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Abstract

This study is in the context of class-incremental contin-
ual learning using replay, which has seen notable progress
in recent years, fueled by concepts like conditional, latent
or maximally interfered replay. However, there are many
design choices to take when it comes to implementing re-
play strategies, with potentially very different outcomes in
the various class-incremental scenarios. Some of the obvi-
ous design choices in replay are the use of experience re-
play (ER), the use of different generators like GANs –vs–
VAEs for generative replay, or whether to re-initialize gen-
erators after each task. For replay strategies in general, it
is an open question how many samples to generate for each
new task, and what weights to give generated and new sam-
ples in the loss. On top of this, there are many possible CL
evaluation protocols differing in the amount of tasks, the
balancing of tasks or fundamental complexity (e.g., MNIST
-vs- latent CIFAR/SVHN), and thus few generic conclusions
about best practices for replay/rehearsal have found con-
sensus in the literature. This study aims at establishing such
best-practices by conducting an extensive set of representa-
tive replay experiments.

1. Introduction

This article is in the context of class-incremental contin-
ual learning (CL), which is considered the most challeng-
ing CL scenario among several others, see [52]. Class-
incremental CL assumes that data non-stationarities take
the form of abrupt switches between mutually exclusive
tasks, see Fig. 1. One fundamental approach to tackle class-
incremental CL is replay, which we take to mean the re-use
of samples from previous tasks when tackling the current
one. In experience replay, these samples are taken from a
buffer that was populated during previous tasks, whereas in
generative replay, they are produced by a generator trained
during previous tasks. Replay approaches have known con-

siderable success [54] and are actively evolving. Some
of the recent additions include latent replay [41], brain-
inspired replay [53], maximally interfered replay [1] and
adiabatic replay [27]. However, the design space of replay
methods is large, which is illustrated in Fig. 2, and it is not
clear whether there is a single best-practice strategy that can
guide researchers in all possible evaluation scenarios. We
can identify several fundamental axes for replay strategies
in general, where we omit the issue of using latent replay or
not. Rather, we assume that latent replay is used only for
problems where it is required.
• Number of samples to replay for each task
• Relative weighting new and generated samples
For generative replay, there are additional choices to make.
We believe that the consensus of the community is to use
class-conditional generators (see, e.g., [32, 33, 53]) so this
is not included here. Similarly, we do not include the choice
of a particular form for the involved DNNs, and rather as-
sume that they are chosen according to the characteristics
of the data they are applied to.
• Should generators be re-initialized after each task?
• What type of generator should be used, i.e., cVAE or

cGAN?

  

Data for T1 Data for T2 Data for T3

   task T1                     task T2             task T3

...
Labels for T1 Labels for T2Labels for T1 Labels for T1

Figure 1. Class-incremental learning, consisting of distinct tasks
that contain data from pairwise disjoint classes. Please note that
not all tasks need contain the same number of classes.
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Figure 2. A general depiction of replay approaches, regardless of
whether a generator or a buffer is used. For the purposes of this
study, we have also shown the different weights wi,R and wi,M
that real and replayed samples can be assigned in the loss at task i.

And finally, the chosen evaluation scenario is relevant:
• Number of tasks (small/large)
• Task balancing, i.e., do all tasks contain the same number

of classes?
• Fundamental difficulty of the CL problem (e.g., permuted

MNIST –vs– CIFAR)
The common evaluation scenario seems to be what is

usually termed split-MNIST and which we denote as D25,
generalized to other 10-class datasets. In D25 CL problems,
the 10 classes are grouped into five tasks of two unique
classes each. Obviously, other tasks can be constructed
from 10-class datasets, such as, e.g., D6-14 or D110 which
is another common (but less often used) CL benchmark. In
any case, most works assume that the number of classes per
task is constant and known, which is an assumption that we
relax in some of the evaluation of this article.

1.1. Related Work

Many recent works perform comparison studies [12, 35, 53]
between different approaches to CL. However, when it
comes to rehearsal, no unified view exists w.r.t. various
design choices to make. Constant-time rehearsal is used
in several studies, combined with weights for replayed and
new samples. In some studies [1], weights for replayed
samples are chosen by cross-validation, whereas heuristics
based on the number of previously seen tasks are used in
others [53]. An extensive experimental evaluation of differ-
ent generator types was performed in [33], with the result
that conditional generators are advantageous and that GANs
are more suitable than VAEs, although it is not clear how
the various parameters were tuned in this study. Although it
is rarely indicated in the articles, generators are usually re-
initialized after each task, whereas [53] argues for keeping
generators since ”preventing forgetting is easier than learn-
ing”. To the best of our knowledge, no recent study exists
which systematically assesses the performance of rehearsal
methods for all of the more common design choices. Con-
cerning DGR using Denoising Diffusion Probabilistic mod-
els (DDPMS, [22]) which has been investigated in very re-
cent studies [11, 17, 36, 57]: we did not specifically address

DDPMs here but will do so in future work, once good prac-
tices for replay have been agreed upon in the community.

1.2. Contributions

This article is the first study to systematically compare dif-
ferent commonly used replay approaches on a wide variety
of datasets and dataset splits for continual learning, includ-
ing the important aspect of latent replay. Based on these in-
vestigations, we provide guidelines for using replay-based
approaches to continual learning.

2. Methods
2.1. Feature encoding

The training of generative models on complex datasets like
SVHN and CIFAR-10 is still challenging [1, 32]. Hence,
the use of feature extractors has become a principled ap-
proach to deal with this limitation [21, 34, 40, 41, 53]. This
study relies upon supervised contrastive learning (SCL)
[24] based on SimCLR [8] to build a fixed feature extractor
to tackle more complex data distributions. Usually, in con-
trastive learning, the encoding network is trained on large
datasets such as ImageNet [47], but our empirical studies
have shown that the extracted features might not be benefi-
cial for every scenario, but ultimately depends on the com-
patibility between the source and target domain. While it
might work for e.g., generalizing features from CIFAR-10
and use them for CL training on CIFAR-100 as shown in
[53], at the same time they might be insufficient for SVHN
and vice versa. We reserve a fixed portion of the origi-
nal dataset for SCL and exclude these instances from be-
ing used for downstream CL, thus the data used for pre-
training is identical but not the same. A ResNet-50 with ran-
domly initialized weights is used as the encoding backbone
and trained for 256 epochs with a mini-batch size of 256.
Each incoming data instance is normalized and augmented
by performing a random horizontal flipping and rotation in
a range from −0.02 ∗ 2π to 0.02 ∗ 2π. The final pooling
layer outputs a representation vector with the dimensional-
ity D = (1, 1, 2048). The attached projection head consists
of two fully-connected layers with 2048 and 128 units re-
spectively using ReLU activation. The n-pairs multi-class
loss [49] is used with a temperature of 0.05 and optimized
with Adam using ϵ = 0.001, β1 = 0.9 and β2 = 0.999. In
our experiments, the datasets are transformed prior to CL
training, however, an ”on-the-fly” encoding is also feasible
at the mini-batch or sub-task level, albeit with poorer run-
time efficiency.

2.2. CL strategies

Experience replay (ER) uses reservoir sampling as de-
scribed in [46], storing 50 samples per encountered class.
The time and space complexity is thus constant w.r.t. the
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number of classes, even if CL breaks down at some point
when the number of tasks becomes large.

The ER solver consists of 3 fully-connected layers with
512 units and ReLU activation followed by a softmax output
layer.
Deep generative replay (DGR) utilizes cVAEs [25, 50]
and GANs [18], whereas the latter is either implemented
as a vanilla GAN (cGAN) [38] or by using the Wasserstein
distance [3] combined with gradient penalty [19] (WGAN-
GP). VAEs use a latent dimension z of 100 and a disentan-
gling factor of β = 1.0, while GANs use a noise dimen-
sion z of 100. WGAN-GP uses a gradient penalty weight
of 10 and performs three discriminator iterations per gen-
erator iteration. Both, VAEs and GANs are conditioned
on the label space by concatenating the output of the la-
bel input mapped to a fully connected layer with units ei-
ther matching the data dimension (cVAE encoder/decoder
and cGAN discriminator) or noise dimension (cGAN gen-
erator). The VAE encoder consists of two fully-connected
layers with 2048 units and ReLU activation, followed by a
split output head for the mean vector and logarithmic vari-
ance. The decoder is composed of a dense layer chain us-
ing ReLU with 128-512-1024 units and a 2048-dimensional
output layer with sigmoid activation. The GAN genera-
tor is composed of two fully connected layers with 2048
units each and an output layer with sigmoid activation. For
cGAN and WGAN-GP each dense layer is followed by a
batch normalization layer and LeakyReLU with α = 0.2.
The Discriminator uses two dense layers with 512 and 256
units followed by LeakyReLU with α = 0.2 and Dropout
with a rate of 0.3. DGR solvers share the same architecture
as the solver used for ER while using the ADAM optimizer
with a learning rate of 1e−3 and β1 = 0.9, β2 = 0.999. The
learning rate for cVAE encoders and decoders is set to 1e−4
with β1 = 0.9, β2 = 0.999. While cGAN and WGAN-GP
use a learning rate of 5e−4 with β1 = 0.5, β2 = 0.999 us-
ing the ADAM optimizer. Generators and the ER solver are
trained for 100 epochs per task and a mini-batch size of 128.
DGR solvers are trained for an additional 50 epochs after
generator training. We additionally investigate the effect of
re-initializing generators before each new task, as opposed
to retaining the same structure (warm-start) for training.

2.3. Replay strategies

This study focuses on three distinct approaches to replay:
balanced, constant and weighted. For the current training
task i > 1, let Mi denote the currently replayed samples
(either from a buffer or using a generator), Ri the current
(real) task data, and βij a training mini-batch which is uni-
formly sampled from Ri ∪ Mi (see also Fig. 2). Further,
we define a parameter χM that defines the proportion of
replayed samples at each task, therefore also defining the

proportion of replayed samples in each training mini-batch:

χM =
|Mi|

|Ri|+ |Mi|
, χR = 1− χM. (1)

The balanced strategy ensures a linear scaling of Ri w.r.t.
previously encountered classes. Denoting the number of
classes for each task j as Nj , we can ensure that amount
of samples from each class in all mini-batches βij is identi-
cal by choosing:

χM =

∑i−1
j=1 Nj∑i
j=1 Nj

(2)

The constant strategy generates an amount of samples iden-
tical to the amount of samples in Ri. Here, storage con-
sumption and re-training time is bounded, and χM is set to
0.5. There are works which replay a constant number of
samples regardless of the size of Ri, which however im-
plicitly assumes that all tasks contain the same amount of
samples. Please note that classes will generally be unbal-
anced in each mini-batch for this strategy.
The weighted strategy is a direct extension to the constant
strategy, which implements an additional mechanism to en-
sure balancing. This approach is inspired by [53] and uses
distinct weights wi,R for real samples and wi,M for gen-
erated ones, which are applied to the loss function L to
offset imbalances. Here, the loss is split into two parts:
LR and LM computed from real and generated samples,
respectively (see also Fig. 2). In its original formulation
the calculation of these balancing coefficients is based on
the amount of encountered tasks, which we will refer to as
task-weighted loss weights (see Eq. (3)). We additionally
added an adaptation based on class counts, which we term
class-weighted loss weights (see Eq. (4)). Assuming that the
amount of samples per class is roughly similar, we compute
these weights according to:

L = wi,RLR + wi,MLM =
1

i
LR +

i− 1

i
LM (3)

L = wi,RLR+wi,MLM =
1∑i

j=1 Nj

LR+
Ni∑i
j=1 Nj

LM.

(4)
For generative replay, loss weighting is applied to both the
generator and solver losses.

3. Experiments
3.1. Evaluation protocol

Usually CIL is investigated in an artificially composed
setting where tasks share the same amount of classes
per task which results in approximately evenly balanced
compositions [2, 33, 45, 48, 55]. We argue that this
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assumption seems highly unrealistic for real world learning
scenarios, since novel additions to a persistent knowledge
base should diminish and fluctuate over the course of facing
a multitude of separate training sessions. We share the
idea that artificial CIL scenarios, despite their usability for
prototypical evaluation, should be adapted and expanded
[10]. We aim to extend common CL benchmarks towards
a more sophisticated CIL evaluation protocol to use for
future research in this area. Still, some relaxation has to
be accepted in order to enable tractable experimentation.
Replay is investigated assuming known task-boundaries
and disjoint classes, while it is assumed that data from all
tasks occurs with equal probability. Data is normalized to
a range of [0, 1] and randomly shuffled beforehand. We
perform a two-staged training, with an initial run on T1 and
a sequence of replay runs Ti, i > 1. Furthermore, we do
not allow any information about future tasks in advance,
apart from knowing the current classes and the number of
samples per incoming task.

Three directions for creating distinct task splits to
model CIL-problems (CP) are investigated and showcased
in Tab. 1. These are divided into: usual CIL-problems
(U-CP), commonly found in CIL literature (e.g. D52, D25,
D110), and the more imbalanced, diminishing (D-CP) and
alternating CIL-problems (A-CP). The latter two extend
U-CP by incorporating some variance in terms of the total
number of tasks and classes. D-CP reflects a decrease in the
amount of new data over the course of training, while the
task splits for A-CP fluctuate in terms of class additions.
Classes per task are randomly selected once and fixated
throughout all experiments.

dataset↓
split ↓ MNIST / F-MNIST

E-MNIST
SVHN / CIFAR10

U-CP1 D52 /
U-CP2 D25 /
U-CP3 D110 /
D-CP1 D4-3-2-1 D20-110

D-CP2 D5-15 /
A-CP1 / D2-10-3-10-5
A-CP2 / D10-2-10-3-10

Table 1. This table shows all task splits evaluated in the empirical
study. The short-hand D25 describes the split used for the training
procedure and is to be read as 2-2-2-2-2 for a 5-fold split, where as
each number from this sequence represents the amount of unique
classes in the data stream for a task Ti, i ∈ 1, ..., N .

3.2. Data

MNIST [29] consists of 60.000 28× 28 grayscale images
of handwritten digits (0-9).
Fashion-MNIST [56] consists of 60.000 images of clothes
in 10 categories and is structured like MNIST.

E-MNIST [9] is an extended version of MNIST and con-
tains additional letters. A total of 131.000 samples are bal-
anced across 47 classes, and thus allows to model a CL
problem where the amount of already acquired knowledge
can be significantly larger than the amount of new data
added with each successive task.
SVHN [39] contains 60.000 RGB images of house numbers
(0-9, resolution 32× 32). This dataset is imbalanced, as
classes 1 and 2 are overrepresented, while classes 0 and 9
are underrepresented.
CIFAR-10 [28] contains 60.000 RGB images of natural ob-
jects, resolution 32x32, in 10 balanced classes.
Feature encoding is used for SVHN and CIFAR-10 with
a pre-trained feature-extractor to reduce the complexity of
the data as discussed in Sec. 2.1. For SVHN, we take half of
the extra split, while we divide the CIFAR10 training split
in half, reserving one part for pre-training and the other for
downstream CL. No encoding was performed for MNIST,
FashionMNIST and E-MNIST.

3.3. Evaluation metrics

The accuracy αij of a solver Si after each training phase
Tj , 1, . . . , j is evaluated on a corresponding held-out test
set. The final accuracy αend is evaluated on a joint test set
composed from samples of all present classes, and reported
after training on the complete task sequence. For compar-
ison, we also provide the joint-training performance αbase,
achieved by a default solver on the union of all classes from
each distinct dataset. To measure CL capacity we define
forgetting Fij , as an averaged value over all tasks FT which
is defined as follows:

Fij = max
i∈{1,..,T−1}

αij − αTj , ∀j < T.

FT =
1

T − 1

T−1∑
j=1

FTj , FT ∈ [0, 1]. (5)

3.4. Results

The experiments are conducted on a cluster of 25 machines
equipped with single RTX3070Ti GPUs. Five randomly ini-
tialized runs were performed for all configurations on the
task compositions showcased in Tab. 1. We also offer a pub-
licly available TensorFlow2 implementation1. The results
are presented in the following order: First, a comprehensive
comparison of the investigated CL methods from Sec. 2.2 in
their unmodified version and a memory-constrained (con-
stant) scenario is presented to investigate the impact of dif-
ferent datasets and task splits (see Sec. 3.1). Next, the ef-
fects of applying the proposed replay modifications as de-
scribed in Sec. 2.3 is assessed and a final evaluation of re-
setting and reusing generators for DGR is performed.

1The code and instructions to reconstruct the experiments can be found
under the following link: https://github.com/Alexk1704/AR
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method↓
ER CVAE CGAN WGAN-GP

M
N

IS
T

/F
-M

N
IS

T

U-CP1 .85 ±.01 /.27 .97 ±.00 /.03 .93 ±.01 /.11 .95 ±.01 /.08
.71 ±.01 /.47 .78 ±.01 /.34 .64 ±.01 /.61 .69 ±.01 /.52

U-CP2 .76 ±.01 /.05 .93 ±.00 /.08 .20 ±.01 /1.0 .88 ±.01 /.14
.60 ±.04 /.49 .63 ±.03 /.44 .48 ±.01 /.63 .44 ±.01 /.69

U-CP3 .15 ±.11 /.64 .83 ±.01 /.19 .10 ±.01 /1.0 .70 ±.06 /.32
.37 ±.03 /.81 .67 ±.04 /.41 .20 ±.19 /.91 .54 ±.03 /.51

D-CP1 .86 ±.01 /.10 .95 ±.01 /.03 .10 ±.00 /.49 .93 ±.00 /.05
.64 ±.01 /.20 .66 ±.04 /.18 .55 ±.03 /.25 .59 ±.00 /.23

D-CP2 .84 ±.00 /.21 .91 ±.00 /.07 .57 ±.40 /.47 .83 ±.05 /.10
.69 ±.01 /.36 .65 ±.01 /.27 .51 ±.06 /.40 .50 ±.04 /.33

SV
H

N
/C

IF
A

R
10

U-CP1 .81 ±.03 /.25 .68 ±.04 /.49 .45 ±.00 /.94 .56 ±.05 /.72
.62 ±.01 /.40 .54 ±.02 /.63 .40 ±.01 /.87 .44 ±.02 /.79

U-CP2 .78 ±.03 /.26 .54 ±.05 /.53 .15 ±.00 /.98 .35 ±.03 /.78
.62 ±.02 /.36 .44 ±.03 /.53 .19 ±.01 /.93 .39 ±.03 /.79

U-CP3 .56 ±.40 /.39 .43 ±.05 /.60 .06 ±.00 /1.0 .30 ±.01 /.72
.38 ±.25 /.63 .34 ±.03 /.71 .10 ±.01 /1.0 .28 ±.04 /.78

D-CP1 .82 ±.00 /.11 .56 ±.04 /.28 .09 ±.01 /.48 .41 ±.05 /.41
.60 ±.02 /.16 .42 ±.03 /.27 .10 ±.00 /.43 .36 ±.05 /.34

D-CP2 .75 ±.09 /.26 .58 ±.01 /.43 .20 ±.00 /.99 .44 ±.01 /.61
.65 ±.01 /.32 .36 ±.04 /.57 .10 ±.00 /.97 .32 ±.02 /.67

E
-M

N
IS

T D-CP1 .64 ±.02 /.47 .44 ±.03 /.34 .21 ±.15 /.70 .22 ±.01 /.37
A-CP1 .54 ±.03 /.52 .71 ±.02 /.36 .17 ±.01 /.96 .59 ±.03 /.47
A-CP2 .64 ±.02 /.47 .63 ±.02 /.45 .55 ±.03 /.52 .55 ±.03 /.52

MNIST F-MNIST SVHN CIFAR-10 E-MNIST1 E-MNIST2 E-MNIST3

.98 .88 .92 .75 .89 .89 .88

Table 2. Experimental results. Upper table Results for all inves-
tigated CL methods in their unmodified settings while following
the constant replay scenario (see Sec. 3.1). We present the final
test-set accuracy αend followed by average forgetting Fend for each
CIL problem presented in Tab. 1. Lower table Joint-training base-
lines for all datasets. We used the solver network as described in
Sec. 2.2 trained for 100 epochs as the classification model. E-
MNIST1/2/3 refer to the joint class sets as apparent in D-CP1,
A-CP1 and A-CP2. Results are averaged across N = 5 runs.

The evaluation of the memory-constrained scenario for
unmodified CL methods is shown in Tab. 2. We identified
cVAEs to be most effective on MNIST and Fashion-MNIST
for almost every investigated task split, while ER performs
better on encoded features. GAN-based DGR shows the
weakest results across all datasets, especially having diffi-
culties with longer task sequences and sequentially learning
the latent feature representations. Additionally, cGANs reg-
ularly suffer from major convergence problems and mode
collapse [44, 51], especially on encoded SVHN and CIFAR-
10. Although, WGANs with GP show competitive results
when directly compared to cVAEs, they come with the
major drawback of increased training time. An epoch of
generator training on U-CP3 for SVHN takes 25 seconds
per epoch for cVAE, 52s/epoch for cGAN and 90s/epoch
for WGAN-GP. Regarding the usage of common CIL task
splits, we have identified problems like U-CP1 (D52) as
vacuous to evaluate in this context due to the low num-

ber of individual replay training sessions and the inherent
balance in terms of the set of classes that each task repre-
sents. We also observe this to some extent for longer and
equally balanced task sequences like U-CP2 (D25) and U-
CP3 (D110), as long as the initial capacity of the buffer or
generator allows to capture the data somewhat effectively.
This is reflected by the small margin in terms of accuracy
and forgetting between U-CP2 and U-CP3 despite the latter
objective doubling the amount of sequential learning tasks.
Additionally, cVAEs for example, reach a similar perfor-
mance for D-CP1 (3 tasks and 10 classes in total) as for
U-CP3 (10 tasks and 10 classes in total). We also observe
that all CL methods struggle to reach satisfactory results on
task splits where the amount of new data to learn diminishes
steadily over the course of a growing number of learning ex-
periences, as can be seen for E-MNIST D-CP1 (D20-110).
We also gathered more interesting results, like e.g., the poor
performance of ER on MNIST/F-MNIST U-CP3. Here, the
final accuracy is far off from our expectation, which again
shows that minor changes in the evaluation protocol, such
as randomized class orders, may show very different results
than usually found in the literature.
Results for the application of proposed replay modifica-
tions are showcased in Fig. 3 to provide a comprehensive
overview of their benefits for CL training. The correspond-
ing values for forgetting can be found in Sec. 6.1. For ER,
an explicit loss weighting has shown to be beneficial es-
pecially considering longer task sequences. However, we
mostly couldn’t distinguish a significant difference between
the resulting performance of weighting on a class basis –
versus – weighting on a task basis except for E-MNIST D-
CP1 where balancing the loss coefficients based on the class
count outperforms the weighting strategy based on the num-
ber of tasks, a training on longer task sequences like D20-
120 could amplify this effect even more. For DGR-based
rehearsal, we identified the balanced scenario as the most
stable one, achieving the highest accuracy and least forget-
ting during replay training. While there are definitely some
cases where explicit loss-weighting might be on par with
a balancing strategy, these cases generally seem to be very
rare or only occur in task splits where the replay strategy
has no significant effect at all (e.g. U-CP1).
Re-using or re-starting generators makes little difference,
as described by Fig. 3 (e.) and (f.). We found only small
fluctuations in accuracy and forgetting across all experi-
mental groups, which may result from statistical effects.

4. Discussion

Construction of proper CIL evaluation protocols: The
usage of simplified benchmarks based on a minimalist pro-
tocol may mask weaknesses of replay methods in CL. We
have identified some of the relevant criteria to consider in a
CIL scenario.
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(a) Warm-start: Absolute accuracy. (b) Warm-start: Normalized accuracy.

(c) Generator reset: Absolute accuracy. (d) Generator reset: Normalized accuracy.

(e) Difference in absolute accuracy between (c.) and (a.). (f) Difference in normalized accuracy between (c.) and (a.).

Figure 3. Final accuracy αend for all investigated datasets/task splits. Each column represents a distinct task split on each dataset, whereas
the first letter (”M”, ”F”, ”S”, ”C” stands for MNIST, Fashion-MNIST, SVHN and CIFAR-10), followed by the task split descriptor from
Tab. 1. The deployed CL methods (4 groups * N rows) were modified as explained in Sec. 2.3: const. = constant, balan. = balanced (DGR
exclusive), lw-cls. = loss-weighting by class count, lw-tsk. = loss-weighting by task count. The results for ER (top-most three rows) are
re-used and serve as a baseline for the results in (c.-f.). Fig. (a.) and (b.) show the absolute and normalized (over each column vector)
values for a warm-start, while Figs. (c.) and (d..) display the results when generators are reset after each task. Figs. (e.) and (f.) show the
differences between resetting and re-using generators.

More interesting benchmarks should preferably involve
a long sequence of tasks and impose constraints in terms of
a limited computational and memory budget, as discussed
in [15]. However, we have empirically confirmed that the
length of the task sequence alone is not a clear indicator
of the overall complexity of an objective, but rather must
be considered as one piece of the puzzle when construct-
ing appropriate CIL benchmarks. We assume that the mix-
ture of the total amount of samples/classes, their temporal
occurrence and balancing in each training phase, as well

as the resulting interference between already captured and
newly arriving data statistics are of central importance and
must be considered holistically. We propose implementing
a comprehensive CIL evaluation that considers these fac-
tors, rather than relying on commonly used but often unin-
formative and misleading CIL evaluation methods found in
the literature. What we have not yet constructed is a nat-
ural imbalance for the number of samples per class except
for SVHN, which would be a proper addition to extend our
experimental framework. Furthermore, an aspect such as
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natural repetition [10] could be combined with the formula-
tion of the diminishing and alternating task splits to render a
CIL problem more realistic. An efficient knowledge adap-
tation is required here, and the CL method has to be able
to deal with repetitive patterns from a previous distribution
while encountering new data to add to its knowledge base.
The experimental evaluation also showed that the task or-
der plays an important role in the evaluation, see e.g. ER on
”M: U-CP3” from Fig. 3a. These results are far from the re-
ported results of other empirical studies on exactly the same
split [4]. This could be due to the fact that the solver’s pa-
rameter set θT at the end of training resides in the low-loss
region of the first task, since the same network is reused
and not reinitialized, in contrast to e.g., GDumb [42]. This
should underline the need for stronger randomization in CL
benchmarking and its crucial role in creating meaningful
CIL experiments. We also make a more practical reference
to a real-time application with splits such as A-CP1, A-CP2
and D-CP1, D-CP2, since a CL model ultimately reflects
the accumulated knowledge over a larger corpus of previ-
ously collected data and therefore must be able to adapt to
the assumption that the amount of newly added data is dy-
namic or eventually represents only a small fraction of the
total knowledge.

Identifying efficient generators for replay: Since fac-
tors such as memory consumption and a limited compute
budget of CL methods are undeniably important metrics
[13, 20, 43], we should not be guided solely by the result-
ing accuracy when evaluating the usability of a method. We
find that cVAEs are the best-performing generative model
in the context of the replay efficiency and resulting solver
accuracy for DGR, as cGANs often suffer from mode col-
lapse [5, 44, 51], while WGANs with GP are slower by a
factor of three during training. When combining generative
models with the presented replay strategies, we identified
the balanced scenario as the best performing one. This is
in line with the views of [33], where it was observed that
to ensure a balanced distribution of classes, the number of
generated samples must be rescaled linearly with respect
to the number of tasks to ensure stable generators. How-
ever, this approach is accompanied by a worse runtime and
a higher consumption of intermediate memory to compen-
sate for the loss of knowledge. It would also be interesting
to investigate whether there is a perfect timing for replaying
certain aspects of the data as discussed in [26], and combine
this with a dynamically balanced replay mechanism, as this
could also reduce the reliance on sharp task boundaries to
trigger generator re-training, which is a serious limitation in
any streaming data setup.

The use of latent replay: Pre-trained (PT) models can be
advantageous for several replay methods, and these advan-
tages can vary greatly from algorithm to algorithm, while
furthermore there appears to be different behavior for dif-

ferent types of PT models used [30]. Generative models are
still limited in their capacity to model more complex distri-
butions [2, 31] and therefore rely on PT models to be useful
for datasets like SVHN and CIFAR-10/100. Our study uses
supervised contrastive learning on the same data domain,
but this could also be adapted to the self-supervised learn-
ing paradigm to better fit a real CL setting [6, 7, 14]. Em-
pirical studies have shown that PT models can be combined
with CL algorithms and applied to incremental batch learn-
ing [16] as well as to learning from streaming data [23].

Diffusion-based DGR: In recent years, denoising diffu-
sion probabilistic models (DDPMs, [22]) have gained wide-
spread attention. A few works have investigated CL with
DDPMs as generators [11, 17, 36, 37, 57], reporting very
promising results which comes att he cost of long train-
ing times and very large models. For most of these pa-
pers, it is not clear what replay strategy (balanced, constant,
weighted) is used. In future work, will investigate DDPM-
based generative replay, although we expect that the funda-
mental findings of this study will generalize.

5. Conclusion and take-home messages

The present study could be extended in several direction,
mainly by varying more hyper-parameters, such as number
of training epochs or generator/solver structure. Based on
the presented results, we can formulate the following take-
home messages for CL practitioners:

Balanced replay performs best This is observable across
virtually all dataset splits and generative replay methods
(WGAN and cVAE), but is most apparent for unbalanced
task splits. The other weighting schemes we tested can be
competitive for some datasets, but perform generally worse.

Warm-starting is feasible but not required Although
warm-starting can improve convergence time, the final ac-
curacies do not seem to depend on this choice at all.

ER is competitive for latent replay Although ER does not
show the best performance for simple datasets, it excels
when latent data are replayed. This is presumably since la-
tent features are harder to model by generative models, and
the replay of real samples gives an advantage.

Use cVAEs as generators Although generators based on
WGAN-GP can be competitive, they suffer from long
training times and the need to tune the number of training
epochs via cross-validation which is in principle inadmis-
sible. For cVAEs, early-stopping can be used since they
minimize a loss function, which GANs do not.
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[11] Bartosz Cywiński, Kamil Deja, Tomasz Trzciński,
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