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8. Appendix
8.1. Theorem for the wake-sleep EBM algorithm

Theorem 1: In WS-EBM, with a dynamic loss function, the
optimal model parameters w through gradient optimization
can be approximately obtained by minimizing the linear
combination of loss function used in wake cycle(αLwc) and
sleep cycle(βLsc) as:

wk+1 = wk − η(∇(αLwc + βLsc)) (12)

where α and β are the number of wake and sleep cycles
respectively, and η is the learning rate.

8.1.1 Proof of Theorem 1

Let original model parameters at iteration k be wk. and as-
sume the same learning rate for both wake and sleep cycles.
Moreover, without loss of generality assume the number of
wake(α) and sleep cycles(β) to be 1 since these are scalars.
after gradient optimization in the wake cycle with loss func-
tion Lwc, the model parameters would be updated as follows:

w′
k = wk − η(

∂Lwc

∂wk
) (13)

Feeding these intermediate parameters to sleep cycle opti-
mization, we have

wk+1 = w′
k − η(

∂Lsc

∂w′
k

) (14)

Combining equations 13 and 14 we have:
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By change of variables, equation 15 can be written as
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Now partially differentiating equation 13 wrt to wk, we have
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Substituting this in equation 16 we have
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Assuming η << 1(usually in range of 10e − 3) and
∂2Lwc

∂w2
k

<< 1, we can use the geometric series sum rule

for 1
1−x , which would give us:
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(19)
Neglecting the smaller terms, we can simplify equation 19
as

wk+1 = wk − η(
∂Lwc

∂wk
+

∂Lsc

∂wk
)

∴ wk+1 = wk − η(∇(Lwc + Lsc))

(20)

Figure 4. WS-EBM has lower Entropy across all the benchmark
datasets. It’s desirable for a trained model, to have lower Shannon
Entropy, which correlates well with generalization.

8.2. Entropy analysis

In [5], authors empirically confirm that the sharpness of a
deep learning loss landscape around local minima indeed
correlates with the generalization abilities of the model. The
authors performed comparative studies of different existing
sharpness measures to guide the optimization process toward
the well-generalizing regions of the loss landscape. From
a broad family of different measures of sharpness, we con-
sider Shannon entropy [40], decreasing the value of which
indicates a flatter optimum. Shannon Entropy can be defined
as

µentropy = − 1

m

m∑
i=1

κ∑
j=1

fw∗ (xi) [j] log (fw∗ (xi) [j])

(21)
where w∗ are model parameters, fw∗ (xi) [j] denotes the
probability of jth class predicted by the deep learning model
fw∗ for input data x, and κ be the total number of classes.
Figure 4 confirms the lower entropy values for the WS-
EBM for all the datasets except, suggesting that its improved
accuracy can be linked to the local geometry of the loss.



Method Test Accuracy(%) BWT(%) Shannon Entropy Cosine Similarity

EBM 8.68 -19.23 0.0379 0.0365
WS-EBM 13.28 -1.50 0.0353 0.0103

Table 4. Evaluation Metrics on synthetic classification dataset. WS-EBM outperforms EBM in every metric.

Figure 5. Evolution of Energy Surface for Data in Task 1 when the model is successively trained on task 1,2,3,4. The x and y axis represent
the 2-dimensional data. The z-axis represents the energy values. The figure shows that WS-EBM shows less perturbations, smaller range of
variations and a smoother energy landscape as compared to EBM in class incremental setting.

8.3. Qualitative analysis of energy surface on a syn-
thetic classification problem

In this section, we attempt to visualize the evolution of en-
ergy surface while training on sequential tasks to gain more
insight into the effect of wake-sleep cycles in training EBM.
Here we perform a qualitative analysis of the training process
of EBMs over a simple toy classification problem curated
for class incremental setting.

Consider a 2-dimensional x-y plane with 4 quadrants.
These quadrants act as 4 disjoint tasks. Each quadrant can
be divided into two equal halves by line y = x for quadrants
1 and 3 and y = −x for quadrants 2 and 4. We assign
ground-truth classes or labels to each of these octants as
shown in Figure 6, such that each quadrant becomes a task
of binary classification. Now we sample 1000 random data
points from a uniform distribution U(0, 1) in each quadrant
such that 500 points belong to each octant class. In total, we
have 4000 uniformly distributed 2-dimensional data values
for which we can plot the energy surface during training in
class incremental setting. Plotting actual benchmark datasets
like SplitMNIST, and Cifar100 is not possible since the data
points are high dimensional(> 3). The model is trained in
a class incremental setting by sequentially learning on data
from task 1 to task 4, such that data from previous tasks is
not available while training the current task. The objective of
the model at hand is to predict the growing number of classes
without forgetting the previous classes. The architecture of
the EBM is a 2 layered Neural Network with 400 linear units
and is kept constant for both WS-EBM and EBM. Since
this dataset is small, we keep the iteration per task as 5 and

the number of wake and sleep cycles are kept the same as 2
and 10 respectively, same as described in section Theoretical
Analysis.

Figure 6. Synthetic data for visualizing energy surfaces

Plotting of Energy Surfaces: To show variations in the
energy surface we plot the energy values for data in quadrant
1 as predicted by the model trained on subsequent tasks in
a class incremental manner. Figure 5 shows the evolution
of energy surface for data points belonging to the first task,
as the model learns incrementally on task 1, 2, 3, 4. It can
be seen that the energy surfaces in the WS-EBM strategy
are stable as compared to the training regime without wake-
sleep cycles. We see sharp changes in the landscape of the
energy surface when the model learns new tasks. Further, the
range of variations in this regime is larger than the decoupled
strategy, demonstrating that the decoupled strategy interferes
less with pior tasks while learning new classes. Further, the
evaluation metrics in Table 4 demonstrate the superiority of
WS-EBM over classical EBMs.



Dataset Method Square-Square Loss Hinge Loss Log Loss Sq-Exp. Loss(γ = 2.3)

SplitMNIST EBM 53.82 ± 0.06 49.17 ± 0.02 51.26 ± 0.06 49.17 ± 0.02
WS-EBM 56.42 ± 0.31 52.38 ± 0.03 52.67 ± 0.98 54.32 ± 0.31

PermMNIST EBM 84.97 ± 1.22 86.27 ± 0.22 83.54 ± 0.05 72.27 ± 0.23
WS-EBM 88.32 ± 0.19 87.51 ± 0.07 87.61 ± 0.23 74.55 ± 0.01

Cifar10 EBM 37.26 ± 0.09 37.13 ± 0.08 38.26 ± 0.09 38.25 ± 0.81
WS-EBM 40.12 ± 0.17 39.36 ± 0.81 39.11 ± 0.03 39.60 ± 0.23

Cifar100 EBM 28.39 ± 0.42 29.88 ± 0.65 29.88 ± 0.34 30.19 ± 0.03
WS-EBM 30.71 ± 0.27 30.03 ± 0.08 30.14 ± 0.03 31.08 ± 0.11

Table 5. Comparison of WS-EBM and EBM with General Margin Loss Function. The Average Accuracy(%) is computed over 10 runs.
WS-EBM gives a better performance across all the datasets in terms of all the evaluation metrics.

8.4. Analysing WS-EBM with Margin Loss Func-
tions

We applied the WS-EBM algorithm with Generalised Mar-
gin Loss Functions [28] and compared it with the typical
EBM without wake-sleep cycles. These loss forms maintain
some sort of a positive margin m to create an energy gap
between the correct answer(E(w, yi, xi)) and the most of-
fending incorrect answer(E(w, ȳi, xi)).These loss functions
are of the form:

L(w, xi, yi) = L((E(w, xi, yi), E(w, xi, ȳi)) (22)

where L are different forms of loss functions. Some loss
functions falling under margin losses can be described as
follows:

Hinge loss: It is defined as Lhinge(w, yi, xi) =
max(0,m + E(w, yi, xi) − E(w, ȳi, xi)) where m is the
positive margin. Here the difference between energies of the
correct answer and the most offending incorrect answer is
penalized linearly when greater than −m.

Log loss: Llog(w, yi, xi) = log(1 +
eE(w,yi,xi)−E(w,ȳi,xi)). It’s a smoother or softer ver-
sion of hinge loss, with an infinite margin.

Square-Square loss: Lsq−sq = E(w, yi, xi)
2 + m −

E(w, ȳi, xi))
2. It penalizes large values of energy for cor-

rect answers and small values for E(w, ȳi, xi) above the
margin m. It treats the energy of correct and most offending
incorrect answers quadratically and separately.

Square exponential loss: Lsq−exp(w, yi, xi) =
E(w, yi, xi)

2 + γ(e−E(w,ȳi,xi)). where γ is a positive con-
stant. Although very similar to square-square loss the con-
trastive term is exponential instead of quadratic and pushes
the energy of incorrect answers to infinity with a decreasing
force.

We empirically found that square-square loss with a mar-
gin m = 1 gave the best improvement with WS-EBM as seen
in Table 5. We observe that the square-square loss pushes
the correct answer energy down towards zero and pushes

down the incorrect answer energies above m. Therefore, it is
only suitable for energy functions that are bounded below by
zero, notably in architectures whose output module measures
some sort of distance. Since we are using ReLU activation,
the energy values are bound by zero. The hyper-parameter
m has been empirically chosen as 1.
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