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Abstract

This paper introduces a novel approach for continually
training Energy-Based Models (EBMs) on the classifica-
tion problems in the challenging setting of class incremental
learning. Despite the fact that EBMs offer longer retention
of knowledge on prior tasks, training EBMs contrastively
remains a challenge. Driven by biological plausibility, we
leverage the observation that sleep in humans supports ac-
tive system consolidation and propose a new approach for
training EBMs, which we call Wake-Sleep Energy Based
Models (WS-EBMs), which rely on wake-sleep cycles. Our
training approach consists of short wake phases followed
by long sleep phases. During the short wake phase, the
free energy associated with ground truth labels is minimized,
which conditions the model towards the correct solutions.
This is followed by a long sleep phase, where the free energy
of the whole system is minimized contrastively, which allows
the model to push the energy of incorrect solutions further
from the correct response. We provide a theoretical analysis
of WS-EBM showing that it satisfies the sufficient condition
for designing proper EBM loss. Our empirical evaluation
confirms the plausibility of our approach and demonstrates
favorable performance of WS-EBM compared to traditional
EBM training as well as state-of-the-art class-incremental
continual learning techniques. Furthermore, our proposed
two-phase training strategy can be easily integrated with
existing techniques resulting in substantial boosts in their
performance. Finally, we also provide interesting insights
justifying our approach by analyzing the orthogonality be-
tween the sequential task vectors, and flatness of the opti-
mized energy surfaces, which may guide the design of class
incremental continual learning strategies.

1. Introduction

Modern Deep Learning algorithms can be viewed as isolated
single-task learning methods trained on data samples that
are assumed to be independent and identically distributed
(i.i.d). Single-task learning schemes are not equipped with
mechanisms allowing them to transfer knowledge, or incre-
mentally learn under data distributional changes or when a
new task comes. Therefore they suffer from a phenomenon
known as catastrophic forgetting [34]. Humans on the other
hand learn continually and accumulate knowledge over time
through sense perception [49]. A variety of approaches
have been proposed to mitigate catastrophic forgetting, like
using regularization-based methods [25, 33, 46], external
memory [30, 32], and dynamic model architecture tech-
niques [47].

This paper explores the use of Energy-Based Models
(EBMs) for continual learning and proposes an efficient
training regime that helps alleviate the problem of catas-
trophic forgetting. EBMs offer considerable freedom to
choose what classes to update in the continual learning pro-
cess. They look at classification problem from the lens of
training an un-normalized probability distribution, which
leads to significant improvements in the performance on the
classification problems in the continual learning setting [29].
Our work focuses on the setting, where the model architec-
ture is fixed, as opposed to the dynamic architecture tech-
niques or methods incorporating attention or fusion mod-
ules [12, 31, 55, 56, 58]. Recent developments [13, 18, 38]
in training large-scale EBMs parameterized by deep neu-
ral networks on high-dimensional data has motivated us to
explore them in the scenario of continual learning frame-
work. In lieu of classification problems, given the input
x and output class y, the objective in training an EBM is
to shape an energy function E(w, x, y), parameterized by
weights w, in such a way that the model produces the cor-
rect class label y from a set of possible classes Y when the
energy function E attains its minimum [28]. To train EBMs
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we need to define a loss functional L(E, x, y), which deter-
mines the quality of the Energy Function E. The learning
objective becomes minimization of this loss functional as
w∗ = minw∈WL(E, x, y).

EBMs offer a unique perspective into addressing the con-
tinual learning problem. With EBMs, continual learning
problems simply correspond to constructing an energy land-
scape that assigns low energy to correct classes and high
energy to incorrect classes. EBMs give us freedom in fram-
ing the continual learning problem, where we may decide
to learn about new classes, by decreasing the energy of that
class or choosing to forget prior classes, by increasing the
energy of incorrect classes.

In this paper, we continually learn with EBMs by using
two separate wake-sleep phases in training. This approach is
biologically plausible since in the human brain, deep sleep
supports active system consolidation [6]. Although vast
amounts of information activate the brain during a daytime
period of wakefulness, aggregation and long-term encoding
of this information happen during sleep. A global strengthen-
ing of newly acquired memory traces and underlying synap-
tic connections during any single-phase consolidation would
inevitably result in a system overflow [6, 57]. Therefore
single-phase learning is neither biologically plausible nor ef-
ficient, as opposed to relying instead on decoupled phases for
knowledge aggregation. Two-phase learning indeed seems
to be a crucial adaptive function of active memory consolida-
tion in biological systems. Our proposed two-phase approach
consists of, what we call, a wake phase and a sleep phase.
In the short wake phase, we minimize the free energy on
real data without any contrastive sampling. This is followed
by long wake cycles where learning happens through the
minimization of the free energy of the whole system by op-
timizing a suitable loss function. We hypothesize that the
model parameters, as shown in Figure 1, during the wake
phase capture the ground truth labels by freely minimizing
their energies without any constraints. This gives the model
conditioning over the correct class labels. But simply run-
ning the wake phase for the entire training procedure will
deprive the model of learning about the incorrect class labels,
leading to a mode collapse [14, 28]. This is prevented by
introducing a longer sleep phase, which provides a margin
for the model to push up the energy of the incorrect solution
from the already conditioned model obtained in the wake
phase.

The contributions of this paper can be summarized as:
• We propose a novel and simple framework called Wake

Sleep Energy-Based Model (WS-EBM), which offers an
effective way of training EBMs motivated by biological
plausibility.

• We apply our training approach in the challenging scenario
of class incremental continual learning.

• We offer a theoretical understanding supporting our algo-

rithm.
• We demonstrate that our proposed method outperforms

other established baselines and provide some interesting
insights justifying our approach.

2. Related Work
One of the key challenges in continual learning is to mitigate
the problem of catastrophic forgetting [34]. The primary
objective of the model is to adapt to changes in the distribu-
tion of the input data while retaining the previously learned
knowledge or at least demonstrating graceful degradation.
[51] outlines different settings where the model at hand is
supposed to solve the classification problem when succes-
sively learning tasks. Firstly, we have task incremental set-
ting (Task-IL or multi-head) [16], where the model is trained
on data coming from the current task and has access to the
task identity of test samples at the inference time. Next,
we have domain incremental setting (Domain-IL), where the
model incrementally learns a set of tasks, but with the crucial
difference that at least at the test time, the trained model does
not have any information about the identity of the task that a
currently observed sample belongs to. Moreover, identifying
the task is not necessary, because each task has the same
possible outputs (i.e., the same classes are used in each task),
and the changes occur only in the input distribution [35].
Finally, we have class incremental scenario (Class-IL or
single-head) where the model requires the task identifier to
be predicted along with the class label [41, 47, 54].

Task-IL is the easiest setting to address. Methods ded-
icated to tackling Task-IL typically employ multi-headed
architecture [45]. For Domain-IL algorithms use a sin-
gle head architecture to classify the input [35]. Lastly, in
Class-IL, existing methods need to store data, use replay, or
pre-train models on another large data set [4, 20, 33, 42, 44]
to perform well in this setting. Recent works in contin-
ual learning have focussed more on the general and most
challenging scenario of class incremental setting [1, 4, 22,
37]. Existing approaches can be divided into two groups:
regularization-based and rehearsal-based methods. In the
former, regularization-based terms are specifically used to
maintain a balance between stability and plasticity. Typ-
ically a penalty is introduced that prevents modifications
in the weights of the model that are crucial for the previ-
ous tasks while learning the current task at hand. Often
these methods are effective for short sequences of tasks but
are hard to scale to more difficult problems [1, 16]. The
rehearsal-based methods leverage a memory buffer to store
examples from previous distributions. Experience Replay
(ER) [17, 43] simply replays the stored examples along with
the input stream to simulate training over an independent
and identically distributed task (joint training). Despite its
simplicity, this the method has proven to be highly effective
even with a minimal memory footprint [9] and serves as
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Figure 1. Overview of our Wake-Sleep algorithm for training Energy-Based Models(WS-EBM) for continual learning over image
classification in the class incremental setting. Model Parameters(θ) are trained through the alternate short wake and long sleep cycles and are
fed to the next task.

the basis for recent methods that propose modifications to
the strategy for selecting samples that should be included
in the memory buffer [3] or design strategies for sampling
the examples from the memory buffer [9, 48]. Finally, the
retained knowledge can also be used as a mean to revise the
optimization procedure: MER [23] employs meta-learning
to discourage interference and maximize knowledge transfer
between tasks, while GEM [32] and A-GEM [8] use old
training data to minimize the gradient interference in an
explicit fashion.

3. EBMs for classification problems
In this work, we focus on the class incremental setting [4,
20, 33, 51], where the model at inference chooses between
the classes from all tasks seen so far to predict the label of an
input data. In a class incremental setting, the model is trained
for a classification task from a stream or sequence of data
partitioned into distinct sections where each section holds
different non-overlapping class groups. In the tth section,
the classifier is fed the training dataset Dt = (xt

i, y
t
i)t=1,

where xt
i , yti are input samples and the corresponding labels,

respectively (subscript i denotes the index of the data point
in the tth task). This Dt is not accessible later when training
on the other data sections. Upon training on the tth section,
the model is evaluated across all the class labels seen till now.
In other words, training happens only on a single section
of data but the model is tested for all the classes that the
model has been trained on. Further in this work we assume

that task boundaries are known [25, 47, 59] at training time
but are not available at inference. Due to the simplicity of
EBMs, they can be easily extended to the boundary-free
setting [1, 42, 60]. When solving the classification problem
via EBMs, the conditional likelihood of a label y given x is
sampled from a Boltzmann distribution

pw(y|x) =
exp(−E(w, x, y))

Z(w;x)

where Z(w;x) =
∑
ȳ∈Y

exp(−E(w, x, ȳ))
(1)

Y is discrete set of possible class labels and E(w, x, y) :
(RD,N) → R is the energy function that maps an input-
label pair (x, y) to a scalar energy value. Z(w;x) is the
partition function used for normalizing the distribution. It is
desired that the distribution defined by the energy function
E(w, x, y) captures the data distribution pD. This can be
done by minimizing the negative log-likelihood of the data,
L(w) defined as follows:

L(w) = E(x,y)≈pD
[−log(pw(y|x))] (2)

Expanding the probability distribution we get

L(w) = E(x,y)≈pD
[E(w, x, y) + log(

∑
ȳ∈Y

e−E(w,x,ȳ)] (3)

Directly maximizing the free energy over all labels restricts
the model by penalizing all the classes equally. To allevi-
ate this, Equation 3 can be approximated via contrastive
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divergence loss [13, 21]:

LCD(w) = E(x,y)≈pD
[E(w, x, y)− E(w, x, ȳ)], (4)

where y is the ground truth label of data x and ȳ is a negative
class label randomly sampled from the set of class labels in
the current training batch Yb such that ȳ ̸= y.

4. Wake-Sleep Energy Based Model(WS-EBM):
Proposed Strategy

The contrastive divergence loss function in Equation 4 re-
quires two terms. E(w, xi, yi) is the energy of the ground-
truth label, called the positive energy. And E(w, xi, ȳi) is
the negative energy corresponding to the mismatch between
the input xi and the label ȳi that is defined as the most offend-
ing answer with the lowest energy among all the incorrect
labels. Since each task in our experiments is a two-class
classification, there is only 1 most offending label for each
data point xi.

Algorithm 1 Wake sleep training of EBMs in class incre-
mental setting

Require: Data D = (xi, yi, Tt), Iterations(iters),
Tasks(tasks), Tt is the current task id, L is the contrastive
divergence loss. Wake Cycles(wc), Sleep Cycles(sc)

1: for t in tasks do
2: for i in iters do
3: for wc in wc do
4: Lwc = E(w, xi, yi)

2

5: w = w − η∇(Lwc)
6: end for
7: for sc in sc do
8: Lsc = L(E(w, xi, yi), E(w, xi, ȳi))
9: w = w − η∇(Lsc)

10: end for
11: end for
12: end for

We propose a Wake-Sleep strategy for training EBMs,
captured in Algorithm 1, where instead of just minimizing
the coupled contrastive loss function, we minimize a dy-
namic loss function having two decoupled phases, defined
as follows:
• Wake Phase: Here the loss function is the square of only

the positive energy defined as Lwc = E(w, xi, yi)
2. In

the wake phase, we are essentially minimizing the positive
energy. This essentially leads to pushing down the energy
of the desired answer without pulling up the energy of in-
correct solutions. We view this phase as an active learning
phase, where the attention of the model is solely on the
correct classes and no information on incorrect answers is
presented.

• Sleep Phase: Here the loss function (Lsc) to minimize
includes both the energy of the desired solution as well
as the incorrect solutions. The goal is to push down the
energy of correct answers and pull up the energy of all the
other answers that are incorrect. This is the typical phase
of training EBMs. We view this phase as a passive phase
or consolidation/aggregation of the information. It is done
in humans during sleep [6, 57].

5. Theoretical Analysis
In [28] it is argued that minimizing only the positive energy
loss function can lead to the collapsed solution since there is
no mechanism to increase the energy of incorrect solutions.
The model parameters during the wake phase capture the
positive class(ground truth labels) by freely minimizing their
energies without any constraints. This gives the model con-
ditioning over the correct class labels. But simply running
the wake phase for the entire training procedure will deprive
the model of learning the incorrect class labels, which leads
to a collapsed mode. This is prevented by a longer sleep
phase, which provides a margin for the model to push up the
energy of the incorrect solutions for the already conditioned
model obtained from the wake phase.

This procedure is explained in Algorithm 1. In order to
avoid mode collapse[14, 28], where the energy manifold is a
flat surface, the energy functions and the loss functions must
satisfy the following conditions [28]:

Condition 1 (Necessary Condition on Energy Functions).
For any sample (xi, yi) and model parameters w, the energy
of the correct answer for xi must be lower than the energy of
the most offending incorrect answer ȳi by a positive margin
m:

E (w, yi, xi) < E (w, ȳi, xi)−m, (5)

where the most offending incorrect answer ȳi can be defined
as:

ȳi = argminy∈Y and y ̸=yi
E(w, y, xi). (6)

Further, in energy-based training, only the relative values
of E (w, yi, xi), denoted by EC , and E (w, ȳi, xi), denoted
by EI , matter. Now consider a cross-section of the loss
function in the 2-dimensional plane formed by these two
energy values as shown in Figure 2. We can represent an
arbitrary shaded region R of this slice, corresponding to
all possible values of parameter w. Further, we assume
the existence of at least one set of parameters w for which
Condition 1 is satisfied for a single training sample (xi, yi).
If such a w does not exist then there cannot exist any loss
function whose minimization leads to Condition 1. The 2d
plane can be divided into two planes P1 and P2 by the solid
red line EI = EC + m, where m is the positive margin
as stated in the Equation 5. We can now state a sufficient
condition for designing the loss functions for energy-based
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training, which when satisfied ensures the satisfiability of
the Necessary Condition above.

Figure 2. Direction of the negative gradient of L′ given by vector
summation of gC and gI in the feasible region R (grey shaded
region) shows that loss decreases monotonically moving from P2

to P1.

Condition 2 (Sufficient Condition on Loss Function). Min-
imizing the loss function L in the feasible region R, will
satisfy necessary condition if, there exists at least one point
(r1, r2) ∈ P1 such that the loss function is less than all the
points (r′1, r

′
2) such that (r′1, r

′
2) ∈ P2

In other words, there must exist at least one point in the
feasible region R intersecting the P1, such that the value of
the loss function at this point is less than the value of the loss
function at all the other points in the part of R intersecting
P2. It can be observed that WS-EBM first conditions the
model parameters on the current task by minimizing the loss
in the wake cycle (Lwc). These are then further optimized by
the loss function in the sleep cycle (Lsc), which consolidates
knowledge on both the current task as well as the previous
tasks, with less interference.

Although it is difficult to analyze the dynamic loss of
WS-EBM, we present a theoretical explanation of a slightly
simpler scheme, where the combined loss function can be
written as a linear combination of Lwc and Lsc, given as
L′ = αLwc + βLsc, where α is the number of wake cycles
and β is the number of sleep cycles (see Appendix for in
detail discussion and proof). The actual training dynamics
do not involve a straightaway linear combination that is
only used here for the ease of mathematical analysis. Table
1 however clearly shows the superiority of our proposed
technique over a straightforward linear combination in a
practical example.

Theorem 1: L′ satisfies the sufficient condition for de-
signing a loss function for EBMs.

Proof: For L′ = αLwc + βLsc, consider
Lwc = E(w, yi, xi)

2 and Lsc = E(w, x, y) +
log(

∑
ȳ∈Y e−E(w,xi,ȳ)). For any fixed parameter w and

training sample (xi, yi), the gradient for the loss wrt to the
correct energy(Ec) of the correct answer yi and incorrect
energy(EI ) of the most offending incorrect answer ȳi admit
the following form:

gC =
∂L′(w, yi, xi)

∂EC
= 2αEC+β(1− e−E(w,yi,xi)∑

y∈Y e−E(w,y,xi)
)

(7)

gI =
∂L′(w, yi, xi)

∂EI
= −β

e−E(w,ȳi,xi)∑
y∈Y e−E(w,y,xi)

(8)

Since α and β are the number of wake-sleep cycles re-
spectively, they are positive. Since EC and EI range in
(0, 1), for any values of EC , α and β, gC > 0 and gI < 0.
The overall direction of the gradient at any point in the space
of EC and EI is shown in Figure 2 (Figure 2 also provides an
explanatory illustration for the proof). Thus we can conclude
that going from P2 to P1, the loss decreases monotonically.
Now consider a point P = (E′

C , E
′
C +m) lying on the mar-

gin line for which the loss is minimum. Due to monotonicity,
we can conclude that

L′ (E′
C , E

′
C +m) ≤ L′ (EC , EI) (9)

Now consider another point S at a distance ϵ away from
the point (E′

C , E
′
C +m) and inside P1, i.e., this points has

coordinates (E′
C − ϵ, E′

C + ϵ+m) and is inside P1. From
Taylor’s expansion on the loss at this point S we get

L′ (E′
C − ϵ, E′

C +m+ ϵ) =

L′ (E′
C , E

′
C +m)− ϵ(

∂L′

∂EC
− ∂L′

∂EI
) +O(ϵ) (10)

From the discussion above, the second term on the right
is negative, so for infinitesimally small ϵ, we have

L′ (E′
C − ϵ, E′

C +m+ ϵ) < L′ (E′
C , E

′
C +m) (11)

Therefore it can be concluded that there exists at least one
point in P1 at which the loss is less than at all points in P2.
Thus L′ satisfies Condition 2, which implies it satisfies Con-
dition 1 as well. This analysis ensures that minimizing the
combined loss function of WS-EBM will give us a correctly
trained classifier without mode collapse.

6. Main Experiments
6.1. Experimental Setup

Out of the three settings proposed in [51] class incremental
setting is the most challenging [10, 50] and we perform
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LC WS-EBM

55.32 ± 0.86 57.86 ± 0.03

Table 1. Comparison of Linear Combination(LC) with α = 1 and
β = 10 vs our proposed WS-EBM on SplitMNIST data set.

all our experiments in this scenario. Each experiment was
performed 10 times with different random seeds. We report
the mean ± Standard Error of Mean (SEM). The number
of iterations is kept fixed at 2000 for training EBMs under
traditional setting. To compare the WS-EBM, we keep the
iterations per task to 200, with 2 wake cycles and 10 sleep
cycles. This ensures that the total iterations per task are
approximately the same. We ran all our experiments on
NVIDIA V100 GPU to maintain consistency.

6.2. Datasets

We ran our experiments on four standard continual learn-
ing benchmarks: splitMNIST [59], permutedMNIST [25],
CIFAR-10 [26], and CIFAR-100 [26] data sets. The
splitMNIST data set is obtained by splitting the original
MNIST [27] into 5 tasks with each task having 2 classes.
It has 60,000 training images and 10,000 test images. The
permuted MNIST protocol has 10 tasks and each task has
10 classes. We separate CIFAR-10 into 5 tasks, each task
with 2 classes. CIFAR-100 is split into 10 tasks with each
task having 10 classes. This demonstrates multi-class clas-
sification. The last two data sets each have 50,000 training
images and 10,000 test images.

6.3. Architecture of Energy Function

Traditional classification models only feed in x as input. In
contrast, EBMs have many different ways to combine x
and y in the energy function with the only requirement that
E(w, x, y) : (RD,N) → R. To compute the energy of any
data x and class label y, x is sent into a small network to
generate the feature f(x). The label y is mapped into a same
dimension feature g(y) using a small learned network or a
random projection. f(x) and g(y) are added and the output
is finally sent to weight layers to generate the energy value
E(w, f(x), g(y)).. The baseline models for computing the
Energy value have been kept simple to emphasize the efficacy
of our algorithm. For SplitMNIST and PermutedMNIST
the baseline model architecture is similar to that in [51]
and consists of a single fully connected layer with ReLU
activation. For Cifar10 and Cifar100, we use the baseline
model architecture as in [29], i.e., it has 5 convolutional
layers connected to a fully connected layer for performing
multi-class classification.

((a)) Backward Transfer

((b)) Average Orthogonality

Figure 3. Comparison of Backward Transfer [%] in Figure (a)
(less negative is better) over benchmark data sets for WS-EBM vs
EBM [29]. Clearly, WS-EBM has a higher BWT across all the
data sets. Figure (b) shows Average Orthogonality using Cosine
Similarity between gradient vectors of task ti+1 and ti averaged
over all tasks.

6.4. Evaluation

We evaluate the WS-EBM against available baseline models
in two cases. Firstly where there is no usage of replay or any
additional buffer such as standard softmax-based classifier
(SBC). We report the performance of EWC [25], Online
EWC (Schwarz et al., 2018), SI [59], LwF [30], MAS [1],
BGD [60], and EBM [29]. For SBC, EWC, Online EWC,
Online EWC, LwF on splitMNIST, permuted MNIST, and
CIFAR100, we use the results reported in [51]. For BGD,
we use the results from [60]. For MAS, we use the result
from [41].

We also report results obtained by replay-based meth-
ods [7, 20, 32, 41, 44], which typically employ an external
memory buffer. In many cases, usage of generative modeling
is also often utilized [11, 47, 53]. Usually, these methods
are computationally intensive, in terms of memory usage,
but often give the best results since catastrophic forgetting
is minimized by updating the buffer with previously seen
samples. Due to the simplicity of our method, it is quite
straightforward to integrate WS-EBM with the replay-based
methods to further improve performance.

Methods like [22, 61] focus on learning unified classifiers
by first pre-training the model for some subset of classes and
then reducing forgetting. On the other hand, in our evalu-
ation, there is no pre-training involved. Similarly methods
involving transformers [12, 24] or dynamic architectures
[56, 58] have been excluded from our evaluation.
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Method(without replay) SplitMNIST PermMNIST Cifar10 Cifar100

SBC 19.90 ± 0.02 17.26 ± 0.19 19.06 ± 0.05 8.18 ± 0.10
EWC [25] 20.01 ± 0.06 25.04 ± 0.50 18.99 ± 0.03 8.20 ± 0.09
SI [59] 19.99 ± 0.06 29.31 ± 0.62 19.14 ± 0.12 9.24 ± 0.22
LwF [30] 23.85 ± 0.44 22.64 ± 0.23 19.20 ± 0.30 10.71 ± 0.11
Online EWC [46] 19.96 ± 0.07 33.88 ± 0.49 19.07 ± 0.13 8.38 ± 0.15
BGD [60] 19.64 ± 0.03 84.78 ± 1.30 NA NA
MAS [1] 19.50 ± 0.30 NA 20.25 ± 1.54 8.44 ± 0.27
EBM [29] 53.12 ± 0.04 87.58 ± 0.50 38.84 ± 1.08 30.28 ± 0.28
WS-EBM 57.86 ± 0.03 88.62 ± 0.57 40.21 ± 0.02 31.71 ± 0.24

Table 2. Average Accuracy [%] (higher is better) for class incremental learning over 4 data sets. All reported results are averaged over 10
runs with different random seeds.

Method(with replay) SplitMNIST PermMNIST Cifar10 Cifar100

iCARL [44] 92.49 ± 0.12 91.36 ± 0.03 18.32 ± 0.21 37.83 ± 0.21
DGR [47] 90.35 ± 0.24 92.19 ± 0.09 17.21 ± 1.88 9.22 ± 0.24
GSS-Greedy [2] 84.80 ± 1.80 77.30 ± 0.50 33.56 ± 1.70 NA
A-GEM [8] 65.10 ± 3.14 83.51 ± 0.68 28.91 ± 0.02 20.38 ± 1.45
BI-R [52] 94.41 ± 0.15 NA NA 25.81 ± 0.25
DER++ [7] 90.43 ± 1.87 83.58 ±0.59 43.26 ±0.76 33.91 ± 1.62
G-Dumb [41] 91.82 ± 0.51 NA 35.03 ± 0.42 24.37 ± 0.67
EBM+ER [29] 91.13 ± 0.35 94.59 ± 0.09 44.76 ± 0.73 34.07 ± 0.55
WS-EBM+ER 95.81 ± 1.36 95.28 ± 0.65 45.81 ± 0.34 36.10 ± 0.01

Table 3. Average Accuracy [%] (higher is better) for class incremental learning over 4 data sets (all methods use replay and rely on buffer
size equal to 100, as recommended in [53]). All reported results are averaged over 10 runs with different random seeds.

We report the following metrics: Average Accuracy and
Backward Transfer [32]. After the model finishes learning
task ti, we evaluate its test performance on all T tasks. In
order to do this, we construct the matrix R ∈ RTxT , where
Ri,j is the test classification accuracy of the model on task tj
after observing the last sample from task ti. Taken together,
these two metrics allow us to assess how well a continual
learner solves a classification problem while overcoming
forgetting.

Average Accuracy: This score shows the model accuracy
after training over T consecutive tasks and can be defined as:
ACC = 1

T

∑T
i=1 RT,i.

Backward Transfer: This is the influence that learning a
current task has on the performance on a previous task and
is defined as: BWT = 1

T−1

∑T−1
i=1 (RT,i −Ri,i).

6.5. Results

Table 2 shows the performance results in terms of average
accuracy. It can be seen that training EBMs with the wake-
sleep cycles improve the average testing accuracy across all
the datasets. In Table 3 we show the results of combining
the WS-EBM approach with experience replay. We call
it WS-EBM+ER. It can be observed that WS-EBM outper-

forms other baselines such as iCARL and BI-R. Figure 3 also
shows the improvement in backward transfer over the exist-
ing energy-based continual learning scheme, EBM, across
all data sets. Achieving zero-forgetting is very difficult for
these data sets because all the tasks share at least one output
layer and there is no task identifier during testing. Clearly,
the strong performance on BWT indicates the efficacy of the
proposed technique.

The proposed two-phase decoupled technique is the most
effective in mitigating catastrophic forgetting and gives
around 4% improvement in the average accuracy over prior
results reported in the literature for SplitMNIST, 1% for Per-
mMNIST, and 2% for Cifar10 while showing a comparable
performance on Cifar100 dataset. We hypothesize that the
improvement in performance in the class incremental setting
is due to better knowledge consolidation through decoupled
training of energy function without mode collapse. Short
wake cycles decoupled with longer sleep cycles, the latter
corresponding to the single-phase training regime, provide
prior conditioning of the EBM to output low energy values
for the correct class and decrease the interference of newer
introduced classes during continual learning of new tasks.
This allows the model to enlarge the margin between correct
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and incorrect classes while avoiding catastrophic forgetting,
as seen in the performance improvements in Table 2 and
Figure 3.

Also, the wake phase provides soft conditioning on the
matched or ground truth labels. To further quantize this
effect, we compare the orthogonality of the gradients of
the model parameters across different tasks (similar stud-
ies were done in [15, 36]). We compute gradients at taski
and taski−1 ∀i ∈ T , where T represents the total number
of tasks. Cosine Similarity is utilized to compute orthog-
onality between gradient vectors, which are then averaged
over all the tasks. A lower mean score of cosine similarity
demonstrates higher orthogonality and vice-versa. Figure 3
demonstrates the average cosine similarity computed over
all the tasks across all the data sets. We find that WS-EBM
demonstrates higher average orthogonality across all the data
sets compared to the baselines. In the Appendix, we show
that WS-EBM has a lower entropy [5] as compared with
EBM which signifies that our technique correlates well with
generalization. Further in the appendix, we visualize the
energy landscape of our proposed technique on a toy clas-
sification problem in class incremental setting and find that
there are less perturbations in the evolution of energy sur-
face in WS-EBM which shows less interference with prior
learned tasks. Finally, WS-EBM was also applied with dif-
ferent margin loss functions [28], and it gave a superior
performance as compared to the traditional training of EBM
in class incremental scenarios.

7. Conclusion
In this paper, we propose a new training scheme for EBMs
that rely on decoupled wake-sleep cycles. The new approach,
WS-EBM, alternately switches between the phase of condi-
tioning the model over the correct labels (short wake phase)
and the phase of knowledge consolidation (long seep phase).
We apply our method in the challenging class-incremental
learning scenario. On multiple benchmarks, we demonstrate
the superior performance of WS-EBM over a plethora of
continual learning techniques, including the regular EBM
training that minimizes a single loss function. Applying
the concept of wake-sleep cycles can be easily extended to
other domains such as regression [19] generation [13], and
reinforcement learning [39], and we leave it to future works.
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