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Abstract

The necessity for a Person ReID system for rapidly evolv-
ing urban surveillance applications is severely challenged
by domain shifts—variations in data distribution that oc-
cur across different environments or times. In this pa-
per, we provide the first empirical review of domain shift
in person ReID, which includes three settings namely Un-
supervised Domain Adaptation ReID, Domain Generaliz-
able ReID, and Lifelong ReID. We observe that existing ap-
proaches only tackle domain shifts caused by cross-dataset
setting, while ignoring intra-dataset attribute domain shifts
caused by changes in clothing, shape, or gait, which is very
common in ReID. Thus, we enhance research directions in
this field by redefining domain shift in ReID as the combi-
nation of attribute domain shift with cross-dataset domain
shift. With a focus on Lifelong Re-ID methods, we conduct
an extensive comparison on a fair experimental setup and
provide an in-depth analysis of these methods under both
non-cloth-changing and cloth-changing Re-ID scenarios.
Insights into the strengths and limitations of these meth-
ods based on their performance are studied. This paper
outlines future research directions and paves the way for
the development of more adaptive, resilient, and enduring
cross-domain ReID systems. Code is available here.

1. Introduction

Person Re-Identification (ReID) aims to match individu-
als across non-overlapping camera views, or broadly across
distinct observations, as illustrated in Figure 3a. In re-
cent years, ReID has garnered significant attention due to
its applications in surveillance, security, human-computer
interaction, etc. Traditional ReID benchmarked on stan-
dard ReID datasets [17, 28–30, 66, 74, 80–82] using both
supervised [4, 31, 59, 77, 84] and unsupervised [6, 24–
26, 36, 75] methods have achieved remarkable perfor-
mance. These methods assume a simplistic single-domain
scenario of fixed and stationary data distributions in training
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Figure 1. Besides cross-dataset domain shift, attribute domain
shift is a common and practical issue in ReID. However, it has
not been considered in existing domain-shift-related ReID works.

process, mostly stemming from observations showing lim-
ited geospatial variations and temporal separation between
observations. However, the practical deployment of ReID
systems is impeded by a fundamental obstacle known as
domain shift, where the underlying distributions of data de-
viates significantly, leading to a degradation in the model’s
performance when applied to unseen domains [37]. Though
there have been comprehensive reviews on the traditional
single-domain ReID setting [41, 72], to the best of our
knowledge, this is the first paper that offers an overview
of the real-world problem of domain shift in ReID.

Conventionally, domain shifts are attributed to cross-
dataset changes in observations due to environmental condi-
tions, camera viewpoints, and scene dynamics. This cross-
dataset domain shift problem has led to three sub-problems
in ReID, with an overview shown in Figure 1 and 2. The
first sub-problem is to mitigate the domain gaps between
a labeled source domain and an unlabeled target domain,
which is named Unsupervised Domain Adaptation ReID
(UDA-ReID). [34, 79, 87] (see Figure 3b). Three main ap-
proaches for UDA-ReID are: (1) Pseudo-label Estimation,
which groups similar training samples and assigns pseudo-
labels to unlabeled target domain samples, (2) Mid-level
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Feature Alignment, which align feature distributions across
different domains, facilitating better generalization, and (3)
GAN-based Style Transfer, which use GANs to transfer
style from source domain to target domain to bridge the do-
main gap. UDA-ReID assumes access to the target domain
data during training, which does not always hold in real-
world scenario. This leads to the more challenging sub-
problem named Domain Generalizable ReID (DG-ReID)
[7, 57] (see Figure 3c), where the challenge is to learn a
model that is robust to unseen target domains given one
or multiple labeled source domains. Style Mixing, which
simulate domain shifts in DG to learn domain-invariant fea-
tures, and Meta Learning, which samples domain-level vari-
ations and exposes model to cross-domain gaps, are two
main approaches for DG-ReID. Both UDA-ReID and DG-
ReID assume that all domains are readily available. In
specific real-world settings, data can be continuously ac-
quired overtime as a stream of domains. To handle the
newly incoming data, practical ReID systems need to ad-
dress challenges of incremental learning. This sub-problem
is current defined as Lifelong ReID (LReID) [19, 50, 68]
(see Figure 3d). Two lines of methods that have been
proposed for LReID: knowledge distillation-based methods
distill knowledge from past models to the current model,
and data replay methods store and replay past data sam-
ples. Both aim to prevent catastrophic forgetting in LReID.
In this paper, we first analyze the solutions proposed to
tackle these sub-problems, with a focus on LReID. We also
provide insights on advantages and disadvantages of exist-
ing LReID methods by providing a fair and comprehensive
evaluation on ReID datasets.

Current literature on domain shift has only considered
the aforementioned conventional cross-dataset domain shift
challenges with the strict assumption that individuals within
a domain maintain consistent appearances. However, real-
world ReID also encounters a common issue of attribute do-
main shift, which encompasses observation variations due
to changes in clothing (appearance) [15, 70], body shape
[2, 44], gait [16, 32, 45], pose [5, 42], age, etc., as illus-
trated in Figure 1. Most existing cross-domain methods
use deep learning models as backbones, thus they suffer se-
vere performance degradation due to changes in appearance
caused by clothing variations. Many recent approaches have
been developed to address the specific problem of Cloth-
Changing ReID (CCReID) [2, 43, 52]. While this may be
viewed as a sub-problem of attribute domain shift, address-
ing this within the context of cross-dataset domain shift
and incremental learning is challenging yet more practical.
Thus, in this paper, we introduce a more practical definition
of domain shift in ReID, which is the combination of cross-
dataset domain shift and attribute domain shift. Then, the
goal is to learn a generalizable model across a stream of
data domains while robustly handling large domain shift in

Figure 2. Sub-problems in Domain Shift ReID and Solutions.

individual appearances. To provide insights in the limita-
tions of current cross-domain methods when dealing with
attribute domain shift, we conduct a thorough evaluation of
existing LReID methods on ReID datasets with and without
clothing changes.

The main contribution of this paper are as follows:
1. We provide the first review on domain shift in person

ReID with a focus on Lifelong ReID.
2. We summarize mainstream solutions that address cross-

dataset domain shifts in UDA-ReID, DG-ReID, and
LReID. We compare LReID methods using a fair exper-
iment setup, and analyze their strengths and limitations.

3. We introduce the practical issue of attribute domain shift
in Re-ID which includes clothing changes, and evaluate
existing LReID methods under cloth-changing scenario.

4. We outline promising future research directions.
The remaining of this paper is structured as follows: Sec-

tion 2 thoroughly reviews solutions associated with cross-
domain ReID problems. Section 3 presents experiment
setup, while sections 4 and 5 report the evaluation of LReID
methods on both standard and cloth-changing ReID setting.
Section 6 provides promising research directions and Sec-
tion 7 presents concluding remarks.

2. Methodologies Review
Person Re-ID task necessitates a model F(·) such that given
a person image I , F outputs a vector embedding f as the
person representation, i.e. f = F(I). During testing, we
compute similarity scores between the query embedding
against gallery embeddings. The image with the highest
similarity score is considered as the match.

2.1. Unsupervised Domain Adaptation ReID

UDA-ReID aims to adapt a model trained on a labeled
source domain to an unlabeled target domain. Three main
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Figure 3. Person ReID task and domain-shift-related ReID settings: UDA-ReID, DG-ReID, and Lifelong ReID.

approaches for UDA-ReID are: Pseudo Label Estimation
[54, 55], Mid-Level Feature Alignment [8, 65], and GAN-
based Style Transfer [34, 37].

Pseudo Label Estimation. This approach involves us-
ing source domain labels to learn initial patterns and apply
clustering on the target domain to create pseudo labels for
adaptation. Several labeling-centric methods [10, 53, 55]
have been proposed for enhancing label accuracy and model
adaptability. Dynamic Label Update (DLU) [53] exempli-
fies adaptability by continuously refining pseudo labels to
reflect the changing data characteristics of the target do-
main. Source-Guided Label Refinement (SGLR) [55] lever-
ages knowledge from the source domain to steer the pseudo-
labeling process within the target domain, achieving a bal-
ance between label accuracy and model stability amid do-
main shifts. Mutual Mean-Teaching (MMT) [10] lever-
ages a dual-model configuration to mutually refine labels,
significantly enhancing label reliability and overall model
robustness. Clustering-based methods [3, 85–87] involve
designing strong identity-related clustering algorithms for
pseudo label estimation. Chen et al. [3] introduced Hier-
archical Contrastive Clustering, utilizing inherent structure
from source data to refine pseudo labels. Similarly, Self-
paced Refinement and Labeling [85] cycles through data
selection and labeling to combat label noise. Zhuang et
al. [86] normalized feature distribution across cameras, ad-
dressing a critical challenge in cross-camera adaptation.

Mid-Level Feature Alignment. Focusing on the align-
ment of mid-level features, this approach bridges the do-
main gap by ensuring that features extracted from both do-
mains are comparable and compatible [8, 22, 64, 65]. Wang
et al. [65] developed a joint learning framework for captur-
ing attribute-semantic and identity-discriminative features,
facilitating feature alignment across domains. Fu et al.
[8] leveraged the underlying pattern within the target do-

main then employed similarity grouping for effective unsu-
pervised adaptation. Wang et al. [64] introduced a mem-
ory reconsolidation mechanism to address adversarial do-
main discrepancies, preserving critical identity information
across domains. Huang et al. [22] integrates attention mech-
anisms to selectively emphasize transferable data aspects,
effectively reducing the domain gap.

GAN-based Style Transfer. Generative Adversarial Net-
work (GAN) models have been actively explored for bridg-
ing the visual gap in UDA-ReID [34, 37, 47, 83]. Early ap-
proaches [34, 37] focus on altering the visual style of source
domain images to closely match those of the target domain.
Liu et al. [37] proposed to decompose cross-domain transfer
into factor-wise sub-tasks, allowing for precise style adap-
tation by addressing specific imaging factors like illumina-
tion and texture. Li et al. [34] presented pose disentangle-
ment and adaptation, achieving pose invariance across do-
mains and significantly enhancing cross-dataset ReID per-
formance. Zheng et al. [83] introduced DG-Net, a GAN
utilizing dual encoders to extract and transfer appearance
attributes from one image to another while preserving the
structural integrity of the person. Pang et al. [47] proposed
TC-GAN, designed to generate labeled images by transfer-
ring the person from the input image onto the background
of a target style image. Then, the ReID model DFE-Net
leverages both real unlabeled and generated labeled images
to extract features for ReID.

2.2. Domain Generalizable ReID

DG-ReID involves re-identifying individuals across diverse
domains. In this setting, the Re-ID model is trained on
a set of source domain(s) and evaluated directly on the
target domain(s), without any additional training. Some
key strategies to approach DG-ReID include supervised
techniques like Meta Learning [12, 57, 76], Style Mixing
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[33, 61, 76] and unsupervised/semi-supervised approaches
using pseudo labels [7, 51].

Meta Learning. Meta Learning aims to simulate test-
ing stage over multiple training scenarios. During meta-
learning stage, rather than sampling instances from each
domain, the domains themselves are sampled so the net-
work can learn to generalize to the targets [57]. Focusing on
adapting to domain-level variations, Zhang et al. [76] sam-
pled domains utilizing curriculum learning to complement
meta learning, which adopts an easy-to-hard approach. The
idea behind curriculum learning is that like children, the
model can learn better when first given easy tasks and grad-
ually increasing the difficulty level of the tasks. For DG-
ReID, this involves gradually increasing the number of do-
mains in the training set [11, 76]. Alternatively, models can
be trained by initially sampling ‘easy’ domains and progres-
sively introducing ‘hard’ domains, offering a graded learn-
ing experience [12].

Style Mixing. Rather than using data separately from do-
mains, Style Mixing simulates variations in style, or domain
shifts, and use these mixed simulated variations to help the
network learn domain-invariant features. Since simulat-
ing realistic domain differences in the image space is dif-
ficult, most approaches work by tweaking style information
in the feature space [33, 61, 76]. Some methods introduce
these style features as augmentations [76] into their training
pipeline. Others works compute style differences between
domains explicitly, and introduce the stylized features in
their method by mixing them with the forward pass of the
network [33, 61]. For example, Tan et al. [61] maintain
a ‘style memory bank’ and keep on updating this memory
bank during training. The styles of different domains are
‘interleaved’ to design new styles within the feature space.

Unsupervised or Semi-Supervised Approaches. Previous
approaches necessitate labels from source data, and some
even require the incorporation of domain-specific memory
banks [46, 61] to effectively handle subjects across differ-
ent domains. To overcome this limitation, some methods at-
tempt to learn representations in an unsupervised setting to
improve scaling in ReID. Generally, the approach involves
employing a label-generating network to create pseudo la-
bels for different domains [7, 51]. Qi et al. [51] utilize
distinct networks for different domains during pseudo-label
generation, and train a unified network on all domains using
these pseudo labels. On the other hand, Dou et al. [7] utilize
a quality-aware contrastive loss to assign less weightage to
less confident pseudo-labels.

2.3. Lifelong Re-ID

In LReID, after the incremental learning process, model is
evaluated on the test data of both seen and unseen domains
(see Figure 3d). Thus, it is necessary for the model to both

Figure 4. Approaches to prevent catastrophic forgetting in LReID.

memorize the knowledge of seen domains (anti-forgetting)
and enhance generalizability on unseen domains. As de-
picted in Figure 4, two main approaches have been explored
for LReID, namely knowledge distillation-based [18, 38,
48–50, 58, 60, 67] and data rehearsal [9, 20, 40, 67, 73]
methods. Further, unsupervised LReID has also been inves-
tigated [1, 14, 23].

2.3.1 Knowledge Distillation-based Methods

This approach aims to transfer knowledge from past models
to the current model via three main strategies: 1) Feature
distillation [18, 58, 60, 67], 2) domain-relevant distillation
loss [18, 20, 40, 49, 50], and 3) Graph-based Knowledge
Distillation [38, 48, 50].

Feature and Logit Distillation. Sugianto et al. [58] pre-
sented an extension of Learning Without Forgetting (LwF)
[35] to the domain of LRe-ID. It evaluated the effectiveness
of LwF against other training methods such as fine-tuning
and joint-training. It demonstrates the capability of knowl-
edge distillation to preserve identity-related knowledge of
previously learned domains. Patch-based Knowledge Dis-
tillation (PKD) proposed by Sun et al. [60] uses adaptively
chosen patches to pilot the forgetting-resistant distillation,
guided by logit distillation. Huang et al. [18] proposed to
learn consistent region features to address catastrophic for-
getting and improve generalization. Their method, leverag-
ing property region features, feature adaption, and feature
perspicacity, ensures the extraction and distillation of con-
sistent and discriminative features across datasets. A cas-
cade knowledge distillation structure further preserves fea-
ture consistency across domains, while a weighted distilla-
tion loss minimizes generalization loss.

Knowledge Distillation Losses. Pseudo Task Knowledge
Preservation (PTKP) framework developed by Ge et al. [9]
treats LReID as a domain adaptation problem, utilizing a
pseudo task transformation module to bridge the domain
gap between consecutive domains and enable the learn-
ing of task-shared knowledge. PTKP integrates a domain
consistency loss and an identity discrimination loss to pre-
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Dataset Mode Scale #TrainIDs #TestIDs
Market-1501 [81]

Seen

large 500 (751) 750
CUHK-SYSU [69] mid 500 (942) 2900
DukeMTMC [82] large 500 (702) 1110

MSMT17 [66] large 500 (1041) 3060
CUHK03 [30] mid 500 (767) 700

Viper [13]

Unseen

small - 316
PRID [17] small - 649
GRID [39] small - 126
i-LIDS [27] small - 60

CUHK01 [29] small - 486
CUHK02 [28] mid - 239

SenseReID [80] mid - 1718
PRCC [71]

CCseen

mid 75 (150) 71
LTCC [52] mid 75 (77) 75

DeepChange [70] large 75 (450) 521
Real28 [63]

CCunseen

small - 28
VC-Clothes [63] mid - 256
Celeb-light [21] mid - 200

LaST [56] large - 5806

Table 1. Statistics of Standard and Cloth-Changing datasets. The
original number of training identities are put inside parentheses.

serve knowledge across tasks, guided by the feature dis-
tribution loss on old tasks. Similarly, Pu et al. [49] ad-
dressed the overlooked issue of mitigating the adverse ef-
fects of normalization layers in domain-incremental learn-
ing by proposing a novel meta reconciliation normaliza-
tion (MRN) loss. MRN incorporates grouped mixture stan-
dardization and additive rectified rescaling components to
balance domain-dependent and domain-independent statis-
tics. Additionally, inspired by synaptic plasticity in the hu-
man brain, a MRN-based meta-learning framework is intro-
duced to leverage meta-knowledge across domains without
replaying previous data. Lu et al. [40] addressed LReID
by proposing the Augmented Geometric Distillation loss,
which helps maintain feature space structure and preserves
relationships between exemplars.

Graph-based Knowledge Distillation. This approach
models knowledge via graph and transfers knowledge be-
tween steps via graph operations. Adaptive Knowledge Ac-
cumulation (AKA) [48] constructs a fully connected graph
to retain knowledge during continual learning and is utilized
for direct training. Simultaneously, a temporary fully con-
nected graph is constructed using features extracted by the
current model. Relevant knowledge is then propagated from
the knowledge-preserving graph to the temporary graph us-
ing Graph Convolutional Network. Liu et al. [38] leveraged
the similar idea, but performed knowledge transfer between
graphs using Graph Attention Network. Pu et al. [50] pro-
posed a graph-based framework built upon AKA, guided
by the novel differentiable Ranking Consistency Distillation
(RCD). RCD distills ranking knowledge in a differentiable
manner, further preventing catastrophic forgetting.

2.3.2 Data Rehearsal/Replay

Inspired by the human brain system, this approach, intro-
duced in Generalising without Forgetting (GwF) by Wu et
al. [67], stores representative exemplars of old domains,
then replays on the current model as knowledge transfer.
Yu et al. [73] proposed Knowledge Refreshing and Consol-
idation (KRKC), which incorporates knowledge rehearsal
mechanism to enable bi-directional knowledge transfer by
introducing a dynamic memory model and an adaptive
working model. Huang et al. [20] proposed a novel auto-
weighted latent embeddings method where autoencoders
are used to reconstruct feature maps from both old and
new samples at multiple levels. These embeddings are con-
strained to preserve knowledge from previous tasks, and an
adapted auto-weighted approach assigns importance to em-
beddings based on reconstruction errors.

2.3.3 Unsupervised LReID

To mitigate the requirement for labels in LReID, Chen et
al. [1] introduced the unsupervised LReID task. This work
proposed unsupervised contrastive rehearsal (UCR), which
enables a model to adapt to new domains sequentially with-
out supervision. Meanwhile, it preserves knowledge from
previous domains by rehearsing a small number of old sam-
ples contrastively and applying an image-to-image similar-
ity constraint. UCR regularizes model updates to main-
tain consistency with old knowledge. LUDA framework
introduced by Huang et al. [23] enabled deployed models
to attain continuous domain adaptation by utilizing unla-
beled target streams. LUDA focuses on fine-grained re-
trieval tasks, necessitating a higher generalizability on un-
seen identities. Relational Consistency Learning (RCL) as-
sists LUDA in knowledge distillation from historical to cur-
rent models during adaptation. Gu et al. [14] introduced
the Color Prompting (CoP) method for data-free continual
UDA, leveraging lightweight neural networks to adapt color
styles across tasks without storing previous task data, ad-
dressing privacy concerns. This approach simulates past do-
main styles through color distribution fitting and style trans-
fer, significantly enhancing anti-forgetting capabilities and
generalization to new domains with minimal labeled data.

3. Experiments Setup

To demonstrate the limitations of existing cross-domain
methods in tackling clothing changes, we conduct experi-
ments of existing LReID methods on ReID datasets with
and without clothing changes.
ReID without clothing changes. In this setting, we
use twelve ReID datasets, which are summarized in Ta-
ble 1. Following [19, 48, 50, 60], five datasets are used
for sequential training (seen) with the order Market-1501
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Method Venue Market-1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Avg. Seen Avg. Unseen
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 smAP sR1 umAP uR1

SPD [62] ICCV’19 35.6 61.2 61.7 63.4 27.6 47.1 5.2 15.5 42.2 44.3 34.4 46.4 40.4 36.6
LwF [35] TPAMI’17 56.3 77.1 72.9 75.1 29.6 46.5 6.0 16.6 36.1 37.5 40.2 50.6 47.2 42.6
CRL [78] CVPR’21 58.0 78.2 72.5 75.1 28.3 45.2 6.0 15.8 37.4 39.8 40.5 50.8 47.8 43.5
AKA [48] CVPR’21 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4
AKA† [48] CVPR’21 58.1 77.4 62.5 64.8 28.7 45.2 6.1 16.2 38.7 40.4 40.8 50.8 47.6 42.6
AGD† [40] CVPR’22 57.2 80.1 78.0 80.4 35.5 48.2 11.9 20.4 42.8 49.2 45.1 55.7 48.2 43.5
PTKP† [9] AAAI’22 50.3 74.8 75.4 78.0 41.2 61.5 9.8 26.3 31.7 34.1 41.7 54.9 48.8 44.5
UCR† [1] arXiv’22 59.3 82.7 78.3 80.0 34.2 46.7 10.1 19.4 40.5 45.9 44.5 54.5 46.4 43.8
PKD [60] ACMMM’22 68.5 85.7 75.6 78.6 33.8 50.4 6.5 17.0 34.1 36.8 43.7 53.7 47.1 40.4
PKD† [60] ACMMM’22 66.1 84.5 73.6 76.2 32.7 48.4 5.8 15.2 32.5 34.6 42.1 51.8 46.3 39.1

KRKC† [73] AAAI’23 54.6 74.1 73.5 77.3 25.8 40.9 7.2 15.7 35.4 39.2 39.3 49.4 46.0 41.9
RFL [18] PR’23 59.2 78.3 82.1 84.3 45.6 61.8 12.6 30.4 51.7 53.8 50.2 61.7 57.4 52.3

MEGE [50] TPAMI’23 46.6 67.6 77.2 79.8 21.8 36.1 6.7 18.4 47.8 49.3 40.0 50.2 47.7 44.0
CKP [38] NN’23 51.2 72.2 73.5 76.8 19.5 33.3 17.5 43.2 31.4 33.8 38.6 57.9 47.0 40.8

Table 2. Seen-domain Anti-Forgetting evaluation on standard ReID datasets without clothing changes. Results are computed after the last
training step. “†” means we reproduced results using the released code, while the remaining results are as reported in the literature. Best
results are shown in bold, while second-to-best results are underlined.

Figure 5. Tendency of (1) anti-forgetting performance on the first seen domain during incremental training process (the first two plots), and
(2) generalization performance on unseen domains (the last two plots) on standard ReID datasets without clothing changes.

→ DukeMTMC-reID → CUHK-SYSU → MSMT17 →
CUHK03. This order is applied to all LReID methods for
a fair comparison. The remaining eight datasets includ-
ing Viper, PRID, GRID, i-LIDS, CUHK01, CUHK02, and
SenseReID are used as unseen domains to validate the gen-
eralizability of LReID methods. Following [48, 60], to miti-
gate the problem of unbalanced number of identities among
datasets, 500 identities are randomly sampled from each
seen dataset for training. For testing, the original query and
gallery sets are used.

ReID with Clothing Changes. To support the study
of LReID under cloth-changing scenario, we propose a
benchmark based on existing cloth-changing ReID datasets,
named as LCCReID, which comprises CCseen and CCunseen.
PRCC, LTCC, and DeepChange datasets are used to con-
struct CCseen. Their training sets are combined for incre-
mental training of LReID methods, while their query and
gallery sets are used to evaluate anti-forgetting ability on
seen domains. In CCseen, we balance the number of classes
among datasets by randomly sampling 75 identities per

dataset with a total of 40,152 images. Training order is
PRCC → LTCC → DeepChange. For CCunseen, we merge
the test sets of the remaining four CCReID datasets, Real28,
VC-Clothes, Celeb-reID-light, and LaST. This results in a
total of 6920 identities and 151,285 images. A summary of
LCCReID can be found in Table 1.

Evaluation Metrics. Rank-1 accuracy (R-1) and mean Av-
erage Precision (mAP) are computed on each seen domain
after each training step. Note that a complete training on
one dataset is considered as a training step. Following [50],
after the last training step, (sR1, smAP ) are computed to
measure average anti-forgetting performance on seen do-
mains, while (uR1, umAP ) are computed to measure aver-
age generalization performance on unseen domains.

Methods and Implementation Details. We conduct eval-
uation of LReID methods: CRL [78], PTKP† [9], AKA†

[48], AGD† [40], UCR† [1], PKD† [60], KRKC† [73],
RFL [18], MEGE [50], and CKP [38]. Methods denoted
by † provide their open-source code repositories. We also
demonstrate the effectiveness of LReID methods compared
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Method Venue PRCC LTCC DeepChange Avg. Seen Avg. Unseen
mAP R-1 mAP R-1 mAP R-1 smAP sR1 umAP uR1

AKA [48] CVPR’21 31.2 35.6 10.1 13.4 8.6 31.5 16.6 26.8 14.5 30.1
AGD [40] CVPR’22 32.0 36.7 10.7 13.9 8.8 32.0 17.2 27.5 16.2 34.5
PTKP [9] AAAI’22 33.1 37.9 11.8 14.7 9.1 34.9 18.0 29.2 15.8 33.0
UCR [1] arXiv’22 34.6 38.2 12.3 15.0 8.9 34.8 18.6 29.3 16.1 34.9
PKD [60] ACMMM’22 35.4 39.1 12.0 14.9 9.3 35.3 18.9 29.8 17.8 36.2

KRKC [73] AAAI’23 33.2 37.4 11.3 13.9 8.9 33.8 17.8 28..4 15.3 33.7

Table 3. Seen-domain Anti-Forgetting evaluation on CCReID datasets. We produce results of all six method using their released codes.
Best results are shown in bold, while second-to-best results are underlined.

Figure 6. Tendency of (1) anti-forgetting performance on the first seen domain during incremental training process (the first two plots), and
(2) generalization performance on unseen domains (the last two plots) on CCReID.

to general lifelong learning methods by putting in eval-
uation: 1) LwF [35] (lifelong learning baseline) and 2)
Similarity preserving distillation (SPD) [62]. On CCReID
datasets, no LReID method has been evaluated yet. Thus,
we conduct evaluation among the aforementioned six open-
source LReID methods. For fair comparison, we reimple-
ment, train and test these methods using the same experi-
mental setup of 50 training epochs and a batch size of 128.
For each batch, 16 identities and 8 images per identity are
randomly sampled. Other hyper-parameters are set as re-
ported in the original paper. Experiments were done in Py-
Torch and conducted on two 32GB Tesla V100 GPUs.

4. Evaluation: ReID without Clothing Changes

We first conduct a comprehensive evaluation of existing
LRe-ID methods without clothing changes to provide in-
sights in the strengths and weaknesses of those methods.

Seen Domain Anti-Forgetting Evaluation. We first eval-
uate the anti-forgetting performance of the reviewed ap-
proaches on seen domains, shown in Table 2. Overall,
RFL [18] achieves the highest average mAP and R-1 ac-
curacy. It outperforms all other approaches when evaluat-
ing on DukeMTMC, CUHK-SYSU, and CUHK03 datasets.
RFL uses a cascade knowledge distillation structure to guar-
antee feature consistency and a weighted distillation loss to
prevent generalization loss on current domains caused by
overlapping old knowledge, showing effectiveness in miti-
gating catastrophic forgetting. The second-to-best average
performance is achieved by AGD [40], which augments the

memory exemplars itself and distillation is conducted in a
pair-wise and cross-wise pattern. In Figure 5, we demon-
strate forgetting via the decreasing trend of the performance
on seen domains during the incremental training process.
PKD [60] tends to perform well as training progresses as
seen in both mAP and R-1 plots. This is followed by AGD
[40] and AKA [48], which also perform well over training
steps and this correlates with their distillation ability using
memory exemplars.

Unseen Domain Generalization Evaluation. Table 2
presents the average mAP and R-1 score achieved on un-
seen datasets as generalizability. It can be seen that RFL
[18] also outperforms the other methods, achieving an mAP
of 57.4% and R-1 score of 52.3%. This is higher than the
second-to-best approach PTKP [9] by 8.6% in mAP and by
7.8% in R-1 score. RFL makes use of Feature Perspicac-
ity for diversity feature generation and discriminative fea-
ture extraction, which is effective in learning representative
ReID features. PTKP [9] uses a mechanism to map new
task features onto the feature space of the old tasks and uses
task-specific domain consistency loss, which increases its
generalizability on unseen domains. AKA [48] and MEGE
[50] accumulate knowledge information from old domains
via graphs. Figure 5 illustrates the trend of the performance
on unseen domains during the incremental training stages.
As training progresses, the generalization ability of the ap-
proaches improves. Memory exemplar methods [20, 67, 73]
tend to perform well on unseen domains due to their ability
to adaptively store previous knowledge embeddings and use
it to generalize on new tasks.
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5. Evaluation: Cloth-Changing ReID
Existing LRe-ID methods ignore attribute domain shifts,
particularly clothing changes which is very common in Re-
ID. We provide insights into this phenomena via experi-
ments on cloth-changing Re-ID datasets.
Seen Domain Anti-Forgetting Evaluation. On CCReID
datasets, comparison in anti-forgetting performance on seen
domains is shown in Table 3. Overall, all methods perform
much worse than on ReID datasets without cloth-changing,
showing the significant influence of clothing changes in
Lifelong ReID. PKD [60] achieves the highest average mAP
of 18.9% and R-1 accuracy of 29.8%. Its effectiveness
in mitigating catastrophic forgetting under cloth-changing
scenario lies in its patch-based approach. Local features
extracted from patches can contain cloth-invariant features
from face or body parts, which is beneficial for LCCReID.
The remaining methods that leverage global appearance are
severely affected by clothing changes. UCR [1] also shows
its ability in preserving knowledge from old domain un-
der cloth-changing scenario, which is lower than PKD by
only 0.3/0.5% in average mAP/R-1. This may be reasoned
by its unsupervised setting being applied to labeled data.
From the visualization of performance tendency as shown
in Figure 6, it can be seen that after the second training
step on LTCC [52], catastrophic forgetting on PRCC [71] is
less severe than after the last training step on DeepChange
[70]. This is because compared to DeepChange, LTCC and
PRCC present a much smaller range of clothing variations,
thus makes it less challenging.
Unseen Domain Generalization Evaluation. The com-
parison in generalization ability is reported in Table 3 and
shown in Figure 6. PKD [60] effectively leverages its
patch-based feature extraction to achieve highest general-
ization performance. AGD [40] achieves second-to-best
performance in terms of average mAP. This can be rea-
soned by its pair-wise and cross-wise feature ranking ap-
proach, which helps partially to reduce intra-class gap under
clothing changes. However, overall, it is clear that existing
LReID methods are not designed for CCReID, shown by
low performance results and a small difference in both av-
erage mAP and average R-1 accuracy among all methods.

6. Future Directions
Based on the analysis of issues and solutions, the follow-
ing insights can be drawn for future research to address the
Lifelong ReID problem for practical scanarios.

Addressing Attribute Domain Shift. Attributes espe-
cially appearance and clothing are likely to change within
the same domain. As shown in Tables 2 and 3, existing
LReID methods suffer significant performance drop under
cloth-changing scenario, which reveals much room for im-
provement in approaches to solve this problem. Some key

strategies can be explored such as: (1) Clothing-guided
adaptation techniques that specifically focus on aligning
clothing attributes between source and target domains and
emphasize the transfer of cloth-irrelevant knowledge while
mitigating the influence of other cross-domain factors; (2)
Explicitly capturing cloth-invariant cues from body shape
or gait, then replaying this knowledge during incremental
learning; (3) Leveraging generative models for cloth synthe-
sis or augmentation to mimic the distribution of clothings in
target domains.

Improving Generalizability of LReID Methods is an-
other problem to address. As shown in Section 2.3, most ex-
isting methods only explicitly tackle catastrophic forgetting
issue. Generalization performance of most methods show
much room for improvement as shown in Tables 2 and 3.

Efficient Knowledge Preservation and Transfer
Methods for LReID that do not require storing and replay-
ing of data should also be developed. This would not only
enhance efficiency but also reduces memory for real-world
deployment.

Investigation on Different Training Orders of Life-
long ReID is necessary. This includes investigating the im-
pact of adapting to certain domains before others, poten-
tially prioritizing seen domains based on their relevance or
similarity to the unseen domain.

Developing Hyperparameter Tuning Strategies tai-
lored for tackling domain shift is also important. This may
involve techniques that dynamically adjust hyperparameters
based on the characteristics of the current domain.

Exploration of Lifelong ReID in Multimodal Settings
is promising. When information from multiple modalities
such as visual or text data are available, investigating how
Lifelong ReID models can effectively leverage and adapt
to diverse modalities to improve ReID performance could
enhance robustness for ReID.

7. Concluding Remarks
This paper presents the first review in tackling domain shift
in Person ReID. We first explore cross-dataset ReID settings
including UDA-ReID and DG-ReID. Then, an in-depth
analysis on LReID is conducted. Knowledge Distillation-
based and Data Replay methods remain competitive in pre-
serving knowledge and prevent catastrophic forgetting in
LReID. However, techniques to enhance generalizability
have not been explored. Most importantly, we introduce
the novel task of LReID in Cloth-Changing scenario, which
encompasses tackling shifts in both data and attributes. Our
thorough evaluation of existing LReID methods under both
stanard and cloth-changing scenarios provides valuable in-
sights about the strengths and limitations of current ap-
proaches. We believe this review and analysis will pro-
vide important guidance for future research in domain-shift-
related ReID.
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