside, the domain of region-based question answer-

ing [9, 11, 66, 82, 87, 87, 89, 93, 94] has witnessed consid-

erable advancements, enabling detailed conversations about

specific regions within an image. In particular, the Fer-

ret [87] proposed a spatial-aware visual sampler to enable

any-prompt visual input, regardless of the format of the

prompt. We consider that the large-scale knowledge inher-

ent in model [87] holds the potential to mitigate catastrophic

forgetting, so we propose to utilize this potential with con-

ventional method such as pseudo-labeling in our work.

3. Preliminaries
3.1. Transformer-based detector

The advent of transformer-based architectures [5, 56, 91,

97], especially the Detection Transformer (DETR) series,

has significantly advanced the field of object detection.

DETR models utilize an efficient attention [81] mechanism

to diminish the inductive bias found in conventional detec-

tion frameworks [4, 71, 72], crucial for distinguishing fore-

ground from background entities and extracting global fea-

ture relationships. Thus, it ultimately enhances the model’s

generalization capabilities [5]. Furthermore, a notable inno-

vation is their ability to predict object categories and bound-

ing boxes directly through self-attention and cross-attention

layers, eliminating the need for traditional post-processing

techniques like non-maximum suppression. This process

involves processing a predefined number of object queries,

each predicting class probabilities and bounding box (bbox)

coordinates. As a result, DETR-based detectors simplify

the pipeline and reduce the dependency on handcrafted fea-

tures, ensuring more robust detection outcomes. We use

Deformable DETR [97] (D-DETR) for its efficient object

query handling and reduced computational costs.

3.2. Region-specific conversation

Ferret [87] represents a significant advancement in Vision-

Language Models (VLMs) by enabling precise, region-

specific question-answering capabilities within images. It

can detail conversation by employing a hybrid region rep-

resentation, which integrates both discrete features (e.g.

points and boxes) and continuous features (e.g. strokes,

scribbles, or complex polygons). Ferret is utilizing the

CLIP [69] model for visual features, achieves a detailed

capture of image features by resizing images to 336 × 336
and extracting feature embeddings Z ∈ R

H×W×C . Here,

H is image height, W is image width and C is the im-

age channel. Textual embeddings are derived using a pre-

trained Language Model tokenizer, providing embeddings

T ∈ R
L×D where L and D denote sequence length and

embedding dimension, respectively. The visual embeddings

are projected to match the text embeddings dimension D,

facilitating the seamless integration of visual and textual in-

put. To integrate visual features into the language model’s

text prompts, Ferret employs a placeholder approach, indi-

cated by <SPECIAL>. This allows the language model to

process visual information alongside textual data. Specif-

ically, to inform the language model of the exact location

of a feature within an image, the question is formatted as “a

region [x1, y1, x2, y2]<SPECIAL>”, where [x1, y1, x2, y2]
denotes the coordinates of the region of interest. This

methodology enables the model to understand and respond

to queries about specific areas within an image, significantly

enhancing its ability to provide precise, context-aware an-

swers.

4. Methods
4.1. Process configuration

In the domain of class incremental object detection (CIOD),

the primary objective is seamlessly integrating new class

labels into the model without diminishing its performance

on classes that have already been learned. This process is

divided into a series of separate tasks, represented as Td,

where d ranges from 1 to N , indicating the total num-

ber of tasks. Each task, Td, is uniquely identified with a

dataset Dd comprising a collection of images, denoted as

Xd = {x1
d, x

2
d, . . . , x

L
d }, and their respective annotations,
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Prompt : “<image feature> Considering the region <location> 
<region feature> of the image, would you classify it as a 
<object name> category without any doubt? Respond with only 
‘yes’ or ‘no’.” 

1. Boat,
2. Car,
3. Cat

1. [267, 95, 348, 150], 
2. [348, 145, 500, 204],
3. [8, 233, 104, 267]

Input Image No, ….
Removed.

Yes, ….
Remained.

No, ….
Removed.

2.Car?

3.Cat?

1.Boat?

Human

Boat

Figure 2. Overview of the VLM-assisted Pseudo Labeling: The sequence begins with the detector Mold, applying pseudo labeling to

identify potential objects (e.g. Boat, Car, and Cat within the input image), alongside their corresponding bounding box locations. Each

identified object and its location are encapsulated into a prompt template. This template integrates placeholders for <image feature> and

<region feature>, where the former is substituted with the overall image features and the latter with features corresponding to the specific

region of interest. The prompts are classified by the VLM for reliability, using responses such as ‘yes’ or ‘no’ to verify each pseudo GT.

Subsequently, the refined pseudo GTs are combined with new GTs from the new task for training the detector Mnew.

Yd = {y1
d,y

2
d, . . . ,y

L
d }. Here, L represents the number

of data points for task Td, with d serving as the index for

each task. Each annotation vector yl
d for an image xl

d

can encapsulate multiple object instances, represented as

yl
d = {(c1,B1), . . . , (cK ,BK)}, where K denotes the num-

ber of objects in an image l, and each ck and Bk denote a

category and bbox coordinates of the k-th object, respec-

tively. This approach is aligned with the conventional CIOD

configuration as prior works [23, 35, 36, 78].

Our VLM-PL consists of two primary components: 1)

A method for extracting pseudo GTs from the pre-trained

model (Section 4.2), and 2) A technique for refining these

pseudo GTs through the VLM model (Section 4.3). A com-

prehensive overview can be seen in Figure 2.

4.2. Pseudo-labeling

The adaptation of the pseudo-labeling mechanism [17, 26,

36, 58] for transformer-based detectors [27, 91, 97] lever-

ages the decoder’s output from learned object queries. Each

object query then goes through the classification branch

(Fcls) and regression branch (Freg), which include several

MLPs at the final layer of the decoder. In the classification

branch, queries calculate logits across all learned categories,

including the background. These logits are then converted

into scores ranging from 0 to 1 using a sigmoid function

across all categories. This results in an output score matrix

Ô ∈ R
Q×(category+1) for class predictions and B̂ ∈ R

Q×4

for bboxes, where Q represents the total number of object

queries. Building upon this framework, scores that exceed a

predefined threshold, τ , are nominated for pseudo-labeling,

ensuring the utilization of only the most reliable predictions

in generating pseudo ground-truth (pseudo GT), denoted by

ŷ = {ĉ, B̂}. Here, ĉ represents the predicted category name

(e.g. ‘person’, ‘kite’ etc) from the highest-scoring category

in each query, and B̂ provides the bbox coordinates for the

corresponding query. In our study, drawing on the insights

from previous research on [36, 58], we set the τ threshold

to 0.3 as the optimal confidence score for maximizing per-

formance.

Following the conventional pseudo-labeling strategy [36,

58, 78] for CIOD, we use the generated pseudo ground

truth ŷ, in conjunction with the actual labels y, to train

new coming categories. However, despite our efforts to

alleviate forgetting, the reliance on predictions from pre-

viously trained models in pseudo-labeling can still poten-

tially degrade performance. While this issue is less notice-

able in dual-task scenarios, it becomes significantly more

prominent when incrementally training on multiple tasks

(e.g. 5+5+5+5, 10+5+5 in our experiments). Because, in

multi-scenarios, the knowledge from previous models about

earlier learned objects becomes increasingly blurred. This

leads to reliance on incorrect predictions as pseudo GT for
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Figure 3. Illustration of incorrect pseudo GT examples gener-

ated during a multi-incremental learning scenario (i.e. 5+5+5+5)

on the Pascal [20] dataset. (a) depicts an incorrect pseudo GT

where a ‘bicycle’ is mislabeled; (b) shows both ‘bicycle’ and ‘bird’

misidentified; (c) highlights a case where all annotations are incor-

rect; and (d) indicates mislabeled ‘cow’ and ‘bird’ instances.

subsequent training. This not only creates a harmful cy-

cle of error propagation, but also exacerbates performance

degradation. Figure 3 shows incorrect pseudo GT exam-

ples of conventional pseudo-labeling strategies on the Pas-

cal [20] dataset.

4.3. Vision-Language Model assistance

To address the aforementioned inherent challenges of

pseudo-labeling in multi-task scenarios, we employ a

Vision-Language Model (VLM), specifically Ferret [87].

Ferret’s ability to perform question-answering tasks on spe-

cific image regions allows for a direct assessment of pseudo

GT accuracy. This allows us to filter for consistent and ac-

curate pseudo GT independent of the performance of previ-

ously used models.

Image Feature Extraction. Initially, the CLIP [69] model

is employed to extract the overall image features, which are

crucial for grasping the comprehensive context of the im-

age. For regions requiring pseudo GT verification, we refer

to the bbox coordinates, B̂, and category names, ĉ, as de-

scribed in Section 4.2. It is important to note that multiple

instances of pseudo GT may exist within a single image.

The bbox coordinates B̂, originally in the normalized for-

mat of [x, y, w, h], are transformed into real-size corner co-

ordinates [x1, y1, x2, y2]. This accurately outlines each re-

gion of interest, making it easier to create binary masks (i.e.

0 is non-interesting region, 1 is interesting region) that em-

phasize the specific areas in the context of the overall image

generated through CLIP [69].

Prompt Formation. We use a predefined text prompt tem-

plate to construct text queries for Ferret [87]. This template

includes not only the text format but also the overall image

visual feature and specific spatial information of the iden-

tified regions. We do this by using a <placeholder> as an

LLM input. The template is: “<image feature> Consid-
ering the region <location> <region feature> of the im-
age, would you classify it as a <object name> category
without any doubt? Respond with only ‘yes’ or ‘no’.” This

method represents a form of prompt-tuning, a technique

that enables a Large Language Model (LLM) to perform

classification tasks based on the provided context without

additional model training [41, 49, 77]. In this template,

the <image feature> placeholder represents the position of

the overall image’s CLIP visual feature. The <location>
placeholder gets filled with the bbox coordinates, specifi-

cally B̂ from ŷ, indicating the area of interest within the

image. The <object name> corresponds to ĉ, signifying

the object’s category name. Finally, the <region feature>
denotes the position of features extracted from the binary

image mask, highlighting the part of the overall image fea-

ture that bbox B̂ represents. The prompt-making process is

iteratively done for each pseudo GTs in an image, modify-

ing them accordingly.

Output. In the final stage, our method carefully selects

pseudo GTs that Ferret validates with a ’yes’. We use this

curated dataset to train the model on new coming classes.

This approach ensures the training process uses consistently

reliable pseudo GTs without the influence of a pre-trained

model.

5. Experiments
5.1. Dataset and metrics

Dataset. Our research primarily uses the PASCAL VOC

dataset [20]. Known for its 20 diverse object classes, it con-

tains 9,963 images, split into 5,011 for training and 4,952

for testing. We also use the MS COCO 2017 dataset [52] as

a additional experiment. The MS COCO [52], with its 80

object classes spread across 118,000 training images and

5,000 evaluation images, serves as a challenging bench-

mark.

Eval metrics. From PASCAL VOC, we use the mean aver-

age precision at the IOU threshold of 0.5 (AP50). From MS

COCO, we also use the mean average precision at various

IOU thresholds (0.5:0.95, 0.5, 0.75) and object sizes: AP ,

AP50, AP75, APS , APM , and APL. Here, AP represents

the mean value across all IOU thresholds from 0.5 to 0.95.

5.2. Implementation and experiments

Implementation details. In our study, we employ a

methodology based on Deformable-DETR [97], utilizing
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Table 1. Performance comparison of CIOD methods on Pascal VOC 2007 in multi-scenario settings, using AP50 (%) metric. Results

for [6, 64, 78] are cited from ABR study [57]. The red arrow (↑) indicates performance improvement over the previous state-of-the-art

(SoTA). Meanwhile, a red dash (-) indicates performance equivalent to the SoTA. The best results in each configuration are highlighted in

bold.

10+5+5 (3-tasks) 5+5+5+5 (4-tasks)Method 1-10 (T1) 11-20 (T2 + T3) 1-20 1-5 (T1) 6-20 (T2 + T3 + T4) 1-20
ILOD [78] 67.2 59.4 63.3 58.5 15.6 26.3

Faster ILOD [64] 68.3 57.9 63.1 55.7 16.0 25.9

MMA [6] 67.4 60.5 64.0 62.3 31.2 38.9

ABR [57] 68.7 67.1 67.9 64.7 56.4 58.4

DMD+IFD [35] - - - 46.14 60.19 58.72

VLM-PL(Ours) 67.9 67.9 67.9 - 64.5 68.4 65.5 ↑6.78

Table 2. Performance comparison of CIOD methods on Pascal VOC 2007 in dual-scenario settings, utilizing the AP50 (%) metric. Results

for [6, 26, 32, 33, 64, 78, 85, 95] are cited from the ABR study [57]. The red arrow (↑) signifies an improvement over the previous state-

of-the-art. The best results in each configuration are highlighted in bold.

19+1 15+5 10+10 5+15Method 1-19 (T1) 20 (T2) 1-20 1-15 (T1) 16-20 (T2) 1-20 1-10 (T1) 11-20 (T2) 1-20 1-5 (T1) 6-20 (T2) 1-20
ILOD [78] 69.8 64.5 69.6 72.5 58.5 68.9 69.8 53.7 61.7 61.0 37.3 43.2

Faster ILOD [64] 70.9 63.2 70.6 73.1 57.3 69.2 70.3 53.0 61.7 62.0 37.1 43.3

PPAS [95] 70.5 53.0 69.2 - - - 63.5 60.0 61.8 - - -

MVC [85] 70.2 60.6 69.7 69.4 57.9 66.5 66.2 66.0 66.1 - - -

MMA [6] 70.9 62.9 70.5 72.7 60.6 69.7 69.8 63.9 66.8 66.8 57.2 59.6

ORE [32] 69.4 60.1 68.9 71.8 58.7 68.5 60.4 68.8 64.6 - - -

OW-DETR [26] 70.2 62.0 69.8 72.2 59.8 69.1 63.5 67.9 65.7 - - -

Meta-ILOD [33] 70.9 57.6 70.2 71.7 55.9 67.8 68.4 64.3 66.3 - - -

ABR [57] 71.0 69.7 70.9 73.0 65.1 71.0 71.2 72.8 72.0 64.7 71.0 69.4

VLM-PL(Ours) 73.7 89.3 73.6 ↑2.7 73.9 82.4 72.4 ↑1.4 80.3 76.3 78.3 ↑6.3 79.4 83.5 81.0 ↑11.6

the pretrained ResNet-50 [29] as a backbone for extract-

ing multi-scale features. We establish the number of object

queries Q at 300. The AdamW [60] optimizer is utilized

for model training, with a learning rate of 0.0002 and a

weight decay parameter of 0.0001. We also set the gradi-

ent clipping parameter to 0.1. Other hyper-parameters are

in line with our baseline [97]. All experimental procedures

are conducted using 4 NVIDIA A100 GPUs, each with a

batch size of 8. For evaluation, We use a single GPU. In the

VLM assistance stage, we use the CLIP-ViT-L/14 [69] im-

age encoder to extract image feature embeddings. We also

use the Ferret-13B model [87] as a VLM, which is trained

on public datasets [40, 67, 88] using the Vicuna [12] LLM.

Scenario setup. In the multi-scenarios setting, the pro-

cess begins with initial training on a base categories set T1.

This is followed by subsequent training phases that intro-

duce additional categories subsets T2:n, gradually expand-

ing the model’s knowledge. For instance, scenarios like

5(T1)+5(T2)+5(T3)+5(T4) and 10(T1)+5(T2)+5(T3) are

referred to as 4-task and 3-task settings in our study. In these

settings, we evaluate the cumulative learning performance

after n phases across all integrated classes T1:n, and assess

the performance on the baseline (T1) and the added tasks

(T2+T3) and (T2+T3+T4) separately. In the Dual-scenario
setting, training begins on subset T1, then introduces T2,

represented as T1+T2. Evaluation covers all knowledge like

1−20 across all settings (e.g. 19+1, 15+5, 10+10, 5+15),

including an assessment of base knowledge (i.e. 19, 15, 10,

5). For COCO [52], the data configuration follows T1 + T2,

focusing evaluation solely on comprehensive model perfor-

mance.

5.3. Results and analysis

Multi-scenario. Table 1 demonstrates the outstanding per-

formance of our method on the PASCAL [20] dataset,

particularly in the complex 4-tasks scenario. Here, we

achieved a 65.5% accuracy, marking a significant 6.78%

improvement over the previous state-of-the-art (SoTA),

DMD+IFD [35]. Furthermore, in the 10+5+5 scenario, we

matched the ABR’s [57] performance without the need for

partial replay. These results underscore our model’s abil-

ity to counteract catastrophic forgetting by leveraging VLM

knowledge, thereby maintaining the robust performance of

the pseudo-labeling strategy across various scenarios.

Dual-scenario. Despite our goal of solving multi-scenario
challenges, our VLM-assisted pseudo-labeling strategy

(VLM-PL) also demonstrates significant performance in

single incremental task situations, as shown in Table 2 and

Table 3. In Table 2, compared to OW-DETR [26], which

uses the same baseline Deformable DETR [97], our method

surpasses it in both initial class performance and overall

(i.e. 1-20 result) outcome on pascal [20]. It also has out-
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Table 3. Performance comparison of CIOD methods on COCO in dual-scenario settings of 70+10, using COCO AP metrics. Results

for [6, 23, 43, 51, 65] are cited from the CL-DETR study [58]. The red arrow (↑) signifies an improvement over the previous state-of-the-

art. The best performance is highlighted in bold at each evaluation. † denotes the version without the replay strategy (e.g. partial replay,

synthetic replay).

Scenarios Method AP AP50 AP75 APS APM APL

70 + 10

LWF [51] 7.1 12.4 7.0 4.8 9.5 10.0

RILOD [43] 24.5 37.9 25.7 14.2 27.4 33.5

MMA [6] 30.2 52.1 31.5 - - -

ABR [57] 31.1 52.9 32.7 - - -

SID [65] 32.8 49.0 35.0 17.1 36.9 44.5

ERD [23] 34.9 51.9 37.4 18.7 38.8 45.5

CL-DETR† [58] 35.8 53.5 39.5 19.4 41.5 46.1

SDDGR† [36] 38.6 56.2 42.1 22.3 42.1 50.6

VLM-PL(Ours) 39.8 ↑1.2 58.2 ↑2.0 43.3 ↑1.2 23.3 ↑1.0 43.5 ↑1.4 51.6 ↑1.0

Table 4. Ablation experiment results of different pseudo-labeling

strategies on the Pascal [20] dataset with multi-scenario (i.e.

5+5+5+5) are presented. The values are mean Average Precision

(AP50, %), and we use the ferret [87] as a VLM. The best perfor-

mance is highlighted in bold at each evaluation.

Method
Number of Classes

5 10 15 20

Original pseudo labeling 82.6% 76.8% 73.6% 62.4%

VLM-assist pseudo labeling 82.6% 79.4% 77.9% 65.5%

Table 5. Ablation results of different VLMs [18, 87] on the Pas-

cal [20] dataset with multi-scenario (i.e. 5+5+5+5) are presented.

The values are mean Average Precision (AP50, %). The best per-

formance is highlighted in bold at each evaluation.

Method
Number of Classes

5 10 15 20

InternLM2 [18] 82.6% 75.7% 76.5% 63.9%

Ferret [87] 82.6% 79.4% 77.9% 65.5%

standing performance against the recent SoTA, ABR [57].

Our performance in scenarios 19+1, 15+5, 10+10, and 5+15

(73.7%, 73.9%, 80.3%, and 79.4%, respectively) demon-

strates our method’s effectiveness in mitigating forgetting,

even without using directly any previous data (replay-free).

Furthermore, Table 3 shows that our VLM-PL method out-

performs various other approaches on COCO [52], includ-

ing those using the same baseline [97] and excluding replay

strategy. Consequently, we can check the adaptability of our

strategy in both dual and multi-scenario contexts.

5.4. Ablations

In our ablation study, we evaluate our components in multi-

scenario settings. Specifically, we use a 4-tasks scenario on

the Pascal with the metric AP50. It’s important to note that

each result represents the cumulative performance up to the

Table 6. Ablation study of the influence of VLM [87] capacity on

the Pascal [20] dataset with multiple scenarios (i.e. 5+5+5+5) is

presented. The values represent mean Average Precision (AP50,

%). The best performance is highlighted in bold for each evalua-

tion.

Method
Number of Classes

5 10 15 20

Ferret 7B [87] 82.6% 78.7% 77.0% 64.7%

Ferret 13B [87] 82.6% 79.4% 77.9% 65.5%

evaluated task (e.g. T3 model evaluation includes T1, T2,

and T3 classes).

Pseudo-labeling. In Table 4, we evaluate the effectiveness

of using our VLM-PL approach, as compared to conven-

tional pseudo-labeling methods. We observed that with the

progression of tasks, the application of the Ferret model for

refining pseudo GTs led to improvements in performance

about all each tasks, demonstrating gains of 3.4%, 4.3%,

and 3.1% for T2, T3, and T4 respectively. These enhance-

ments indicate that as tasks accumulate, there is a tendency

for the generation of incorrect pseudo GTs, likely due to a

blurring of the knowledge initially trained into the model.

Nevertheless, the VLM [87] has consistently demonstrated

its ability to correct these inaccuracies, emphasizing its cru-

cial role in refining the pseudo-labeling strategy.

Comparative analysis of VLMs. VLMs employ various

approaches, one of which is the Ferret [87] model. This

model allows detailed conversation about a specific location

based on the whole image context. As indicated in Table 5,

we compared the Ferret model with another VLM model,

InternLM2 [18]. It has delivered state-of-the-art results in

question-answering tasks using entire images only. To use

InternLM2 [18] for classifying a specific image region, we

cropped the image based on bboxes, identical to Ferret’s

approach in ours. Consequently, in the incremental tasks

T2, T3, and T4, Ferret [87] outperforms InternLM2 [18] by
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Figure 4. Qualitative results of both conventional pseudo labeling, as used in OW-DETR [26] and SDDGR [36], and VLM-assisted pseudo

labeling in a multi-incremental scenario (for example, 5(T1)+5(T2)+5(T3)+5(T4) on the Pascal dataset) are presented here. The effects of

VLM assistance can be observed from (a) to (b), (c) to (d), and (e) to (f). This is especially noticeable in (a) to (b) of the second row and

(e) to (f) of the third row, which indicate that all pseudo GTs are incorrect.

3.7%, 1.4%, and 1.6% respectively. This indicates Ferret’s

effectiveness, which allows querying both the entire image

feature and specific parts.

VLM capacity impact. VLM generally relies on the per-

formance of the LLM. Generally, LLM’s larger capacities

and more comprehensive training data lead to better out-

comes in VLM. We investigate the impact of model ca-

pacity on the refining process of pseudo GTs. Table 6

shows the results from experiments using Ferret [87] 7B

and Ferret [87] 13B, each using Vicuna [12] 7B and Vi-

cuna [12] 13B, respectively. Importantly, the larger 13B

model provides modest but consistent improvements across

all tasks, with performance increases of 0.7%, 0.9%, and

0.8%. These improvements mean the LLM capacity can

affect VLM performance. As a result, we chose the 13B

model for our study.

Qualitative results. As illustrated in Figure 3, the ad-

vantage of our method is particularly noticeable in multi-

scenario settings, where incorrect pseudo GTs are prevalent.

The images in columns (b), (d), and (f) clearly demonstrate

the thorough removal of all incorrect pseudo GTs through

VLM assitance. Furthermore, in row 1, images a, c, and e

vividly depict this challenge, showcasing multiple pseudo

GTs for a single object. Nevertheless, through the VLM-

assisted refining process, our approach successfully con-

solidates these into a single accurate GT for each object,

demonstrating the precision and reliability of VLM assis-

tance in the pseudo GT refining process.

6. Conclusions And Limitations
In this study, we introduced VLM-PL, a new approach that

leverages Vision-Language Model to address the rapid per-

formance decline in pseudo-labeling strategy under the in-

fluence of previously trained models in multiple incremen-

tally class incremental object detection. Our VLM-PL not

only demonstrates robust performance across multi and dual

scenarios but also achieves state-of-the-art results in condi-

tions without a replay strategy.

Limitations. While our approach effectively addresses

pseudo-labeling reliability in various scenarios, it does have

limitations. Its performance may be limited when there

are few images available for pseudo-labeling, or when new

images contain few objects from previously learned cate-

gories. Despite these challenges, our approach significantly

outperforms not only techniques that do not utilize pseudo-

labeling but also surpasses prior works [36, 58] that gener-

ate pseudo GT leveraging trained model knowledge. Fur-

thermore, we believe it also has the potential to improve

methods of preventing catastrophic forgetting when used in

conjunction with partial replay techniques.
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