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1. Setup Details for the Experiments

Table 1 gives the details of the setup for the experiments.
We use the same setup for all our ML trainings for a fair and
unbiased comparison. Please note that we use 20 exemplars
per class for all tasks when comparing ADCM with Herding
[13] and RMM [11] to enable a clearer comparison between
the approaches.

Parameter Value
Train-Val Split 80/20
Optimizer SGD
lr start 0.1
lr end 0.0001
weight decay 0.0005
Batch Size 64
Transforms: Train Resize: (224, 224), RandomHorizontalFlip
Transforms: Val Resize: (256, 256), CenterCrop
System Memory 48GB
CPU Cores 12
GPU Count 1
GPU type NVIDIA RTX A6000
Python version 3.8.13

Table 1. Hyperparameter and workstation details for the ML Ex-
periments

2. Traditional Continual Learning Framework

We start with the classical CIL implementation, where
an untrained ResNet18 model is trained incrementally with
a limited rehearsal memory budget. At the end of each IL
task, the model is used as an encoder for selecting exem-
plars from old data. We use the InVar-100 dataset for this in-
vestigation and train RN18 over 12 tasks using POD-AANet

Code: https://github.com/Vivek9Chavan/ADCM
*Correspondence: vivek.chavan@ipk.fraunhofer.de

implementation [10] and use RMM [11] for memory man-
agement.

Our analysis shows that in continual learning scenarios,
the learnt feature representations are distorted as new tasks
are introduced. The problem is exacerbated for fine-grained
objects and data with clutter, where the background features
dominate the embeddings as the data distribution gets up-
dated. We show three pairs of images from the data and see
how the distance between the images within each pair di-
minishes as the model is incrementally trained. Each pair
has a similar background. A visualisation of the feature
encodings is also shown. Figure 1 shows Class Activation
Maps (CAMs, as proposed by [12] and [18]) of test im-
ages from other classes in the dataset, which are misclassi-
fied during the newer tasks. We break this classical imple-
mentation into two separate problems: incremental training
(plasticity-rigidity dilemma) and feature encoding (for ex-
emplars).

3. Feature Representation Distortion during
Incremental Learning

Figure 2 compares the feature embeddings from classes
introduced during Task 0 and compares them against Task
12 (embeddings downsampled using Principal Component
Analysis (PCA)). We use the POD-AANet implementation.

4. Feature Distribution Comparison for Pre-
training Methods

As stated in the paper, we analyse the features learnt
by different state-of-the-art SSL approaches including Mo-
CoV3 [5], SwAV [3], Barlow Twins [17], DINO [4], VI-
CReg [1] and VICRegL [2] on the datasets. Figure 3 gives
the downscaled intra-class PCA distribution obtained from
one of the classes in the InVar-100 dataset. We notice sen-
sitivity to the object orientation in DINO and VICRegL
embeddings. Please note that Bardes et al. [2] pretrain
ConvNeXt-XL on ImageNet-22K. We have included it here
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Figure 1. Top, Middle: CAMs [18] for test images for an in-
crementally trained model with POD-AANet on InVar-100, ex-
hibiting the consequences of catastrophic forgetting. The images
were correctly classified during Task 0 but were misclassified dur-
ing Task 12. Bottom: For contrast, corresponding attention maps
(taken from first Head) from frozen DeiT-S trained using DINO
[4].
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Figure 2. Top: Sample image pairs from InVar-100. Middle:
PCA distribution from 5 classes introduced during Task 0 (left)
and Task 12 (right). The feature representations get distorted as the
model is retrained. Bottom: Visualisation of the corresponding
intra-class distribution from one of the classes.

for comparison. However, it is not a part of our study, due
to our defined scope (§3 in the paper).

Figure 4 shows the distribution of embeddings from dif-
ferent views of the MVIP dataset, extracted from uncropped
images. Each colour represents a different camera view. As
stated in the paper, we observe that the cameras with similar
view perspectives are placed closer together. Additionally,
a more uniform cluster represents homogeneity in data, i.e.
the object rotations do not add significant additional infor-
mation about the object features. On the other hand, loosely
collated clusters denote camera views where the features of
the object are better captured.

Figure 5 supplements Figure 5 and §3.3 in the paper and
shows the feature distribution for the DIMO dataset, ex-
tracted using DeiT-S + DINO, ResNet50 + DINO and Su-
pervised ResNt50. We observe that the pertaining method
has a greater influence on the distribution compared to the
model architecture. The distribution obtained from DeiT-S
and ResNet50 (pretrained using DINO) are similar, how-
ever, the embeddings from DeiT-S are more sensitive to ob-
ject orientation, shape and lighting.

5. ADCM: Active Data Collection and Man-
agement

This section expands on the applications of our imple-
mentation for analysing real-world and industrial data.

5.1. ADCM0

The memory policy and pruning policy of ADCM0 are
implemented as given in Algorithm 1. We take DeiT-S pre-
trained using DINO as the encoder.

We emphasize multiview photo or video based digitisa-
tion in our work since such a stationary setup can capture
the features of the objects better and enable downstream ap-
plications w.r.t. ML [6, 7, 15]. ADCM proves useful for
data pruning and management for such applications. Mis-
cellaneous challenges for multiview part identification are
out of the scope of this paper; we refer to [9] for more de-
tails.

5.2. Data Pruning and Analysis

Figure 7 shows additional examples of outlier and re-
dundant data identification from the MVIP and InVar-100
datasets. The outlier image for MVIP is incorrectly seg-
mented, which was correctly flagged. Figure 8 supplements
Figure 11 in the paper (also Figure 4), showing images
from the two camera views. Camera 1 is positioned such
that a change in object orientation adds more information,
whereas, Camera 9 does not.

As mentioned in the paper, an alternative approach to
identifying outliers is via intra-class clusters. To define sta-
tistical outliers based on the Z-score, we use k-means clus-
tering to identify intra-class clusters and cluster centroids
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(a) DINO: DeiT-S (b) Supervised: ResNet50 (c) SwAV: ResNet50w5 (d) Barlow Twins: ResNet50

(e) MoCo v3: ViT-B (f) VICReg: ResNet200x2 (g) VICRegL: ResNet50 (h) VICRegL: ConvNeXt-XL

Figure 3. Visualisation of intra-class feature distribution obtained from the eight different approaches. We notice that the images with
approximately similar backgrounds are placed closer together for most approaches. However, the embeddings for DINO and VICRegL are
also grouped based on object orientation and shape.

(a) DINO: DeiT-S (b) Supervised: ResNet50 (c) SwAV: ResNet50w5 (d) Barlow Twins: ResNet50

(e) MoCo v3: ViT-B (f) VICReg: ResNet200x2 (g) VICRegL: ResNet50 (h) VICRegL: ConvNeXt-XL

Figure 4. MVIP Dataset clustering based on camera views, obtained from the eight different approaches. We notice a similar pattern to
Figure 3, in that the embeddings from DINO and VICRegL are more contextually sound.

(µ). The number of clusters may either be dictated by the
silhouette score [14] or by Mp. For instance, we fine-tune
the outlier policy on the DIMO data to flag image embed-

dings that lie over ζ = 4.5 standard deviations (σ) from
each centroid within the class. This parameter is not learnt,
but instead is controlled by human supervision based on ini-
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Figure 5. An analysis of the feature distribution from the em-
beddings offered from DeiT-S + DINO (Top), ResNet50 + DINO
(Middle), and Supervised ResNet50 (Bottom).

Figure 6. Top: A supplement to Figure 2. Sample image pairs
from InVar-100. Middle: PCA distribution from 5 classes in-
troduced during Task 0, obtained from frozen DeiT + DINO en-
coding. Bottom: Visualisation of the corresponding intra-class
distribution from one of the classes.

tial fine-tuning on a few classes. For instance, the default
value is 3, based on which the user can visualise the se-
lected outliers and the resulting pruned dataset. This was
estimated to remove some good data points, after which ζ
was changed to 6- which was too conservative. Finally, the
value of 4.5 was selected as the optimal point. We found this
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Algorithm 1: Implementation of ADCM0 for
practical continual learning scenarios

Input : Full dataset: Dcloud, Memory Policy: Mp
Pruning policy: Dp, Threshold & other
values

Output: Pruned Dataset: Di, Continual Learning
Output

import Pretrained Encoder (DeiT-S)
Task = T0 //Initial Joint Learning
//Analyse and Prune Data
load image data
for i← 0 to i0 do

//i0 initial classes
for j ← 0 to n do

//n images for class i
θ = Feature Vector [1, dim encoder]
//process image via Encoder

end for
Class Feature Vectors = [n, dim encoder]
Feature distribution analysis

θa =
∑n

0 θj
ki = Weighted class exemplar count
//proportional to θa //Dp

Downsample:
Principal Component analysis
Modified Feature Vectors = [n, 32]

Prune Data:
K-means Clustering

Sampled Feature Vectors = [ki, 32]
D ←Sampled Feature Vectors//Dp

end for
ML Training: Model M0
Deploy Model M0

for Task ← 1 to T do
for i← 0 to i0 do

//Old classes
Re-sample dataset for old classes
Exemplars List ←Sampled Feature
Vectors//Mp

end for
for i←i0 to iTask do

//New classes
Analyse and prune new class data
D ←Sampled Feature Vectors//Dp

end for
D =

∑i0
0 Exemplars List+

∑iTask
i0

D
//Updated Dp and Mp

end for
Incremental ML Training: Model MTask //CIL or
or Domain-IL or Online Learning

Deploy Model Mtask
if Accuracymodel < Threshold then

Re-initiate Joint Training //Reset Dp and Mp
Repeat

approach to generalise well to the complete dataset in dif-
ferent scenarios, as long as substantial data is available (at
least 40 images per class). Other approaches such as Herd-
ing [13] or K-NN search [8] may also be used, depending
on the application. Depending on the scope of the project
and the image data, outliers may be unsuitable for training
or may represent a different image context that is not ac-
counted for by the clusters. Hence, human supervision is
necessary.

|θout − µ̄| > ζ · |σ| (1)

Figure 7. Examples from MVIP dataset (left) and InVar-100
dataset (right) with identified outliers and redundant image pair.

(a) Cam 01

(b) Cam 09

Figure 8. A supplement to Figure 11 from the paper. Left: Images
from the camera view cluster with high variance. Right: Images
from the camera view cluster with low variance.

5.3. Exemplar Selection

We use the ADCM implementation for coreset selection
prior to ML training and for selecting exemplars at the end
of each incremental task. As a supplement to Figure 10 and
Equations (3) and (4) in the paper, Algorithm 2 elaborates
the approach for data sampling based on the feature imbal-
ance. We use DeiT-S as the pretrained encoder.

5.4. Applicability to Large Datasets

We demonstrate the general applicability of our ap-
proach to large industrial datasets with objects captured in
different contexts and use cases. We explore data prun-
ing and coreset selection with and without weak supervi-
sion and observe superior results compared to the baseline.
With MVIP, we also explore the visual inspection and anal-
ysis of the data based on meta-labels and descriptors. Our
approach is particularly useful for industrial and stationary-
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setup applications, where the objects are often digitised us-
ing a fixed setup and the variance in intra-class distribution
may largely result from changing perspectives and object
orientation[9]; with background clutter and occlusion as ad-
ditional factors. The approach scales to larger datasets. Our
approach outperforms Herding by a statistically significant
margin in all tested use cases. ADCM outperforms Herding
by 1.4% on the DER implementation and by 4.1% on POD-
Net. It outperforms RMM by 0.8% w.r.t. performance on
old classes. The gain in accuracy is a result of the exemplars
being more representative of the underlying class distribu-
tion. As discussed in the paper, the frozen feature encoder
provides more accurate feature embeddings throughout the
incremental tasks.

5.5. Data Quality

Our analysis shows there is a substantial overlap between
CAM and self-attention map regions for good data. Addi-
tionally, data that is misclassified is passed through the pre-
trained encoder and resampled to be included in the mem-
ory storage Mi. This approach maintains the most repre-
sentative as well as the most challenging data points that
are relevant to continual learning. Weak supervision is op-
tional. For good and clean data, there is an overlap between
the CAMs and the corresponding self-attention maps from
SSL-pretrained ViT, which may be necessitated by thresh-
olding the overlap region. The normalised overlap region
can be calculated as follows.

Overlap =
|A ∩B|

min(|A|, |B|)
(2)

A threshold overlap value can be set for additional con-
trol. However, this threshold needs to be carefully selected
and tested on different subsets of the data. Alternatively,
it can be parameterised and learned. This approach hasn’t
been thoroughly tested and is included here as a rough con-
cept.

6. Weak Supervision

In the context of the applications presented in our work,
weak supervision plays a key role, in that it puts the human
operators in control of the data management. One of the
challenges in developing this solution was to address the
repetitive and cumbersome aspects of the process of data
acquisition without replacing the human experts. Using hu-
man supervision, the data pruning and management operate
much faster. For instance, the pruning policy (Dp) is learnt
by finetuning the ζ parameter on the given set of data and
getting user input on whether a given image is a good or a
poor data point.

Algorithm 2: Variable coreset/exemplar selection
for Continual Learning with ADCM

Input : Old Class data, j classes, n images per
class

Output: Exemplars, k < n sampled images (varies
according to class feature distribution)

Exemplar List = [ ]
import Pretrained Encoder (DeiT-S)
for i← 0 to j do

for j ← 0 to n do
θ = Feature Vector [1, dim encoder]
//process image via Encoder

end for
Class Feature Vectors = [n, dim encoder]
Feature distribution analysis

θa = Average feature variance for all
vectors within the class

n = Weighted class exemplar count
//proportional to θa

Downsample:
Principal Component analysis
Modified Feature Vectors = [k, 32]

Prune Data:
K-means Clustering

Sampled Feature Vectors = [k, 32]
Exemplar List ←Sampled Feature Vectors

end for
return Exemplar List
Repeat for the next incremental Task

7. Downscaling of Feature Embeddings
Caron et al. [4] downscaled ImageNet features using

PCA (384 to 30) and t-SNE (30 to 2) [16] to represent class
means in 2D and their interrelations. We find that PCA is
sufficient for our application. Moreover, since PCA aggre-
gates the global features of the data, it is better able to retain
the unique features of the target objects. Figure 11 shows
the downscaled feature distributions using PCA (left) and
t-SNE (right) from our previous experiments.

References
[1] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-

creg: Variance-invariance-covariance regularization for self-
supervised learning. CoRR, abs/2105.04906, 2021. 1

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicregl: Self-
supervised learning of local visual features. In NeurIPS,
2022. 1

[3] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. 2020.
1

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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Mi

Incremental Learning

Pretrained ViT

CAM

Self-Attention Map

D

Analysis

Figure 10. An alternative approach to classify and sort image
data during long project timelines. The memory budget Mi com-
prises of an ensemble of good data , challenging data , and

sampled exemplars based on part identification accuracy, clus-
tering and analysis via the pretrained encoder.

[6] Abdullah Hamdi, Silvio Giancola, Bing Li, Ali K. Thabet,
and Bernard Ghanem. MVTN: multi-view transformation
network for 3d shape recognition. CoRR, abs/2011.13244,
2020. 2

[7] Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-
view transformer for 3d visual grounding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15524–15533, 2022. 2

[8] Ahmet Iscen, Thomas Bird, Mathilde Caron, Alireza Fathi,
and Cordelia Schmid. A memory transformer network for
incremental learning, 2022. 5
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