MultlIOD: Rehearsal-free Multihead Incremental Object Detector

Supplementary Material

8. Illustration of Background Interference

Figure 3 illustrates background interference. In the initial
state, the model learns correctly how to predict bicycles.
In the incremental state, the bicycle is not anymore anno-
tated, which causes: (1) background shift as the bicycle is
confused with background, and (2) catastrophic forgetting
because of distribution shift towards the new class. Here,
the model learns correctly cars but fails to detect bicycles.

Training phase

Testing phase

Initial state

Incremental state

Figure 3. Illustration of background interference

9. Implementation Details

We implement our method using Keras (Tensorflow 2.8.0).
We use Adam optimizer with a learning rate of 2e~%, a
batch size of 16, and a weight decay of 1.25e — 5. Similarly
to [51], we use images of size 512 x 512, down-sampled 4
times to have prediction maps of size 128 x 128. All our
models and those of compared methods are pretrained with
imagenet weights. We use a detection threshold of 5% to
compute the mean-average-precision (mAP), even thought
we could use lower threshold to improve results, we prefer
to keep the model inference time bounded (in the state of
the art, a value of 1% is usually used).

For VOC datasets [1 1], we train our model for 70 epochs
in each state, we decay the learning rate by 10 at epochs
45 and 60. For training, we use as augmentations random
flip, random resized crop, color jittering, and random scale.
For testing, we use flip augmentation like in [12, 34, 51].
As mentioned in the main paper, the classes of VOC are or-
dered alphabetically before being divided into groups. Fig-
ure 4 shows this order and reminds the protocol used.

. 1=1
B=19 ; :

B=15 : : =5 A
B=10 : 1=10

¥ Rl B R

Figure 4. Pascal VOC incremental protocol

For MNIST dataset [20], we train our model for 20
epochs in each state, and keep the other hyper-parameters
unchanged. For training, we use as augmentations random
resized crop and random scale. For testing, we use flip aug-
mentation.

10. Feature Pyramids Architecture

In MultIOD, each feature pyramid is constructed of 4 lev-
els that are connected using dropout layers to the backbone.
The connected layers of backbone are colored in light gray
in Figure 5, and are specified for each EfficientNet variant
in Table 7. Layer names given in this table are based on the
official keras — applications implementations.

As shown in Figure 5, each feature pyramid contains
three blocks of layers each containing: upsampling 2 x 2,
convolution layer with number of filters shown between
parenthesis, batch normalization layer and ReL.U, concate-
nation layer, another convolutional layer, batch norm and
ReLU. Upsampling is done progressively in order to cap-
ture multi-scale features. We use the FPN implementation
of this GitHub repository 2. In the class-wise feature pyra-
mids (Subsection 5.2 of the main paper), we use the same
architecture described in Figure 5, but we reduce the num-
ber of filters in the convolutional layers to avoid an explo-
sion in the number of parameters. We thus use only 64,
64, 32, 32, 16, and 16 filters in each convolutional layer,
respectively.

11. MNIST Dataset Creation Details

We made sure to create a challenging dataset by doing the

following:

* We set the minimum and maximum digit sizes between
50% and 2002 pixels, respectively, in order to have both
small and large digits.

* We make sure to have one to five digits in each image, for
diversification.

* The background shift is present in this dataset as we ran-
domly pick digits from a set of ten, regardless of the cur-
rent state.

Examples of generated images are in Figure 6.

Zhttps://github.com/Ximilar-com/xcenternet

Backbone

Level 1

Level 2

Level 3

Level 4

EfficientNet-BO
EfficientNet-B3
EfficientNet-B5

block2b-activation
block2c-activation
block2e-activation

block3b-activation
block3c-activation
block3e-activation

block5c-activation
block5e-activation
blockS5g-activation

top-activation
top-activation
top-activation

Table 7. Names of layers in Keras corresponding to Feature Pyramid [25] Levels for different EfficientNet architectures

Backbone

Feature Pyramid

Input

v

RES

e
0
O

upsampling 2x2
\ 4
conv2d (256)

A7

BN + Relu

%

conv2d (256)
\ 4
BN + Relu
\ 4
upsampling 2x2
\ 4

conv2d (128)

\

BN + Relu

—

conv2d (128)
\4
BN + Relu
\ 4
upsampling 2x2
\ 4
conv2d (64)

\ 4
BN + Relu

[dropout

concatenate

@)

P—

conv2d (64)
v

BN + Relu

Detection heads

Figure 5. Architecture of one Feature Pyramid in MultIOD

12. Results with mAP@[0.5, 0.95]

Tables 8 and 9 provide results of our method on VOC2007
and VOCO0712, using mAP averaged over IoU threshold that
varies between 0.5 and 0.95 with a step of 0.05. Results are
provided for future comparisons.

Method Full |[B=19,I=1|B=151=5|B=10,1=10
mAP |mAP | Fyoap |mAP | Fpoap |mAP| Fap

IoU=0.5 604 [599 | 392 | 526 | 37.8 | 484 | 472

IoU=1[0.5,0.95]| 359 | 35.7 | 185 | 30.7 | 20.2 | 25.9 239

Table 8. Mean-average-precision and F;,, 4 p score on VOC2007.

Method Full |[B=19,I=1|B=151=5|B=10,1=10
mAP |mAP | Fypoap |mAP | Fppap |mAP| Fap

IoU=0.5 69.5 | 68.0 | 56.9 | 60.7 | 47.0 | 56.6 55.8

IoU=1[0.5,0.95]| 45.7 | 445 | 33.6 | 39.0 | 268 | 33.2 31.0

Table 9. Mean-average-precision and F;,, 4 p score on VOC0712.

13. Ablation of Backbones on MNIST

In Table 10, we provide results of MultIOD using differ-
ent backbones on MNIST dataset. Because this dataset is
not challenging and is of a small size, it is easier for large
models like EfficientNet [4 1] to learn it. In our experiments,
it is hard to determine which backbone provides the best re-
sults for this dataset, as each backbone is best in one con-
figuration. However, results of different models are com-
parable, and we thus recommend using the smallest version
(EfficientNet-BO0) for this dataset.

Method Full | B=9,I=1|B=71=3|B=51=5

mAP |mAP | Fpoap | MAP | Fpoap | mAP | Frap

913 | 912 [931 | 93.5 | 91.3 | 913
89.7 | 89.7

92.5 | 925

EfficientNet-BO
EfficientNet-B3 | 91.1 | 91.7 | 92.6 | 92.0 | 92.4
EfficientNet-B5| 93.7 | 91.2 | 924 | 90.6 | 914

93.1

Table 10. Ablation of backbones on MNIST dataset (mMAP@0.5).

14. Ablation of NMS Strategies on VOC2007

In Table 11, we provide the results of MwultIO D using dif-
ferent NMS strategies on VOC2007 dataset. Similarly to
the results presented in the main paper, the method that
achieves the best results is class-wise NMS, followed by
inter-class NMS. Soft-NMS and No-NMS are the methods
that achieve the lowest results.

Figure 6. Examples of generated MNIST images

Method Full B=19,I=1| B=15I=5 | B=10,I=10
mAP | mAP | Fpap | mAP | Fpoap | mAP | Foap
No-NMS 51.7 51.6 333 44.4 28.7 36.9 33.2
Soft-NMS 45.8 46.6 29.6 40.5 23.8 34.5 314
Inter-class NMS 53.0 51.8 357 46.1 34.1 41.9 40.1
Class-wise NMS | 56.7 | 55.7 35.6 49.2 33.8 46.3 45.5

Table 11. Performance of our model using VOC2007 dataset with
different NMS strategies and EfficientNet-BO.

15. Examples of Detections with MultIOD

Figure 7 provides examples of predictions made with our
MultIOD continual detector. Orange is used for past class
detections, and blue is used for new class detections. Visual
results confirm the robustness of our method against catas-
trophic forgetting. MultIOD provides a good compromise
between stability of the neural network and its plasticity.

16. Comparison Against Two-Stage Detectors

Table 7 provides a comparison of MultIOD with
some two-stage continual detectors on VOC2007 dataset.
Rehearsal-based methods store a subset of past data, and
replay it when training new classes to tackle catastrophic

forgetting.
Method Detector Rehearsal?| B=19,I =1|B=15,I=5|B =10,1 =10
MultlIOD CenterNet x 599 52.6 484
MVD [46] Faster R-CNN X 69.7 66.5 66.1
IncDet [26] Fast(er) R-CNN X X 70.4 70.8
RD-IOD [45] Faster R-CNN X 72.1 69.7 66.2
Faster-ILOD [33] | Faster R-CNN X 68.6 68.0 62.2
ORE [18] Faster R-CNN v 68.9 68.5 64.6
OST [47] Faster R-CNN v 69.8 69.9 65.0

Table 12. mAP@0.5 scores on VOC2007 dataset.

Results indicate that MultIOD achieves the lowest re-
sults compared to methods that combine both two-stage de-
tectors and rehearsal memory. This is intuitive because with

the absence of memory from the past, inter-class separabil-
ity becomes more challenging.

Fast(er)-RCNN are two-stage detectors that perform bet-
ter than CenterNet, but are very slow which make them not
suitable for real-life applications. A trade-off is required to
select between the two detectors depending on the use case.

3

Figure 7. Examples of detections with MultIOD on VOC0712 (EfficientNet-B3, B=19, I=1) and MNIST (EfficientNet-B0, B=7, I=3)

