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Abstract

Continual Learning (CL) focuses on maximizing the pre-
dictive performance of a model across a non-stationary
stream of data. Unfortunately, CL models tend to forget
previous knowledge, thus often underperforming when com-
pared with an offline model trained jointly on the entire data
stream. Given that any CL model will eventually make mis-
takes, it is of crucial importance to build calibrated CL mod-
els: models that can reliably tell their confidence when mak-
ing a prediction. Model calibration is an active research
topic in machine learning, yet to be properly investigated
in CL. We provide the first empirical study of the behavior
of calibration approaches in CL, showing that CL strate-
gies do not inherently learn calibrated models. To miti-
gate this issue, we design a continual calibration approach
that improves the performance of post-processing calibra-
tion methods over a wide range of different benchmarks and
CL strategies. CL does not necessarily need perfect predic-
tive models, but rather it can benefit from reliable predictive
models. We believe our study on continual calibration rep-
resents a first step towards this direction.

1. Introduction

In offline machine learning, models learn from a fixed data
distribution and they are tested on new examples from
the same distribution (the iid assumption). Unfortunately,
machine learning models never achieve perfect predictive
accuracy unless the task is very simple or created ad-hoc.
If a perfect predictive model is unrealistic for offline
machine learning, it is even more unlikely in Continual
Learning (CL) [15], where the model learns over time from
a sequence of non-stationary data distributions. Due to the
forgetting phenomenon [9], the predictive performance of
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a CL model can degrade as the model is trained on new
distributions.
So far, most of the efforts in CL have been dedicated to
designing approaches that mitigate forgetting and increase
predictive performance [7]. While these remain funda-
mental challenges for the advancement of CL research,
they also mainly aim at reducing the gap with respect to a
perfect predictive model. We do not expect this gap to be
ever fully closed, hence we need to learn how to deal with
imperfect models that make mistakes.

The objective of this paper is to understand how to build
CL systems that can be trusted. For example, being able
to tell in advance when a model might be wrong can make
applications more robust and reliable: a user could discard
predictions that do not match a predefined level of trust and
only accept those that are marked as safe by the model it-
self (as in the learning to reject paradigm [6]). To this ex-
tent, we leverage the calibration paradigm, a well-known
research topic in machine learning that aims at learning a
proper confidence measure related to the predictions of a
model [10, 21, 26].
Intuitively, the confidence tells how likely the model is, on
average, to provide a correct answer on a given example.
For this reason, calibrated models are extremely useful in
many practical scenarios, from finance and healthcare to
computer vision and robotics. The more autonomous the
application, the more risky it is to rely on the predictions of
uncalibrated models. Although it could be of extreme use
for practical purposes, calibration is currently disregarded
in CL (with the notable exception of a brief mention in
[3, 4], that we also consider in our work ).
We believe calibration to be a fundamental challenge for CL
as it is unlikely to achieve reliable CL models for real-world
applications without a strong notion about their robustness
(Figure 1). Here, we provide our contribution towards cali-
brated CL models:
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Figure 1. A CL model fθ is trained on a sequences of k experiences (or tasks). The model accuracy on the class “cat” decreases over time.
Its confidence decreases much faster. Therefore, the model becomes less calibrated over the course of its learning phase. A calibrated CL
model, which is the objective of this paper, should output a confidence which is equal to the average accuracy. A calibrated model knows
what to expect, on average, as a result of its predictions.

1. We ran extensive experiments across 4 CL benchmarks,
3 CL strategies, and 5 calibration methods. We include
both popular CL benchmarks as well as others datasets
aimed at testing calibration in scenarios beyond com-
puter vision (supervised action prediction from Atari)
and real-world scenarios (land use detection from satel-
lite images). To the best of our knowledge, this is the
first comprehensive study on continual calibration.

2. We discovered that calibration methods only partially
work when applied to non-stationary data streams. Even
when equipped with CL strategies, the resulting models
are not necessarily well calibrated, especially when com-
pared with the same model trained offline on the entire
data stream.

3. We design Replayed Calibration, a continual calibration
method that is compatible with a large family of cali-
bration approaches (the post-processing calibration ap-
proaches introduced in Section 2.1). Our approach im-
proves the performance of calibration methods by large
margins.

2. Calibration background

Calibration has been studied for the offline machine
learning setup [24, 26]. We provide a brief overview of cal-
ibration mainly intended for continual learning researchers
who are interested in applying or studying calibration.

We focus on the calibration of neural network models
trained on supervised classification tasks [10]. Most of this
discussion generalizes to other types of models as well.

A model fθ parameterized by θ ∈ Rd is trained on a
dataset D = {(xj , yj)}j=1,...,M , where each example is
composed by an input-target pair (xj , yj) and the target rep-
resents the class associated with the input. For each input
example xj the model returns a probability vector ŷj , con-
taining one probability per class, and a confidence value
ĉj ∈ R. Formally, ŷj , ĉj = fθ(xj). The probability vector
is obtained by passing the logits zj through a softmax func-
tion: ŷj = softmax(zj). The logits are computed by the last
layer of the model zj = hθ(xj), where hθ computes the
pre-softmax output. The model is trained by minimizing a
loss function L(ŷ, y) (e.g., cross-entropy).

Definition 1. A model fθ is calibrated when P (ŷ = y|ĉ =
c) = c, ∀c ∈ [0, 1].

Definition 1 states that a model is calibrated when the
probability of predicting the correct class is equal to the
confidence, for any given value of the confidence. The cali-
bration objective cannot be computed exactly since the joint
distribution P (Ŷ , Ĉ) is taken over the predictions and con-
fidence random variables, respectively, which are contin-
uous variables. Given a dataset D with M examples, we
use the Expected Calibration Error (ECE) and the reliability
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diagrams as approximations of the calibration objective of
Definition 1. The reliability diagram reports the histogram
of accuracy against confidence. The histogram collects all
M model predictions and confidence values. Then, it parti-
tions the predictions in K equally-spaced bins based on the
confidence value. It finally computes the average accuracy
of the predictions within each bin.

Definition 2. A reliability diagram with K equally-spaced
confidence bins reports the average accuracy over a generic
bin Ib as ab = 1

|Ib|
∑

cj∈Ib
1(ŷj = yj). Correspond-

ingly, the average confidence within a bin Ib by cb =
1

|Ib|
∑

ĉj∈Ib
ĉj .

A perfectly calibrated model would return a reliability
diagram equal to the identity function: ab = cb, ∀Ib.
We use reliability diagrams in our experiments (see Fig-
ure 6 for an example). The distance from a perfectly cal-
ibrated model is computed by the Expected Calibration Er-
ror, which summarizes the information contained within a
reliability diagram in a single value.

Definition 3. The Expected Calibration Error (ECE) for
a given model on a dataset D is computed as ECE =∑K

b=1
|Ib|
M |ab − cb|, where M is the total number of exam-

ples in D.

Notice how ECE is a scalar metric between 0 and 1,
hence it can be reported as a percentage value, with 0%
representing a perfectly calibrated model and 100% its op-
posite, not calibrated counterpart.

2.1. Calibration of neural networks

Although calibration has been studied for years in machine
learning [26], there are only a few techniques available that
are compatible with neural networks and multi-class classi-
fication tasks (with more than 2 classes) [10, 21].
For this paper, we follow [26] and divide calibration meth-
ods into two main families: post-processing calibration
methods and self-calibration methods.
Post-processing calibration methods are applied after the
model training phase and they rely on a held-out validation
set to tune or learn some calibration (hyper)parameters. The
same validation set can also be used for model selection.
Many post-processing calibration methods are available for
binary classification tasks. Since in a CL environment, new
classes often appear over time, it is unrealistic to consider
binary classification tasks. Therefore, we focus on existing
extensions to the multi-class case.
Self-calibration methods operate directly during model
training, without requiring a separate calibration phase.

Temperature scaling (TS). TS [10] is a post-processing
calibration method that adapts the softmax temperature ap-
plied after the output layer to compute “softer” probability

distributions. Peaked distributions are often associated with
over-confidence in the prediction. TS computes the confi-
dence on an example xj as ĉj = max softmax( zjT ), where
the logits are divided by the scalar temperature T and the
maximum is computed across the resulting probability vec-
tor after the softmax. The temperature is learned by min-
imizing the Negative Log Likelihood on the validation set,
which is associated with the entropy and therefore measures
how peaked the distribution is. Since TS only changes the
temperature T , the output classes predicted by the model
remain the same before and after the calibration phase.

Matrix/Vector scaling. Matrix scaling (MS) and Vector
scaling (VS) [10] are post-processing methods that learn an
additional linear projection parameterized by W, b during
the calibration phase. The model predictions on a generic
example xj are updated as ŷj = softmax(Wzj + b) and the
confidence is obtained by ĉj = max ŷj (like TS, the maxi-
mum is computed across the probability vector returned by
the softmax). The parameters W, b are optimized with re-
spect to the Negative Log Likelihood on the validation set.
In MS, W is any matrix, while in VS W is a diagonal matrix
(for efficiency purposes).

Entropy regularization (HR). Instead of promoting
high-entropy distributions via post-processing methods like
TS and MS/VS, HR [21] operates directly during model
training. The loss used at training time is augmented with
a regularization term of the form −λH(ŷj), where H is
the entropy of the probability distribution computed by the
model on xj . The optimization process strives to minimize
the loss, hence to maximize the entropy (and prevent peaked
distributions). The regularization is controlled by the hyper-
parameter λ.

3. Continual Calibration
Our objective is to i) understand how to apply calibration
methods in a CL setup, ii) assess the behavior of calibra-
tion approaches on non-stationary data streams and iii)
extend existing approaches backed by intuitions from CL
strategies. Figure 2 provides a compact representation of
all three points.

Calibration of CL models is especially challenging, since
the data distribution faced during training changes over
time. All the calibration methods we presented in Section
2.1 are designed for a data distribution that does not change
between the training and the calibration phase. In CL, we
have a stream of experiences (or tasks) S = (e1, e2, . . .)
[16]. Each experience ei contains a dataset Di with Mi ex-
amples: Di = {(xj , yj)}j=1,...,Mi

. We are still considering
the supervised classification setup for CL. The stream S be-
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Figure 2. Continual calibration is performed on a stream of ex-
periences (top) by applying either self-calibration (bottom left)
or post-processing calibration (bottom right). Self-calibration ap-
proaches like Entropy Regularization (HR) regularize the training
loss at each minibatch. Post-processing calibration like Tempera-
ture Scaling (TS) and Matrix/Vector scaling (MS/VS) are applied
only at the end of each experience. Our Replayed Calibration ap-
proach is applicable alongside any post-processing methods.

comes available over time and the model is continuously
trained on each experience sequentially. Importantly, the
data distribution changes between one experience and the
other, making the stream non-stationary [8]. Since the con-
tent of each experience cannot be entirely stored for later
reuse, the model needs to learn new experiences without
forgetting previous ones. That is, the predictive perfor-
mance on previous experiences should not decrease.
Self-calibration techniques like HR are already compatible
with a CL setup since they do not require a separate calibra-
tion phase. Post-processing calibration methods, instead,
only operate at the end of the training phase. While this
makes sense in an offline learning setup, where all data is
available at once, post-processing calibration methods are
not directly applicable in CL, where the model could be po-
tentially trained on an infinite sequence of experiences.

Post-processing continual calibration. When consider-
ing finite data streams, one possibility would be to apply
the post-processing calibration method only once at the end
of training on all experiences. Unfortunately, since in CL
we cannot store the entire content of previous experiences,
the post-processing calibration would be applied only to the
validation set associated with the last experience. There-
fore, the model would not be calibrated on any examples
coming from previous experiences.
Instead, we add a calibration phase at the end of training
on each experience. Calibration is performed on the valida-
tion set Dval associated with the current experience, where
Di = Dtrain

i ∪ Dval
i . The test set Dtest

i associated with each
experience is assumed to be always available. The test sets
are never used neither to train the model nor to calibrate it,

but only for evaluation purposes.
The post-processing calibration methods we considered ei-
ther add a new layer after the original classifier (VS, MS)
or they change the default softmax temperature from 1 to a
learned value (TS). In our CL setup, these changes are first
introduced after training on the first experiences. To comply
with the CL setup, in the following experiences we did not
revert the changes made by post-processing calibration and
we train continuously the resulting CL model (either with
an extra output layer or with a learned temperature).

Replayed Calibration (RC). Our adaptation of post-
processing calibration for CL does not completely solve the
issue of calibrating on an incomplete portion of the data.
During each calibration phase, the model only sees data
coming from the current experience. Therefore, when a
new experience arrives (a new data distribution), we have
no guarantee that the previously calibrated model will re-
main calibrated on previous distributions. We extend post-
processing calibration methods with CL approaches based
on replay [11]. Many CL applications allow to store a
(small) subset of previous data. Usually, replay techniques
leverage the external buffer at training time by training the
model on data coming from the current experience and from
the memory buffer, to improve model stability and mitigate
forgetting. Inspired by this approach, we do the same dur-
ing the calibration phase. The external memory buffer con-
tains examples from the validation sets of previous experi-
ences. The model is then calibrated on both the content of
the buffer and the validation set of the current experience.
We call this post-processing calibration approach Replayed
Calibration (RC). RC can be combined with any of the ex-
isting post-processing calibration methods.

3.1. Empirical evaluation

We study calibration of CL models trained with Naive fine-
tuning, Experience Replay [23] and Dark Experience Re-
play (DER) [4], in its DER++ version1. Naive simply trains
the model continuously over the data stream, minimizing
the classification loss. Experience Replay keeps a fixed-
size buffer in which to store examples from previous ex-
periences. We use reservoir sampling to fill the buffer.
DER++ is a state-of-the-art CL method that combines re-
play and distillation. In addition to input-target pairs, the
replay memory M of DER++ also stores the logits com-
puted by the model when the example was first added to
the memory. The distillation loss is computed on examples
sampled from the memory and it reads α E(x,z)∼M∥z −
h(x)∥22 + β E(x′,y′)∼ML(ŷ, y′), where for simplicity ŷ in
the last term denotes the model prediction computed on x′.

1The code to reproduce the experiments is available at https://
github.com/lilanpei/Continual-Calibration and as sup-
plementary material.
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Table 1. Average accuracy and standard deviation on the test set of all experiences computed at the end of training. Bold highlights the
best result for each CL strategy and Joint Training. Bold and underline highlights overall best across CL strategies.

Accuracy (%) Split MNIST Split CIFAR100 EuroSAT Atari

Joint 93.00± 1.08 64.37± 7.22 91.48± 4.05 55.10± 0.61
HR 94.91± 1.10 62.20± 4.76 94.51± 4.26 54.82± 0.71
TS 93.92± 0.71 64.67± 3.18 95.12± 3.75 55.38± 0.42
VS 94.21± 1.76 68.30± 5.92 93.74± 3.34 55.32± 0.30
MS 94.24± 3.32 62.90± 2.90 95.31± 4.69 39.27± 2.04

DER++ 92.74± 0.38 35.18± 2.86 77.39± 8.44 32.35± 0.17
HR 92.56± 0.39 37.41± 2.70 79.86± 2.76 32.09± 0.34
TS 94.79± 0.21 32.75± 10.43 77.11± 1.21 33.14± 0.67
VS 91.92± 0.34 23.30± 2.56 70.60± 2.65 25.19± 2.75
MS 91.95± 0.19 19.01± 10.98 53.20± 18.72 25.03± 3.74

TS + RC 94.74± 0.20 41.79± 0.84 80.81± 4.34 33.03± 0.87
VS + RC 92.24± 0.27 34.26± 6.08 57.75± 21.32 26.21± 1.42
MS + RC 92.23± 0.02 37.30± 5.82 75.07± 3.38 25.56± 2.16
Replay 90.97± 0.66 40.39± 4.00 80.57± 1.06 29.30± 0.66

HR 90.71± 0.63 40.36± 1.38 81.03± 0.74 29.87± 0.50
TS 94.20± 0.55 23.22± 7.56 78.02± 0.67 28.29± 0.51
VS 75.31± 2.31 35.00± 2.90 73.08± 2.39 28.45± 0.19
MS 74.18± 5.54 34.73± 3.33 79.37± 4.43 28.98± 0.38

TS + RC 93.87± 0.81 15.26± 8.59 81.73± 0.76 29.03± 0.42
VS + RC 90.19± 0.85 46.82± 0.87 84.95± 2.01 27.83± 0.93
MS + RC 90.77± 0.32 46.42± 0.93 83.72± 0.91 28.34± 0.76

Naive 19.86± 0.07 7.90± 0.65 19.84± 0.22 20.57± 1.76
HR 20.46± 0.45 8.29± 0.70 19.36± 0.35 19.95± 0.49
TS 21.40± 0.35 7.97± 0.58 19.58± 0.41 20.96± 0.94
VS 34.85± 0.05 7.98± 0.24 19.90± 0.17 20.66± 0.62
MS 19.58± 0.31 8.10± 0.44 19.41± 0.16 19.49± 0.25

TS + RC 19.72± 0.16 8.21± 0.26 19.71± 0.40 21.40± 0.02
VS + RC 34.85± 11.13 10.57± 0.38 15.32± 5.15 20.87± 1.01
MS + RC 37.80± 5.26 11.96± 1.03 19.93± 1.87 21.96± 1.06

DER++ uses two hyper-parameters α and β to control the
contribution of each regularizer. Intuitively, the regularizer
controlled by α promotes stability of the output distribu-
tion, while the regularizer controlled by β prevents a drop
in the predictive performance on previous examples (since
L is the classification loss).
Interestingly, DER++ is known to result in calibrated mod-
els. However, the original paper [3, 4] did not consider any
calibration methods. We combined DER++ with 5 calibra-
tion methods, including our RC and we verified whether we
can improve DER++ calibration.
We compare all the methods with the offline learning model
jointly trained on the dataset resulting from the concatena-
tion of all experiences: D = ∪N

i=1ei, for a stream with N
experiences. Ideally, we would like CL models to achieve a
similar calibration than the offline learning models. As ex-
pected, due to the continuous training and the presence of
drifts between experiences the CL models under-perform

with respect to the offline models. All CL strategies are
coupled with various calibration methods, including self-
training HR, three post-processing calibration techniques
(TS, VS, and MS), and our Replayed Calibration RC.

Benchmarks. We assess the performance of calibration
methods on 4 CL benchmarks: Split MNIST [25], Split
CIFAR100 [17, 22], EuroSAT [13, 14] and Atari [2, 18].
Split MNIST is obtained by splitting the MNIST dataset
into 5 experiences, each of which contains examples from 2
classes. Similarly, Split CIFAR100 is obtained by splitting
the CIFAR100 dataset into 10 experiences, each of which
contains examples from 10 classes. Both benchmarks are
class-incremental benchmarks [22].
EuroSAT is a publicly available dataset for land use and
land cover classification from Sentinel-2 satellite images.
We adopted this dataset as it represents an interesting ex-
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Table 2. Average ECE (10 bins) and standard deviation on the test set of all experiences computed at the end of training. Bold highlights
the best result for each CL strategy and Joint Training. Bold and underline highlights overall best across CL strategies.

ECE (%) Split MNIST Split CIFAR100 EuroSAT Atari

Joint 4.53± 0.40 14.60± 6.23 4.45± 2.13 2.20± 1.83
HR 2.85± 1.04 15.91± 3.00 3.12± 3.34 1.90± 0.79
TS 1.56± 0.32 7.80± 4.12 2.57± 1.78 1.52± 0.71
VS 1.70± 0.27 5.75± 2.03 2.46± 1.81 1.38± 0.20
MS 38.08± 2.05 27.96± 4.71 39.67± 2.97 23.50± 2.97

DER++ 1.96± 0.42 36.45± 4.09 11.29± 1.67 12.51± 0.65
HR 1.96± 0.20 38.70± 1.33 10.69± 0.78 11.69± 1.64
TS 1.25± 0.13 28.42± 2.42 13.00± 2.68 7.25± 0.29
VS 4.86± 0.35 34.64± 0.59 17.93± 4.07 7.67± 1.97
MS 4.08± 0.16 37.27± 0.29 28.75± 8.81 8.98± 4.33

TS + RC 1.43± 0.13 27.52± 1.96 9.00± 5.13 6.13± 0.69
VS + RC 3.63± 0.77 9.59± 1.16 15.45± 8.85 4.69± 0.49
MS + RC 3.77± 0.26 8.51± 0.67 10.86± 2.90 3.61± 1.16
Replay 3.77± 0.32 38.42± 5.95 11.07± 2.09 48.94± 0.68

HR 3.85± 0.35 39.31± 1.76 9.46± 0.71 48.68± 1.24
TS 2.86± 0.69 23.72± 4.35 12.96± 2.65 49.96± 2.28
VS 8.21± 3.05 50.11± 2.84 15.06± 0.22 34.78± 5.09
MS 8.99± 4.26 49.76± 1.82 12.91± 3.53 41.13± 2.62

TS + RC 2.24± 0.25 14.63± 3.35 8.23± 0.96 41.12± 1.87
VS + RC 4.29± 0.62 26.04± 1.25 4.70± 0.64 13.75± 1.23
MS + RC 3.76± 0.45 27.12± 1.61 9.46± 0.62 13.46± 3.40

Naive 70.31± 0.79 72.44± 3.15 76.57± 1.61 34.60± 5.35
HR 67.05± 3.95 70.40± 3.53 74.88± 2.25 34.51± 4.20
TS 71.94± 2.08 67.07± 2.24 76.31± 0.55 47.10± 3.33
VS 73.64± 0.84 65.89± 1.07 78.17± 0.31 26.35± 8.56
MS 72.73± 4.09 63.56± 1.81 75.70± 2.64 35.77± 5.71

TS + RC 65.57± 2.31 61.26± 2.99 74.58± 1.24 42.03± 4.61
VS + RC 30.31± 5.75 25.73± 1.29 35.69± 4.99 29.20± 3.00
MS + RC 28.07± 3.40 21.99± 1.35 31.27± 2.27 13.87± 5.29

ample of a CL application in a resource-constrained envi-
ronment. The CL agent can operate directly on the satel-
lite in an autonomous way. Therefore, it needs to pro-
vide robust, calibrated predictions. We created a class-
incremental benchmark by splitting the dataset into 5 ex-
periences, each of which contains JPEG-encoded RGB im-
ages from 2 classes describing the land type.
For Atari we used the replay buffer data released in [1] to
pair the game frames with the optimal action chosen by a
trained DQN agent. We combined the data from 5 differ-
ent games (VideoPinball, Boxing, Breakout, StarGunner,
Atlantis) to define our own domain-incremental benchmark
[25] with one game per experience. Each experience con-
tains 200k randomly sampled stacks of four consecutive
game frames paired with the optimal action from the last
replay buffer. In this scenario, we can treat the problem of
learning the policy π(a|s) (that predicts the action a given
the state s) as a supervised task.

In our Atari benchmark, the output layer is fixed since the
action space is defined by Atari. However, the optimal ac-
tion distribution changes across games, with some actions
never being selected in some of them or their frequency
drifting from one experience to the other.

Experimental setup. On each benchmark, we conducted
a model selection for each calibration and CL strategy. For
our RC, we kept the same configuration of the hyperparam-
eters found during model selection on the corresponding
calibration strategy (e.g., we performed model selection for
TS and applied the same configuration to TS + RC).
We report the complete set of optimal values found by
model selection in the Appendix. On Split MNIST, we used
a one-hidden-layer MLP trained with SGD. On Split CI-
FAR100 and EuroSAT, we used a ResNet110 and ResNet50
[12], respectively. Both models are trained with AdamW.
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On Atari we chose the DQN [20] with full Atari action
space optimized with Adam.
The reliability diagrams and the corresponding ECEs are
computed from 10 equally-spaced bins. The first bin spans
the [0, 0.1] confidence interval, the second bin the (0.1, 0.2]
confidence interval and so on up until the last bin spanning
the (0.9, 1.0] confidence interval.
We used the Avalanche library [5] to run all the experi-
ments. Our experiments do not use task labels. This means
that at test time the model needs to distinguish between all
classes learned during training.

4. Results
Table 1 and 2 report the average accuracy and ECE, respec-
tively, on the entire data stream at the end of training. The
runs are averaged over 3 random seeds. We now highlight
the main results found in our empirical evaluation.

Joint Training calibration. Calibration strategies do not
hurt predictive accuracy in Joint Training, except with MS
on Atari. MS also achieves the worst ECE in Joint Training
in all benchmarks. These results are in line with the original
MS paper [10], where MS was not able to consistently train
calibrated models. We will see how this behavior changes
in CL setup. Interestingly, although VS performs the same
type of post-processing as MS (but with a learned diagonal
matrix instead of a full matrix), it shows a much better cal-
ibration in Joint Training. Again, this is aligned with the
results presented in [10].

RC mitigates forgetting. Both the calibration and the ac-
curacy are heavily impacted by the CL training. As ex-
pected, Naive finetuning causes catastrophic forgetting of
previous knowledge on all class-incremental benchmarks.
Due to its domain-incremental nature, the Atari benchmark
shows a softer forgetting. The fixed output space enjoys bet-
ter stability and prevents the accuracy from dropping to the
level of a random classifier. When combined with MS, our
RC approach is able to improve the accuracy (Figure 3) as
well as the ECE on all benchmarks (Figure 4). Importantly,
RC is not equal to replay since the examples come from the
validation set and are not used to maximize the predictive
accuracy, but rather the calibration.

RC improves calibration. We found RC to be beneficial
even when paired with the Replay and DER++ strategies
(Figure 5 and Figure 6, respectively). Although there is no
unique post-processing strategy that consistently performs
better than the others, our RC always improves calibration
on all 4 benchmarks, often by large margins. For exam-
ple, on EuroSAT, post-processing strategies alone achieve
an ECE between 12% (best case) and 15% (worse). After

Figure 3. Accuracy of Naive on Split MNIST.

Figure 4. Calibration diagram for Naive on Split CIFAR100.

applying RC, we are able to reduce the gap to 4% and 9%,
respectively.
In some cases, a calibrated model results in a decrease in
accuracy. For example, TS on Split CIFAR100 drops the
average accuracy from 40% with Replay to 23% with TS
and 15% with TS+RC. Still, in terms of calibration TS out-
performs the other approaches. This trade-off needs to be
carefully considered: whether to prefer a less accurate, but
calibrated model, or vice versa a more accurate but less cal-
ibrated model. However, it is also important to note that
calibration does not necessarily causes a drop in accuracy.
For example, Replay with VS+RC on EuroSAT results in
an improvement in both accuracy and ECE.

Calibration techniques boost DER++. DER++ is one
of the most interesting strategies in terms of calibration.
DER++ achieves the best calibration on the very chal-
lenging Split CIFAR100 and Atari. The original paper [4]
also showed the effectiveness of DER++ in calibrating CL
models. However, the paper did not leverage any calibra-
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Figure 5. Calibration diagram for Replay on Atari.

Figure 6. Calibration diagram for DER++ on Split CIFAR100.

tion methods and did not report precise calibration values.
In our experiments, we show how DER++ is indeed very
effective, but we also point out how its calibration ability
can easily be improved when coupled with calibration
strategies. In particular, our RC strategy outperforms all
other combinations when coupled with MS (Figure 6),
without a substantial decrease in accuracy.

Calibration of CL models remains less effective than that
of Joint Training models. However, we showed how CL
strategies and calibration strategies can operate together, re-
sulting in better calibrated models. Even a state-of-the-art
strategy like DER++ enjoys clear improvements in calibra-
tion with post-processing techniques.
Our results apply to a diverse set of CL benchmarks, some
of which are especially promising in terms of real-world
applications (EuroSAT) and generalization to other kinds of
problems beyond pure pattern recognition (Atari).

5. Conclusion and Future Work

We start from the assumption that perfect predictive models
do not exist. CL models inevitably make mistakes. Instead
of only pursuing a better predictive model, we argue that
it is equally relevant to design robust models that can
be trusted. Calibration allows the model itself to learn a
meaningful notion of confidence about its predictions. In
particular, the confidence expresses the expected average
accuracy on that kind of examples. Calibrated models can
operate more autonomously than uncalibrated ones since
they can detect when they are likely to make a mistake and
call for external help (e.g., a human).

We provided the first empirical evaluation on contin-
ual calibration and we show how, on one side, CL mod-
els are not naturally calibrated and that, on the other side,
post-processing calibration and self-calibration are effective
when combined with CL strategies. Our Replayed Cali-
bration improved the performance of post-processing cal-
ibration methods across different calibration and CL tech-
niques. We hope our work can increase the attention to-
wards continual calibration, and we highlight some promis-
ing research directions.
There are only a few self-calibration techniques currently
available for multi-class classification with neural networks
[21]. However, self-calibration techniques are inherently
compatible with a CL setup, since they operate online dur-
ing training, without requiring a separate calibration phase.
Efforts in designing new self-calibration techniques could
directly benefit their CL application.
Calibration mostly considers supervised classification tasks.
It is not entirely clear how to frame calibration in other
types of tasks, like Reinforcement Learning. A recent work
on the topic shed some light on this very challenging re-
search direction in a model-based setting [19]. Being non-
stationary by design, discoveries in calibration for rein-
forcement learning would likely have a strong impact on
CL as well.
Finally, our empirical evaluation considered several CL
benchmarks, including real-world datasets like EuroSAT
and action classification from Atari. We are planning to ex-
tend our experiments by also including Natural Language
Processing benchmarks. We look forward to future works
tackling the continual calibration challenge.
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