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A. Appendix
A.1. Data

We used: MNIST, FASHION, SVHN, CIFAR10 and IMA-
GENET10 – a subset of the tiny IMAGENET200, to gain
deeper insights into our method while conducting experi-
ments with hundreds of different configurations. Then, we
extended this set with CIFAR20 – the coarse-grained ver-
sion of CIFAR100, IMAGENET20A and IMAGENET20B
– larger subsets of IMAGENET200 – to benchmark our
method against other algorithms.

For the experiments involving fixed extractors, we used
pre-trained features to construct four additional sequences –
CIFAR100-PRE10, CIFAR100-PRE100, IMAGENET200-
PRE20 and IMAGENET200-PRE200, which consisted of
features extracted for CIAFR100 and IMAGENET200, us-
ing extractors trained on 10, 20, 100 and 200 classes of the
original datasets. The summary of the used benchmarks is
given in Tab. 1. Details of the feature extractors can be
found in the next section.

Table 1. Summary of used datasets.

Dataset Train Test Cls Feats

MNIST 50 000 10 000 10 No
FASHION 60 000 10 000 10 No
SVHN 73 257 26 032 10 No
IMAGENET10 5000 500 10 No
CIFAR10 50 000 10 000 10 No
IMAGENET20A 10 000 1000 20 No
IMAGENET20B 10 000 1000 20 No
CIFAR20 50 000 10 000 20 No

CIFAR100-PRE10 50 000 10 000 100 128
CIFAR100-PRE100 50 000 10 000 100 512
IMAGENET200-PRE20 100 000 10 000 200 256
IMAGENET200-PRE200 100 000 10 000 200 256

A.2. Model configurations

In the first section of our experiments, we explored differ-
ent configurations of our algorithm, which can be mostly

seen as an ablation study. Firstly, we evaluated different
losses (CE, MC and MCR) combined with different classifi-
cation methods (softmax, max-component). Secondly, we
checked different settings for the tightness bound parame-
ter τp by evaluating a grid of values for inter-tightness and
intra-tightness – we considered τp ∈ ⟨1e-06, 1e-05, 0.0001,
0.001, 0.01⟩ for both. Thirdly, we analyzed how assuming
different numbers of components affects the classification
performance on different datasets. We used K ∈ ⟨1, 3, 5,
10, 20⟩. Then we checked if it is better to maintain a whole
covariance matrix or only its variance (FULL, VAR). Fi-
nally, we evaluated different learning rates for the extractor
and GMM part, using αF ∈ ⟨1e-07, 1e-06, 1e-05, 0.0001,
0.001⟩ and αG ∈ ⟨1e-05, 0.0001, 0.001, 0.01, 0.1⟩, to check
whether it may be beneficial to configure them separately,
and different memory sizes Mc ∈ ⟨8, 64, 128, 256, 512⟩
to analyze how our method exploits limited access to class
examples.

While evaluating specific parameters we kept others
fixed. For our base configuration we chose a setup that
was capable of providing performance comparable with a
standard experience replay. We used the MCR with max-
component as our loss and classification method, K = 3,
τp,ie = 0.002, τp,ia = 0.01, β = 0.5, αF =0.0001,
αG =0.001 and dmin = 0.001 with only variance stored per
each component. We assumed a modest memory buffer per
class Mc = 256 and matched the size of a memory sam-
ple per class with the training batch size. The model was
trained for 10 (MNIST, FASHION) or 25 epochs per class,
with 32 (IMAGENET) or 64 instances in a mini-batch.

A.3. Algorithms

Based on the observations made in the first section of
the experiments, in the final evaluation we used two vari-
ants of our algorithm: MIX-CE and MIX-MCR with
τp,ie =0.0001, τp,ia =0.001, αF =0.0001, αG =1e-05
and, once again, dmin = 0.001 with only variance main-
tained per each component. The only parameter that we
tuned per each dataset was the number of components K.
We used Adam as the optimizer. For the memory-free sce-
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Figure 1. Learning subsequent classes of FASHION incrementally (K=1) with the inter-contrastive loss utilizing the tightness bound
(τp,ie=0.2).
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Figure 2. Learning subsequent classes of FASHION incrementally (K=3) with regionalization and the intra-contrastive loss utilizing the
tightness bound (τp,ia=0.25).

narios with pre-trained extractors, we turned off the inter-
contrastive loss to minimize interference with previously
learned classes.

The main parameters of the baselines methods were set
based on the original papers and other literature, including
empirical surveys or works containing vast empirical stud-
ies [1, 2, 4–6, 9]. For all memory sampling methods we
matched the memory sampling size with the training batch
size. For ERSB we used 10 centroids per class each contain-
ing up to either 25 or 15 instances to match the total memory
size. DER used αd=0.5, for LWF we set the softmax tem-
perature T = 2 and progressively increased its distillation
coefficient as suggested in [5], and SI used λ =0.0001. All
of the methods utilized the Adam optimizer with a learning
rate α=0.0001 as we did not observe any significant differ-
ences when changing this parameter.

Analogously to the configuration section, all of the algo-
rithms, including ours, were trained for 10 (MNIST, FASH-
ION) or 25 epochs per class, using 32 (IMAGENET) or 64
instances per mini-batch. The offline models were trained
for either 50 or 100 epochs, until they achieved a satura-
tion level. The memory buffer was set to Mc = 128 (IM-
AGENET) or Mc = 256 for methods supporting mem-
ory per class (ER, ERSB, iCaRL), and M = C · 128 or
M = C ·256 for the remaining ones (GSS, A-GEM, DER),
where C was the total number of classes. The latter group
was equipped with reservoir buffers [1]. For the experi-
ments with pre-trained extractors we wanted to check the
memory-free scenario, therefore we set Mc = 0 for our
methods and Mc = 1 or M = C for others, since most of
them could not be run without storing any examples.

All of the algorithms, including different configurations
of our method, were combined with feature extractors. For
MNIST and FASHION we used a simple CNN with two
convolutional layers consisting of 32 (5x5) and 64 (3x3) fil-
ters, interleaved with ReLU, batch normalization and max
pooling (2x2). For SVHN and IMAGENET we utilized
ResNet18, its modified version for CIFAR10 and CIFAR20,
and ResNeXt29 for CIFAR100 [10]. The classification lay-
ers consisted of the default configurations.

Finally, for our method, ER, ERSB, A-GEM and DER
we disabled batch normalization, since, consistently with
[8, 11], we observed a significant difference in performance
when those layers were turned off for the given methods.
As mentioned in Sec. A.1, for the memory-free scenarios,
the extractors were pre-trained on either 10, 20, 100 or 200
classes of CIFAR100 and IMAGENET200. For this setting
we trained all the models for 20 epochs per class.

Results for the offline model were either obtained
by us (learned from scratch for IMAGENET20A, IMA-
GENET20B and fine-tuned models for IMAGENET200),
or by referring to other publications [4, 7].

B. Appendix

B.1. Additional visualizations

Fig. 1 presents an example of a single-component
class-incremental mixture model learned with the inter-
contrastive loss. Fig. 2 demonstrates the effectiveness of
training a multi-component model with the intra-contrastive
loss and regionalization.

As mentioned in the main document, the CE loss can of-
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Figure 3. Mixtures learned with cross-entropy and simple max-component strategy (K=1 and K=3) after 6 classes of FASHION.

ten achieve similar predictive performance even if its mix-
ture models are not really fitting the data (Fig. 3). We can
see it when compared with MC for K=1 or MCR for both
K (Fig. 1 and 2). Furthermore, the model produced for MC
with K=3 clearly shows that it is incapable of effectively
utilizing multiple components for the same class. Please
notice that only the Gaussians in the middle actually cover
some data points, while the remaining components are com-
pletely unrelated to the observed data. These are examples
of the degenerate solutions. While for FASHION this loss
could still, analogously to CE, provide similar performance
as MCR (the components in the middle are fitted to the data
and they are sufficient to model it), the observed desynchro-
nization of components results in its weaknesses for more
complex problems. The MCR loss can provide high qual-
ity of predictive performance and of the produced mixture
models.

B.2. Additional configurations

Number of components: Tab. 2 presents how many com-
ponents were required to obtain the best solutions per each
dataset for the given settings. We can observe that for sim-
pler datasets (MNIST, FASHION) using a single compo-
nent per class for sufficient and that introducing additional
ones led to slightly worse performance, most likely due to
the fact of fitting to simple concepts and overcomplicating
the optimization problem. On the other hand, more com-
plex benchmarks (SVHN, CIFAR10, IMAGENET10) pre-
ferred access to more components per class, which could
provide significant improvements, e.g., for SVHN the dif-
ference between K=1 and K=10 was almost 0.3. While for
these experiments we set the learning rate slightly higher
for the GMM model (0.001) than for the extractor (0.0001),
we observed that when the former used rate lower than the
latter (as suggested by the results for learning rates that will
be presented below), the optimal K tended to be lower on
average. It is possible that if GMM is dominant it prefers
having more flexibility (components), while when the ex-
tractor has a higher learning rate it may be more effective in
adjusting representations to lower numbers of components.

Covariance: Results presented in Tab. 3, unequivocally
show that our gradient-based MIX can much better adapt

Table 2. Average incremental accuracy for MIX using different
numbers of components K.

Config MNIST FASHION SVHN CIFAR10 IMGNET10

K=1 0.9885 0.8859 0.4862 0.4282 0.6466
K=3 0.9875 0.8782 0.5978 0.5407 0.6584
K=5 0.9463 0.8562 0.6994 0.5522 0.6604
K=10 0.9393 0.8577 0.7438 0.5620 0.6252
K=20 0.9521 0.8517 0.6868 0.5532 0.4270

to data if it maintains only the variance of the covariance
matrix (better by almost 0.3 when compared with full co-
variance). It is not surprising since previous publications
related to the gradient-based GMMs for offline settings sug-
gested a similar thing [3]. Most likely, working with a full
covariance matrix leads to less stable loss values, and many
more free parameters (especially if the feature space is high-
dimensional) likely cause problems with convergence.

Table 3. Average incremental accuracy for MIX with diagonal and
full covariance.

Config MNIST FASHION SVHN CIFAR10 IMGNET10

FULL 0.7304 0.6577 0.2931 0.3298 0.3255
VAR 0.9888 0.8849 0.6393 0.5777 0.6865

Learning rates: Analogously to the experiments for
tightness, in Fig. 4 we presented the grid of results for dif-
ferent extractor (horizontal) and mixture (vertical) learning
rates. The obtained results suggest that the former part is
more important – once the optimal rate is set (0.0001 for
the given settings) tuning the latter seems less significant,
although overall it should be set to a similar or slightly lower
value.

Memory size: Finally, if we look at the results of class-
incremental learning using different memory sizes, given in
Fig. 5, we will see that MIX can effectively utilize larger
buffers and that it seems to be quite memory-dependent,
especially for SVHN where the difference between subse-
quent sizes ranged from 0.1 to 0.2. Still, the gap was much
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Figure 4. Average incremental accuracy for different learning rates.

1 2 3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1.0

MNIST

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

FASHION

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

SVHN

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

CIFAR10

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

IMAGENET10

Figure 5. Incremental accuracy after each class batch for different sizes of the replay buffer.

smaller for all of the remaining datasets. While this char-
acteristic of the algorithm may be problematic (the fewer
examples we need, the better), it is still valid that if we can
use a pre-trained extractor, the whole model does not need
to use the memory buffer at all.

B.3. Lessons learned

Based on the theoretical and empirical analysis presented
for this work we can conclude the following.

1. Class-incremental learner. Regardless of many com-
bined challenges, it is possible to successfully hy-
bridize the gradient-based mixture models on top of
convolutional feature extractors, and use them in class-
incremental end-to-end continual learning scenarios.
The presented results show that MIX is capable of pro-
viding competitive results when compared with well-
known incremental baselines.

2. Dedicated losses. It has been shown that the training of
the mixture models combined with dynamic feature ex-
tractors requires the inter-contrastive loss to effectively
distinguish components of different classes from each
other. In addition to that, to ensure diversity among
same-class components and avoid degenerate solutions,
such techniques as regionalization combined with the
intra-contrastive loss are required. We showed that not
only do the proposed approaches deliver what was in-
tended, but also that they can translate into significant
performance gains for more complex datasets. Finally,
although the more generic high-level cross-entropy loss
may provide good solutions in many cases, only the most
advanced variant (MIX-MCR) delivers both high predic-
tive performance and high quality of generated mixture

models, which may be important from the perspective of
interpretability or potential Gaussian-based extensions.

3. Effective tightness. The tightness bound plays a crucial
role in stabilizing the mixture learning procedure. Set-
ting the optimal values of inter- and intra-tightness leads
to striking a balance between pushing different compo-
nents from each other and actually fitting them to the
data. Intuitively, the inter-tightness prefers slightly lower
values than intra-tightness.

4. Recommended configurations. By analyzing other dif-
ferent hyperparameter settings and combinations of our
methods we could observe that: (i) the CE loss works
much better with the softmax classification method,
while MC and MCR should be combined with the max-
component approach, (ii) different numbers of compo-
nents may be required for different data and different
learning rates may also affect the optimal number, (iii)
maintaining only the diagonal of the covariance matrices
leads to more stable optimization and better results, (iv)
the learning rate for the feature extractor dominates over
the one for the mixture model, and that (v) MIX is quite
memory-dependent in general end-to-end scenarios.

5. Memory-free scenarios. At the same time, MIX is ca-
pable of learning without a memory buffer if we use
a fixed pre-trained extractor and disable the contrastive
loss that is not needed in this case. Our method stands
out as the best model for such class-incremental scenar-
ios which can be very important if there are any data
privacy concerns or strict memory limits.
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