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Abstract

The goal of lifelong learning is to continuously
learn from non-stationary distributions, where the non-
stationarity is typically imposed by a sequence of distinct
tasks. Prior works have mostly considered idealistic set-
tings, where the identity of tasks is known at least at train-
ing. In this paper we focus on a fundamentally harder, so-
called task-agnostic, setting where the task identities are
not known and the learning machine needs to infer them
from the observations. Our algorithm, which we call TAME
(Task-Agnostic continual learning using Multiple Experts),
automatically detects the shift in data distributions and
switches between task expert networks in an online man-
ner. At training, the strategy for switching between tasks
hinges on an extremely simple observation that for each
new coming task there occurs a statistically-significant de-
viation in the value of the loss function that marks the onset
of this new task. At inference, the switching between ex-
perts is governed by the selector network that forwards the
test sample to its relevant expert network. The selector net-
work is trained on a small subset of data drawn uniformly
at random. We control the growth of the task expert net-
works as well as selector network by employing pruning.
Our experimental results show the efficacy of our approach
on benchmark continual learning data sets, outperforming
the previous task-agnostic methods and even the techniques
that admit task identities at both training and testing, while
at the same time using a comparable model size.

1. Introduction
Learning agents deployed in real world applications are ex-
posed to a continuous stream of incrementally available in-
formation usually from non-stationary data distributions.
The agent is required to adaptively learn over time by ac-
commodating new experience while preserving previous
learned knowledge. This is referred to as lifelong or contin-
ual learning, which has been a long-established challenge in
artificial intelligence, including deep learning [8, 30, 39].

In the commonly considered scenario of lifelong learn-

ing, where the tasks come sequentially and each task is
a sequence of events from the same distribution, one of
the main challenges is to overcome catastrophic forget-
ting, where training the model on a new task interfere
with the previously acquired knowledge and leads to the
performance deterioration on the previously seen tasks.
Deep neural networks generally perform well on classifi-
cation tasks, but they heavily rely on having i.i.d. data
samples drawn from stationary distribution during training
time [7, 17, 33]. In the case of sequential tasks, their perfor-
mance significantly deteriorates when learning new coming
tasks [14, 24–26, 30].

A number of approaches have been suggested in the liter-
ature to deal with catastrophic forgetting. Some works [11,
40] provide systematic categorization of the continual learn-
ing frameworks and identify three different scenarios: in-
cremental task learning, incremental domain learning, and
incremental class learning, where their differences stem
from the availability of task labels at testing and number
of output heads. In incremental class and domain learn-
ing the task identity is not known during the testing. All
of these scenarios however are based on the assumption
that the task labels are known at the training phase. This
assumption is limiting in practical real-world applications,
where the agent needs to learn in a more challenging task-
agnostic setting [18, 31, 32, 44]. In this learning setting the
task identities are not available both at training and infer-
ence times. The literature started exploring this setting very
recently and this setting is in the central focus of our paper.

In this work, we present an approach for handling task-
agnostic continual learning inspired by the older approaches
dedicated to learning non-stationary sequences based on ex-
perts advice [10, 27, 28], which explore and exploit the in-
termittent switches between distinct stationary processes. In
these approaches the learner can make predictions on the
basis of a fixed set of experts. Since the learner does not
know the mechanisms by which the experts arrive at their
predictions, it ought to exploit the information obtained by
observing the losses of the experts. Based on the experts’
losses it weights the experts to attenuate poor performers
and emphasize the good ones, and forms the final predic-
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Figure 1. Deviation of the value of loss function of the expert when
the task is switched

tion as the weighted sum of experts’ predictions. Thus the
learner needs to identify the best expert at each time and
switch between the experts when the task switches occur.
In the aforementioned works, the weights over the experts
are the only carriers of the memory of previous experi-
ences. Also, the discussed methods rely on the assumption
that the number of experts/tasks are known in advance. Fi-
nally, these methods do not consider a separate train and
test phase, but rather their optimization process is focused
on minimizing the regret, which is the difference between
the cumulative loss of the algorithm and the loss of the
best method in the same class, chosen in hindsight (hind-
sight refers to full knowledge of the sequence to be pre-
dicted). Minimizing the regret however is not equivalent to
counter-acting catastrophic forgetting since previous tasks
that present little relevance to the currently learned ones
are gradually being overwritten in memory. These meth-
ods thus are not directly applicable to the continual learning
setting.

Motivated by having a set of experts representing a se-
quence of tasks, where each task is essentially a stationary
segment of a longer non-stationary distribution,

we propose a learning system that initially starts with
one expert and gradually adds or switches between experts
when the tasks change. During the online training phase our
algorithm automatically identifies when the task switches
and either selects or creates the best expert for a new task,
depending whether this task was seen before or not. The de-
tection of task switches relies on the statistically significant
deviation of the loss function value of the current expert,
which marks the onset of the new task (see Figure 1). Sim-
ilarly, the determination whether the task was seen before
or not relies on the behavior of the per-expert loss func-
tions (if the deviation of all per-expert loss values are high,
new expert is created to represent the current task). Such
simple detection mechanism is inspired by the classical ex-
perts advise literature discussed in the previous paragraph,
where switching between experts is governed by the values

of the loss functions of the experts. Moreover, we introduce
a selector network which predicts the task identity of the
samples at inference time. The selector network is trained
on a small subset of training examples that were sampled
uniformly at random from different tasks during the learn-
ing process. Despite the simplicity of our approach, it leads
to a task-agnostic continual learning algorithm that com-
pares favorably to existing methods and proves that a rich
historical literature on online processing of non-stationary
sequences can provide useful signal processing tools for ad-
dressing challenges in modern continual learning discipline.

The rest of the paper is organized as follows: Section 2
discusses the most relevant work. Section 3 introduces our
algorithm which we call TAME: Task Agnostic continual
learning using Multiple Experts. Section 4 reports empir-
ical results on benchmark continual learning data sets, and
finally Section 5 concludes the paper.

2. Related Work
In recent years, there has been a plethora of techniques pro-
posed for continual learning that mitigate the catastrophic
forgetting problem in deep neural networks. The existing
approaches can be divided into three categories: i) com-
plementary learning systems and memory replay methods,
ii) regularization-based methods, and iii) dynamic architec-
ture methods. These techniques are not dedicated to the
task-agnostic scenario since they assume the identity of the
tasks are provided at least during the training phase. On the
other hand, more challenging task-agnostic continual learn-
ing setting was addressed only recently in a handful of pa-
pers. We review them first since our paper considers the
same setting. For completeness we also discuss the most
relevant works from the broad continual learning literature
and refer the reader to a survey paper [30] that provides a
more comprehensive review of these approaches.

Task-Agnostic Continual Learning In the context of su-
pervised learning setting, which is of central focus to this
paper, one of the first methods addressing task-agnostic
continual learning is the Bayesian Gradient Descent algo-
rithm, popularly known as BGD [44]. This approach is
based on an online version of variational Bayes and pro-
poses a Bayesian learning update rule for the mean and vari-
ance of each parameter. As all Bayesian approaches, this
method counter-acts catastrophic forgetting by using the
posterior distribution of the parameters for the previous task
as a prior for the new task. BGD obtains the most promising
empirical results in the setting, where the method relies on
the so-called “label trick” where the task identity is inferred
from the class label. Label trick however breaks the task-
agnostic assumption. Another approach called iTAML [31]
proposes to use meta-learning to maintain a set of gener-
alized parameters that represent all tasks. When presented
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with a continuum of data at inference, the model automati-
cally identifies the task and quickly adapts to it with just a
single update. However at training the inner loop of their al-
gorithm, which generates task-specific models for each task
that are then combined in the outer loop to form a more
generic model, requires the knowledge of task label. At
inference, the task is predicted using generalized model pa-
rameters. Specifically, for each sample in the continuum,
the outcome of the general model is obtained and a maxi-
mum response per task is recorded. An average of the max-
imum responses per task is used as the task score. A task
with a maximum score is finally predicted. iTAML counter-
acts catastrophic forgetting by keeping a memory buffer of
samples from different tasks and using it to fine-tune gener-
alized parameters representing all tasks to a currently seen
one. This method is not task-agnostic, since it requires
task labels at training, though the authors categorize their
method as task-agnostic. CN-DPM [18] is an expansion-
based method that eliminates catastrophic forgetting by al-
locating new resources to learn new data. They formulate
the task-agnostic continual learning problem as an online
variational inference of Dirichlet process mixture models
consisting of a set of neural experts. Each expert is in charge
of a subset of the data. Each expert is associated with a dis-
criminative model (classifier) and a generative model (den-
sity estimator). For a new sample, they first decide whether
the sample should be assigned to an existing expert or a new
expert should be created for it. This is done by computing
the responsibility scores of the experts for the considered
sample and is supported by a short-term memory (STM)
collecting sufficient data. Specifically, when a data point is
classified as new, they store it to the STM. Once the STM
reaches its maximum capacity, they train a new expert with
the data in the STM. Another technique for task-agnosic
continual learning, known as HCL [15], models the distri-
bution of each task and each class with a normalizing flow
model. For task identification, they use the state-of-the-art
anomaly detection techniques based on measuring the typ-
icality of the model’s statistics. For avoiding catastrophic
forgetting they use a combination of generative replay and
a functional regularization technique.

In the context of unsupervised learning setting, VASE
method [1] addresses representation learning from piece-
wise stationary visual data based on a variational autoen-
coder with shared embeddings. The emphasis of this work
is put on learning shared representations across domains.
The method automatically detects shifts in the training data
distribution and uses this information to allocate spare latent
capacity to novel data set-specific disentangled representa-
tions, while reusing previously acquired representations of
latent dimensions where applicable. Authors represent data
sets using a set of data generative factors, where two data
sets may use the same generative factors but render them

differently, or they may use a different subset of factors
altogether. They next determine whether the average re-
construction error of the relevant generative factors for the
current data matches the previous data sets by a threshold
or not using Minimum Description Length principle. Al-
locating spare representational capacity to new knowledge
protects previously learnt representations from catastrophic
forgetting. Another technique called CURL [32] learns a
task-specific representation on top of a larger set of shared
parameters while dynamically expanding model capacity
to capture new tasks. The method represents tasks using
a mixture of Gaussians and expands the model as needed,
by maintaining a small set of poorly-modelled samples and
then initialising and fitting a new mixture component to this
set when it reaches a critical size. The method also relies
on replay generative models to alleviate catastrophic for-
getting.

Non Task-Agnostic Continual Learning First family of
non task-agnostic continual learning techniques consists of
complementary learning systems and memory replay meth-
ods. They rely on replaying selected samples from the prior
tasks. These samples are incorporated into the current learn-
ing process so that at each step the model is trained on a
mixture of samples from a new task as well as a small sub-
set of samples from the previously seen tasks. Some tech-
niques focus on efficiently selecting and storing prior expe-
riences through different selection strategies [4, 13]. Other
approaches, e.g. GEM [21], A-GEM [6], and MER [33] fo-
cus on favoring positive backward transfer to previous tasks.
Finally, there are deep generative replay approaches [34, 36]
that substitute the replay memory buffer with a generative
model to learn data distribution from previous tasks and
generate samples accordingly when learning a new task.
Another family of techniques, known as regularization-
based methods, enforce a constraint on the parameter up-
date of the neural network, usually by adding a regular-
ization term to the objective function. This term penal-
izes the change in the model parameters when the new task
is observed and assures they stay close to the parameters
learned on the previous tasks. Among these techniques,
we identify a few famous algorithms such as EWC [16],
SI [43], MAS [3], and RWALK [5] that introduce different
notions of the importance of synapses or parameters and pe-
nalizes changes to high importance parameters, as well as
the LwF [20] method that can be seen as a combination of
knowledge distillation and fine-tuning. Finally, the last fam-
ily of techniques are the dynamic architecture methods that
expand the architecture of the network by allocating addi-
tional resources, i.e., neurons or layers, to new tasks which
is usually accompanied by additional parameter pruning
and masking. This family consists of such techniques as
expert-gate method [2], progressive networks [35], dynam-
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Figure 2. The effect of smoothing

ically expandable network [42], learn-to-grow method [19],
Packnet [22], Piggyback [23], and hybrid schemes [12].
The last three techniques rely on network quantization and
pruning to better control the complexity and size of the
model.

3. TAME Algorithm
In this section we describe the proposed algorithm TAME.
Let T denote the set of all tasks. Each example is drawn
i.i.d. from an unknown distribution Pt of the correspond-
ing task, i.e. (xt

i, y
t
i) ∼ Pt. The tasks come in a sequential

manner. We consider a scenario where the task identity as
well as the number of tasks is not known. The goal is to
learn these tasks sequentially without catastrophic forget-
ting by automatically identifying the task identities both at
the training as well as the testing time.

TAME is based on using multiple task expert networks,
where each expert network is associated with one task. At
training, the algorithm automatically detects the shift in
the data distribution in an online manner and switches be-
tween the existing experts or adds more experts if neces-
sary. The strategy for the task switch detection relies on
the statistically-significant deviation in the values of the loss
function. At testing, we have an additional selector network
that automatically forwards each sample to its relevant ex-
pert. This selector network is trained on a small subset of
samples that are drawn uniformly at random from the se-
quence of samples from all tasks.

The pseudo-code of our algorithm is captured in Algo-
rithm 1. We initially start with one expert network and grad-
ually add more networks as needed. At each step of time we
only have one active expert that is being trained on incom-
ing data. We observe the value of the loss function of the
current active expert. In order to smooth-out short term vari-
ations and highlight long-term patterns, a smoothed version
of the loss is calculated, through an exponentially weighted
moving average (EWMA) [41]. EWMA is a first-order in-
finite impulse response filter that applies weighting factors
which decrease exponentially (never reaching zero). This is

used to filter out higher frequency components that has no
specific connection to shift in data distribution. The coef-
ficient α is a constant smoothing factor between [0, 1] that
governs the amount of smoothing. Higher α diminishes pre-
vious observations faster. Figure 2 justifies the need for loss
smoothing by comparing the performance of the proposed
algorithm with and without smoothing. Smoothed loss
helps avoiding false positives in detecting task switches,
and thus prevents creating unnecessary experts, while at the
same time it enables to maintain high detection accuracy.

Furthermore, we calculate a loss threshold value for each
expert network. We assume a normal distribution for the
value of the loss function. We set the significance thresh-
old at three standard deviations above the mean. As shown
in procedure Get threshold the mean and standard devi-
ation are calculated over a moving window of size Wth of
the previously observed data.

In lines 30− 43 we compare the smoothed loss with the
threshold value of the current active expert and if it is above
the threshold we search over all other existing experts and
choose the one that meets the threshold requirement. If
no such expert network is found, it means that no expert
well-represents the currently seen data and thus a new ex-
pert is added to the model and gets activated (see procedure
Add expert). Next, the selected network is trained on the
input data.

We need to also train the selector network to switch be-
tween experts at inference. For this purpose, we have a
buffer in the form of a priority queue with a fixed capacity
Cs that is much smaller than the total number of samples.
In lines 46− 50, we randomly sub-sample data to keep it in
the buffer in an online fashion. The label for each sample
is the current expert id which corresponds to the task iden-
tity that we inferred from the data. The selector network is
trained on the samples from this buffer and later used at in-
ference time to automatically distinguish the task label and
sends the test data to the corresponding expert network.

To reduce the size of the experts and selector network,
we perform network pruning. Typically, after pruning, the
model needs to be retrained to prevent drastic drop in per-
formance. To enable retraining of experts we introduce set
of buffers buffersprune to store samples for each expert
(task). Each buffer is implemented as a priority queue with
a fixed capacity Cp. When new expert is created, a buffer
for that expert is added to the set. In lines 46 − 50, we
randomly sub-sample data and fill in the buffer in an online
fashion. Thus, for each task we only keep a fixed amount
of randomly selected samples. After training for all tasks is
done, in line 52, we prune and retrain the selector network
using buffer bufferselector. In lines 53 − 55, we prune
and retrain each expert using the corresponding buffer from
buffersprune.
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Algorithm 1 TAME: Task Agnostic continual learning using
Multiple Experts
Require: Data: {(x, y)}, Threshold window size: Wth, Smoothing factor: α,

Buffer capacity for training selector net: Cs, Buffer capacity for retraining after
pruning: Cp1:

2: procedure: Add expert ()
3: Input: experts, Ne

4: Initialize a new expert network.
5: Initialize smoothed loss of the expert expert.Ls ←− None
6: Initialize expert.deque with maximum capacity equal to Wth

7: expert.id = Ne

8: experts.add(expert)
9: Ne += 1

10: Return expert
11:
12: procedure: Get threshold ()
13: Input: expert.deque
14: µ = MEAN(expert.deque)
15: σ = STD(expert.deque)
16: Return (µ + 3 ∗ σ)
17:
18:
19: Initialize: buffer bufferselector with Cs capacity; Buffers for pruning

buffersprune ←− [] with Cp capacity for all incoming tasks; number of
expert: Ne ←− 0; experts←− []; current task id Tid ←− 0;

20: expertc = Add expert(experts,Ne)
21: Tid = 1
22: buffersprune[Tid] ←− a priority queue with Cp capacity (initialize buffer

for the first task)
23: while Incoming Data do
24: Lc = loss of the current expert expertc on input {(x, y)}
25: if expertc.Ls == None then
26: expertc.Ls = Lc

27: else
28: expertc.Ls = α ∗ Lc + (1− α) ∗ expertc.Ls

29: end if

30: if expertc.Ls > Get threshold(expertc.deque) then
31: expertp = None
32: Tid ←− 0
33: for e in experts do
34: Tid = Tid + 1
35: if α ∗ Le + (1− α) ∗ e.Ls < Get threshold(e.deque) then
36: expertp = e; break
37: end if
38: end for
39: if expertp == None then
40: expertc = Add expert(experts,Ne)
41: buffersprune[Tid + 1] ←− a priority with Cp capacity (initialize

buffer for the new task)
42: end if
43: end if

44: Train expertc on batch of data {(x, y)} and update its deque.

45:
46: for (xi,−) in {(x, y)} do
47: priority = N (0, 1)
48: bufferselector .add(key:priority, value:(x, expertc.id))
49: buffersprune[Tid].add(key:priority, value:(x, y))
50: end for
51: end while

52: Train and prune selector network on samples in bufferselector
53: for i in {1, 2, . . . , Ne} do
54: Prune and retrain experts[i] using buffer buffersprune[i] stored for

experts[i]
55: end for

4. Experiments

In this section we evaluate TAME on benchmark continual
learning data sets and compare with other state-of-the-art
methods, namely previously proposed task-agnostic meth-
ods: BGD [44], iTAML [31], HCL [15], and CN-DPM [18],

as well as techniques that are not task-agnostic but are ded-
icated to the continual learning setting, such as DEN [42],
EWC [16], SI [43], A-GEM [6], and RWALK [5]. For eval-
uating the performance of the competitor algorithms we use
open-source implementations, when available12 34 5.

4.1. Data sets

We use standard continual learning data sets: (1) Permuted
MNIST, where a set of tasks is created by using a differ-
ent random permutation of MNIST pixels. We generated a
set of 20 data sets accordingly that correspond to 20 tasks.
(2) Split MNIST, where a set of tasks is constructed by
taking pairs of digits from the original MNIST data set,
i.e. T = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}. (3) Split
CIFAR-100 (20), where the original CIFAR-100 is divided
into 20 disjoint subsets, each containing 5 class labels, i.e.
T = {{0 − 4}, {5 − 9}, . . . , {95 − 99}}. For compar-
ison with HCL method, we use additional data sets: (4)
Split CIFAR-100 (10), where the original CIFAR-100 is
divided into 10 disjoint subsets, each containing 10 class la-
bels, i.e. T = {{0 − 9}, {10 − 9}, . . . , {90 − 99}}. (5)
Split CIFAR-10 (5), where the original CIFAR-10 is di-
vided into 5 disjoint subsets each, containing 2 class labels,
i.e. T = {{0 − 1}, {2 − 3}, . . . , {8 − 9}}. (6) SVHN-
MNIST, that combines SVHN[29] and MNIST data sets in
a way that SVNH is the first task and MNIST is the second
one. (7) MNIST-SVHN where MNIST is the first task and
SVNH is the second one.

We use the following size of the images in our data sets,
i.e. 1 × 28 × 28 for Split MNIST and Permuted MNIST,
3 × 32 × 32 for Split CIFAR-100 (10), Split CIFAR-100
(20), and Split CIFAR-10 (5). For MNIST-SVHN and
SVHN-MNIST, we upscale size of the images in MNIST to
3×32×32 and use the original image size of 3×32×32 for
SVHN data set. We normalize Split MNIST and Permuted
MNIST data sets by mean 0.1307 and standard deviation
0.3081, Split CIFAR-100 (10) and Split CIFAR-100 (20)
by mean (0.5071, 0.4867, 0.4408) and standard deviation
(0.2675, 0.2565, 0.2761), and Split CIFAR-10 (5) by mean
(0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). For
SVHN-MNIST and MNIST-SVHN data sets, we use mean
mean 0.1307 and standard deviation 0.3081 for MNIST, and
mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5)
for SVHN. For Split CIFAR-100 (10) and Split CIFAR-100
(20), we use additional data augmentation techniques such
as random crop, flip, and rotations.

1https : / / github . com / facebookresearch / agem(A-
GEM, SI, RWALK, and EWC)

2https://github.com/jaehong31/DEN (DEN)
3https://github.com/igolan/bgd/ (BGD)
4https://github.com/brjathu/iTAML (iTAML)
5https://github.com/soochan-lee/CN-DPM (CN-DPM)
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4.2. Networks Architecture

For all methods, except HCL, in case of Permuted-MNIST
and Split MNIST data sets we use a network with 2 con-
volutional layers, which are followed by the usual ReLU
activation function, the max pooling operation, and fully
connected layers for the task expert networks and we use
a 2-layer MLP for the selector network. For Split CIFAR-
100 (20), we use a slightly modified version of VGG11 [37]
architecture for the task expert networks and a pre-trained
ResNet18 [9] for the selector network. The modification
of VGG accommodates having 5 outputs. To compare
with HCL, we use the above mentioned 2-layer convo-
lutional network for SVHN-MNIST, MNIST-SVHN, and
Split MNIST data sets. For Split CIFAR-10 (5) and Split
CIFAR-100 (20) we use EfficientNet [38] model pretrained
on ImageNet for the expert network and a pre-trained
ResNet-18 for the selector network. Note that the choice
of architectures we make is done on purpose to stay aligned
with the architectures used by the competitor methods. In
order to prevent the sudden jump of the loss function value
during an initial stage of the training we add a sigmoid layer
on the output of each model.

In competitor algorithms, for Permuted and Split MNIST
data sets, we experimented with both the aforementioned 2-
layer convolutional network as well as a 2-layer MLP and
chose the best results. For Split CIFAR-100 (20), we used
the VGG architecture except for BGD and CN-DPM. In the
case of BGD, the VGG architecture led to the loss function
divergence and unstable results, thus we used the architec-
ture suggested by the authors in their paper for this data set.
For CN-DPM the performance was worse when we used the
VGG architecture so we report the results given in the CN-
DPM’s original paper. Furthermore, DEN implementation
was not available for convolutional networks, so we were
not able to test it for Split CIFAR-100 (20). For HCL, we
report the results given in their paper on all listed data sets
since their code is not publicly available.

4.3. Training Details

We train the models using SGD optimizer with learning rate
equal to 0.1, Nesterov momentum 0.9, and weight decay
5e − 4 and the batch size of to 128 for all data sets. We
trained for 10 epochs on each task from Permuted MNIST
and Split MNIST data sets and for 200 epochs for each task
from Split CIFAR-100 (20). For Split CIFAR-100 (20) we
drop the learning rate by the factor of 5 at the 60th, 120th,
and 160th epochs. We also apply a warm-up training in
the first epoch to prevent the network divergence early in
the training. We train 90 epochs for SVHN-MNIST and
MNIST-SVHN, 15 epochs for Split CIFAR-10 (5) and Split
CIFAR-100 (20). Finally, we use L1 unstructured pruning
to reduce the model size for each expert and the expect se-
lector network. We retrain each expert after pruning with

the sub-sampled data stored during training. We use SGD
optimizer with learning rate equal to 0.1 and weight decay
1e− 4.

4.4. Hyperparameters

We next describe the values of the hyperparameters that
are specific to our algorithm. The hyperparameters settings
used in the experimets are summarized in Table 1. In all ex-
periments we use the same window size Wth equal to 100
and loss smoothing factor α of 0.2.

For competitor algorithms we either used hyperparame-
ter settings suggested by the authors or performed a param-
eter search. The scope of the hyperparameter search for the
regularization-based methods and the training settings for
A-GEM are shown in the supplementary materials.

4.5. Results

The metric we use for our evaluation is the average accuracy
measured on the test set. The average accuracy is defined as
ACC = 1/T

∑T
i=1 RT,i, where RT,i is the classification

accuracy of the model on task i, and T is the number of
tasks.

In Table 2 we compare the average accuracy obtained by
TAME and other algorithms. For BGD method, we do not use
any “label trick” approaches and thus run it in a purely task-
agnostic setting, same as TAME, HCL, and CN-DPM. For
iTAML, the task identity is known during training, thus it
is not a task-agnostic method under our standards, however
since during inference they do not rely on the task identity
we kept this method as our competitor. All the other algo-
rithms have access to task descriptors both at training and
testing. TAME achieves the highest accuracy and the smallest
model size among all considered algorithms and data sets.
Note that TAME also outperforms continual learning meth-
ods that have access to task labels at training and/or testing.
In Table 3 we compare the performance of TAME with HCL.
Our method outperforms this approach as well.

We compare the behaviour of the loss function (left)
and its smoothed version (right) for each of the experts at
training, where the experts are added sequentially as new
tasks arrive. The results demonstrate that the smoothed loss
more effectively reduces short-term variations and empha-
sizes long-term patterns. For more details, please see figure
in the supplementary materials.

In Figures 3a-3c we illustrate the behaviour of average
accuracy while model is trained on the sequence of tasks.
The proposed algorithm, TAME, has the least drop in perfor-
mance when adding more tasks among all considered meth-
ods and datasets.

In Figure 3d we demonstrate the effect of the buffer ca-
pacity on the accuracy of the selector network for Split
CIFAR-100(20) data set. Note that the selector network ac-
curacy depends on the similarity of tasks. For instance if
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Table 1. Hyperparameter settings used for TAME

TAME Permuted MNIST

Split MNIST
SVHN-MNIST
MNIST-SVHN

Split CIFAR-100 (20)
Split CIFAR-100 (10)

Split CIFAR-10 (5)
Threshold window Wth 100 100 100

Smoothing factor α 0.2 0.2 0.2
Buffer capacity Cs 5000 2500 7500
Buffer capacity Cp 6000 1000 200

Expert pruning rate (%) 98 98 98
Expert selector pruning rate (%) 50 50 50

Table 2. Average Accuracy (%) obtained by TAME and other algorithms for Permuted MNIST, Split MNIST, and Split CIFAR-100

Data sets (#tasks) Permuted MNIST (20) Split MNIST (5) Split CIFAR-100 (20)
Acc. (%) Param. Acc. (%) Param. Acc. (%) Param.

task identity is known during training and testing
EWC 54.81 61.7K 98.18 61.7K 32.78 9.23M

SI 81.31 61.7K 94.85 61.7K 30.28 9.23M
A-GEM 79.61 61.7K 97.72 61.7K 43.57 9.23M
RWALK 46.23 61.7K 96.84 61.7K 31.13 9.23M

DEN 83.61 120.2K 95.51 120.2K NA NA
task identity is known during training, but not during testing

iTAML NA NA 97.95 61.7K 54.55 9.23M
task-agnostic (task id is not known during both training and testing)

BGD (without label trick) 79.15 61.7K 19.00 61.7K 3.77 9.23M
CN-DPM 14.99 616.1K 94.19 746.8K 20.45 19.20M

HCL NA NA 90.89 NA NA NA
TAME 87.32 55.53K 98.63 37.02K 62.39 9.02M

Table 3. Average Accuracy (%) obtained by TAME and HCL

Data sets (#tasks) SVHN-MNIST MNIST-SVHN Split MNIST (5) Split CIFAR-10 (5) Split CIFAR-100 (10)
Acc. (%) Acc. (%) Acc. (%) Acc. (%) Acc. (%)

HCL-FR 96.38 95.62 90.89 89.44 59.66
HCL-GR 93.84 96.04 84.65 80.29 51.64
TAME 97.45 97.63 98.63 91.32 61.06

Table 4. Size Cp of buffer used for retraining experts after pruning versus average accuracy for Split CIFAR-100 (20), Split MNIST, and
Permuted MNIST data sets

Data sets 50 100 200 500 1000 2000 3000 6000
Split CIFAR-100 (20) 56.12 57.86 62.39 63.47 64.41 / / /

Split MNIST 97.80 98.20 98.22 98.38 98.63 98.38 / /
Permuted MNIST / 62.55 69.95 76.83 79.93 83.41 84.94 87.32

we use 20 super-classes from Split CIFAR-100(20), where
similar labels are grouped together, the selector accuracy
increases from ∼ 62% to ∼ 79%.

We also show the effect of the buffer capacity for pruning
in Table 4. For Permuted MNIST and Split MNIST, even a
small size of buffer yield a good average accuracy.

We also present in Figure 4 the ability of the model to
use the existing experts when a previously seen task ap-
pears again in the sequence. For instance in Figure 4b

when task 2 appears for a second time in the sequence of
T = {t1, t2, t3, t2, t4} the algorithm appropriately switches
to the already existing expert 2 rather than instantiating a
new expert.

5. Conclusion and Discussion
This paper addresses a more challenging scenario of con-
tinual learning - a task-agnostic setting, where the model is
not provided with task descriptors during training or testing
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(a) Permuted MNIST (b) Split MNIST

(c) Split CIFAR-100 (d) TAME selector, Split CIFAR-100

Figure 3. (a, b, c) Average Accuracy versus the number of tasks for various data sets. (d) Effect of the buffer capacity on the accuracy of
the selector network in TAME for Split CIFAR-100 data set for 20 tasks.

(a) Loss value vs. iterations (b) Loss value vs. iterations

Figure 4. The value of loss function of different task expert networks during training on Split MNIST data set. Shown for two sequences
of tasks: (a) T = {t1, . . . , t5, t1, . . . , t5} (b) T = {t1, t2, t3, t2, t4}. The algorithm switches to existing experts when a previously seen
task occurs later in the sequence

time. We devise a new continual learning algorithm for this
purpose, that we call TAME, which is based on multiple ex-
pert networks associated with various tasks. These expert
networks are added sequentially to the model in an online
manner. During training, the algorithm automatically de-
tects the task-switches based on statistically-significant de-
viation in the values of the loss function. At testing, the task
identity is estimated by a selector network that is trained
on a subset of training data that was drawn uniformly at

random from all tasks. Experimental results show the ef-
ficacy of our approach on standard continual learning data
sets, outperforming previous state-of-the-art techniques in
terms of performance and model size. Specifically, we out-
perform the previous task-agnostic methods BGD, iTAML,
HCL, and CN-DPM on various data sets, as well as the other
techniques that take advantage of the knowledge of task de-
scriptors at least during training.
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