
Continual Learning with Weight Interpolation

Supplementary Material

Table 3. Average accuracy and forgetting measure for CLeWI
without rehearsal.

method Acc(↑) AccK (↑) FM (↓)
CLeWI-SGD α = 0.2 8.95 88.3 80.66
CLeWI-SGD α = 0.5 9.87 85.7 71.04
CLeWI-SGD α = 0.6 11.66 81.1 54.08
CLeWI-SGD α = 0.7 16.41 62.2 22.0
CLeWI-SGD α = 0.8 8.87 3.1 1.04

7. CLeWI without rehearsal

In preliminary experiments, we started by applying the
weight interpolation without any other form of forgetting
prevention. In such an approach, we kept the buffer in our
algorithm, but it was used only to compute activations and
batch normalization statistics required by REPAIR. Data
from the buffer was not used for network training. The re-
sults are provided in Tab. 3. We tried several settings of
α, but none provided significant gains in accuracy. With
α = 0.2 or α = 0.5, the model forgets completely what it
has learned previously, as illustrated by the high accuracy
on the last task and low forgetting. By using α = 0.8, we
could almost entirely eliminate catastrophic forgetting, but
only for the first task. The model lacks the plasticity to learn
new tasks. The best results are obtained for α = 0.7. How-
ever, they are far worse than any other method that stores
previous data in a buffer.

We also provide the interpolation plots of CLeWI-SGD
for the several values of α in Fig. 4. The local maxima of
interpolation plots move significantly when different values
of α are used. This was not observed for other continual
learning algorithms that CLeWI was combined with. We
can also see here that the model with α = 0.6 or 0.7 should
obtain higher accuracy, as this value aligns well with the lo-
cal maxima of the plot. We obtain the best results as shown
by Tab. 3 for these α values.

8. Interpolation plots for other algorithms

We present interpolation plots for various forms of rehearsal
in Fig. 5. These plots show that each form of rehearsal
requires a different interpolation α hyperparameter. These
could be obtained with either a hyperparameter search, and
interpolation plots can be helpful in this process. In exper-
iments with standard benchmarks, we have tuned α only
once and used it across different datasets.

We provide the exact values of the interpolation α in
Tab. 4 for completeness.

Table 4. Values of interpolation α hyperparameter used in experi-
ments

method α
CLeWI ER 0.3

CLeWI aGEM 0.5
CLeWI ER ACE 0.3

CLeWI MIR 0.5
CLeWI BIC 0.5

CLeWI DER++ 0.2

9. Interpolation and REPAIR algorithm details

In this section, we provide details about the interpolation
process and REPAIR [20] algorithm used in our experi-
ments. Both of these steps are represented in pseudocode as
functions calc_permutation and update_batchnorm. In the
first step, the optimal permutation is found. In the second
step, batch normalization is performed in order to mitigate
variance collapse.
Step 1 - alignment In the first step, we search for the per-
mutation π of θP that maximizes the correlation between
feature maps from θP and θ networks. The feature maps are
obtained from samples in bufferM. Note thatM contains
information about all tasks. Specifically, for a given layer,
having the feature maps of the dimension N ×C ×W ×H
from two networks, we first calculate the C×C correlation
matrix between them. Next, we choose the optimal permu-
tation by solving the linear sum assignment problem with
an optimizer from scipy. In our experiments to obtain the
activations, we use only a single epoch with a batch size
equal to 32.
Step 2 - normalization Aligned networks suffer from the
phenomenon called variance collapse [20]. The variance
of the feature maps is decreasing with network depth lead-
ing to poor performance. We prevent variance collapse
by renormalizing feature maps, ensuring the variances of
feature maps in the interpolated network θα satisfy con-
ditions: EXα = (1 − α)EX + αEXP and VarXα =
(1 − α)VarX + αVarXP , where Xα, XP , X are ran-
dom variables corresponding to feature maps of θα (inter-
polated), θP (trained on previous tasks and permuted), and
θ (trained on current task) networks respectively. To this
aim, after all interpolated layers, Batch Normalization lay-
ers are added to apply an affine transformation to feature
maps of the network θα. Parameters of the affine transfor-
mation are set to the interpolations of means and variances
of feature maps in networks θP and θ, producing feature
maps with means and standard deviations satisfying condi-



Figure 4. Test accuracy in the function of interpolation alpha for CLeWI with no replay

Figure 5. Interpolation plots for other forms of rehearsal

tions to prevent the variance collapse. After that, additional
Batch Normalization layers are removed from the network
via BatchNorm fusion. In our paper we use the observa-
tion from [20], that in architectures with Batch Normaliza-
tion after each layer fixing the variance collapse via addi-
tional Batch Normalizations is equivalent to resetting the
batch_norm statistics. We use a single epoch with data from
M buffer to perform this reset.

10. Memory restricted evaluation of rehearsal
methods

Some researchers in the continual learning community ar-
gue that a more fair comparison between algorithms would
be assigning the same amount of memory for the buffer for

all algorithms. All objects stored in memory, such as im-
ages, models, activations, or weights, would use this mem-
ory until the buffer is full. We are aware that our model re-
quires additional memory for weights. For this reason, we
carry out additional experiments in this memory-restricted
evaluation mode to check if storing additional weights can
bring improvement over increasing the buffer size alone.

As thorough evaluation requires several architectures,
we employ both reduced ResNet architecture [17] with an
overall number of parameters equal to 11220132 and Mo-
bileNetv2 [44] architecture with 2351972 parameters. To
enable interpolation for MobileNetv2, we made a custom
implementation of the REPAIR algorithm for this architec-
ture. We are not applying the permutation for the depthwise
convolution, as the same filter is applied to all input chan-



Table 5. Buffer size and accuracy for various continual learning algorithms and architectures for memory-restricted evaluation of CLeWI.

method backbone Cifar100(T=10) Tiny-ImageNet(T=20)
#imgs in

buffer Acc (↑) #imgs in
buffer Acc (↑)

ER ResNet18 15000 62.61 4000 21.18
CLeWI+ER 394 38.03 348 9.45

ER MobileNetv2 3500 26.55 1000 9.63
CLeWI+ER 438 18.67 235 6.96

ER ResNet18 15606 61.53 4652 20.84
CLeWI+ER 1000 46.72 1000 21.52

ER MobileNetv2 4062 27.37 1765 7.42
CLeWI+ER 1000 24.72 1000 12.16

Figure 6. Test accuracy in the function of interpolation α for Mo-
bileNetv2 architecture

nels. For all other layers, permutation is applied. To verify
that the algorithm works for other architecture, we made an
interpolation plot, presented in Fig. 6. This figure shows
that interpolation can still improve test set accuracy during
training with the MobileNetv2 backbone.

We treat each network parameter as 32bit variable. We
do not use mixed precision training [31], or other meth-
ods of reducing weights memory footprint. For Cifar100,
each image is an array of size 32x32x3, with each color
saved as an 8-bit variable. Analogically, we treat each Tiny-
ImageNet image as a 64x64x3 array with 8-bit pixels.

From these assumptions, we can calculate the memory-
wise equivalent of storing model weights in terms of addi-
tional images, which could be used in the rehearsal algo-
rithm. For example, we computed that saving one ResNet
corresponds to storing 14609 additional CIFAR100 images.
We compare ER with CLeWI-ER to eliminate the influence
of more advanced replay methods from our results. We
carry out two experiments. In first we calculate the num-

ber of images that could be stored in the memory used by
weights, and then we round this number up. CLeWI in this
experiment has only the number of images that was rounded
up, while ER has the full buffer size, which has the same
memory footprint as both the memory buffer of CLeWI and
model weights. In the second mode we increase the number
of images stored in the CLeWI buffer to 1000, and increase
the ER buffer size by the same amount. The results are pro-
vided in Tab. 5.

Two factors could greatly impact this evaluation mode:
the size of the images in the dataset and the number of pa-
rameters in the model. For datasets with smaller images,
such as CIFAR100, storing 32-bit weights in memory cor-
responds to a huge increase in the buffer size. In such cases,
matching the ER’s performance with a big buffer is hard.
When we consider more parameter-efficient models, such
as MobielNetv2, the gap between ER and CLeWI becomes
smaller. The difference in the buffer size is also smaller,
and the accuracy of CLeWI, especially for Tiny-ImageNet,
becomes closer to ER. When we allow an increase in the
buffer size for both algorithms, the gap between ER and
CLeWI becomes even smaller, and we even notice accuracy
improvement for the Tiny-ImageNet dataset. An increase in
buffer size does not significantly impact the ER, as perfor-
mance there could already be saturated.

Please note that here, we carry out experiments with
benchmarks for continual learning used in the previous parts
of the paper. If we consider other datasets with higher im-
age sizes, such as 224x224 or 512×512, the comparison
could be even more favorable for CLeWI. We may also
employ more recent architectures for training, such as Ef-
ficientNetB0 [48], and utilize mixed precision training [31]
to further reduce the memory footprint of the backbone.

We conclude that in a memory-restricted mode of eval-
uation, CLeWI could improve over vanilla ER, but only if
the images are big and the network architecture is parame-
ter efficient. In other cases, it could be more advisable to
increase the buffer size alone and not use interpolation.


	. CLeWI without rehearsal
	. Interpolation plots for other algorithms
	. Interpolation and REPAIR algorithm details
	. Memory restricted evaluation of rehearsal methods

