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Abstract

Estimating clothed human body shapes from monocular
images has been a difficult problem due to occlusions, vary-
ing poses, and diverse clothing styles. Current methods in-
volve directly regressing for either 3D positions of prim-
itives or values in a volumetric space, but they struggle to
balance generalization and accuracy, leading to suboptimal
results. In this paper, we introduce a novel two-step frame-
work that efficiently combines 2D and 3D representations to
achieve both accurate surface detail inference and strong
generalization capabilities: addressing challenging poses
by occlusions and varying clothing styles. Our approach
first uses an image-to-image translation framework to esti-
mate a rough shape, which serves as an initial approxima-
tion of the human body. This step effectively captures global
structure and coarse details, while being computationally
efficient. Next, we employ a dedicated refinement module to
enhance the surface details for a high-fidelity result. It uti-
lizes an attention-based strategy that allows the 3D refine-
ment module to focus on regions of interest, such as areas
with complex clothing or occlusions. This strategy effec-
tively improves the overall quality of the inferred shape by
generating high-density patches of points in challenging re-
gions. Our experiments show that, with the attention-based
strategy, the proposed method outperforms state-of-the-art
methods in terms of both qualitative and quantitative mea-
sures, demonstrating its effectiveness in handling diverse
clothing styles and poses.

1. Introduction
Estimating human body shapes from monocular images has
become an increasingly important research topic in com-
puter vision and graphics, with a wide range of applica-
tions such as virtual reality, gaming, fashion industry, and
human-computer interaction. However, inferring clothed
human body shapes poses significant challenges due to fac-
tors like occlusions, varying poses, and the diversity of
clothing styles. It is crucial to design a simple acquisition

Figure 1. Illustration of reconstructed models under an uncommon
pose from (a) a state-of-the-art implicit function-based method.
(b) our coarse prediction. (c) our refined prediction.

system of high-quality human models with rich surface de-
tails. Traditional 3D-scan [27, 38] and multi-view recon-
struction methods [14, 16, 23] rely heavily on hardware to
capture dense inputs of a target scene, limiting its applica-
tion in daily scenarios.

Recent advancement in deep learning techniques makes
single-view reconstruction possible. Some initial works
[18, 32] adopt point cloud representation and regress on
point positions with multilayer perceptron (MLP). Al-
though follow-up works [33, 44–46] improve network
structures by leveraging advanced 3D convolution and
graph convolution (GCN) to learn with the correlation be-
tween neighboring points in a more elegant way, these ap-
proaches usually work with simple CAD models with fewer
vertices. It’s memory inefficient and computationally ex-
pensive to directly apply them to complex human models.

Another line of research [10, 47] seeks to establish
shape priors through the utilization of volumetric represen-
tations, an approach that, while insightful, imposes signifi-
cant computational demands. Recently, training neural net-
works as implicit functions gain popularity in 3D recon-
struction and view synthesis. As demonstrated by works
such as [36, 37, 40], this strategy achieves impressive re-
sults and, in the meantime, reduces memory complexity and
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Figure 2. Pipeline Overview: The proposed framework utilizes unclothed SMPL-derived positional and normal maps in UV space, and an
RGB image-derived partial UV texture as inputs. A generator uses these inputs to predict the coarse pointcloud Xc. To enhance the local
expressiveness, we adopt an attention head Gatt to estimate regions of interest in the UV space as an attention map. The attention map is
then multiplied with the predicted UV maps and decoded to local refinement points using the encoder-decoder structure. These points are
then articulated with coarse points to generate a refined clothed human pointcloud. Notably, the generation of positional maps does not
rely on SMPL template priors, allowing for the expression of arbitrary topology in the resulting pointclouds.

increases spatial resolution compared to classic volumetric-
based frameworks. However, most of these methods’ per-
formance is subject to the variation of data. Although some
works [42, 43] are proposed to mitigate the generalization
issue by conditioning on the input pixels, the results are
still suboptimal (See Figure 1). Recent works [48, 49] fur-
ther improve the approach by integrating normal predictions
into the reconstruction of clothed bodies. However, these
methods require separate estimations of images from sev-
eral viewpoints for the best performance.

Instead of utilizing features in projected space, there are
many approaches that train in a special unwrapped space,
i.e. UV parameterization space. The advantage is twofold.
Firstly, models in the UV space partially preserve neigh-
borhood information of vertices. Moreover, the model is
arranged in a regularized form such that it is compatible
with CNN frameworks. [15, 21] use a collection of UV
patches and global embedding features to learn the shape
prior, but the results are typically over-smoothed and lack
details. For human models, Tex2Shape [4] transforms the
shape estimation problem into an image-to-image transla-
tion problem, taking advantage of the power of 2D deep
neural networks. Although simple and robust, the result
is not comparable to the aforementioned implicit-function-
based methods. Moreover, it relies on parametric templates
for surface displacement, causing the resulting shape re-
stricted by the template’s characteristics, such as topology
and resolutions. Recent work [35] achieves very promis-
ing results. It is based on the UV parameterization of a
minimally-clothed parametric model [34] and focuses on

training the residuals i.e. fine-grained garments and surface
details. However, since the method is designed to recon-
struct the cloth variance for a particular person, its ability to
generalize across diverse human inputs remains a subject of
further investigation. In addition, it adopts a structure that
treats each surface element equally, ignoring the high vari-
ety of local surface structures. For human models with both
wrinkles from clothes and smooth exteriors from the skin,
elevating the inferring resolution everywhere increases the
number of parameters exponentially, which not only leads
to an increase of network parameters but also makes the
representation less efficient.

In this paper, we introduce a novel two-step framework
that generates fine-grained human geometry using a mix-
ture of UV space training and point cloud-based regres-
sion. We first feed the RGB partial texture, the posi-
tional map, and the normal map of the corresponding SMPL
model into a Tex2Shape-like image-to-image translation
network. Through the employment of normalized coordi-
nates and a residual learning strategy, we anticipate robust
results across a broad spectrum of poses and 2D appear-
ances in this initial stage. Subsequently, we improve the
details with a simple-yet-effective refinement module for
a high-expressive outcome. We surprisingly find that ap-
plying an explicit attention-based strategy in the framework
to discover regions that need higher resolutions can signif-
icantly facilitate the overall training progress. Our design
balances generalization capability and geometric flexibil-
ity to achieve adaptive local resolutions. Moreover, we no-
tice that Chamfer discrepancy fails in serving as the loss of
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the refinement module owing to its widely-discussed global
“blindness” issue [1, 17, 39]. Therefore, we apply sliced
Wasserstein distance [8], which circumvents the aforemen-
tioned drawbacks and maintains lower computational cost
compared with the Earth Mover’s distance. We demonstrate
the effectiveness of the proposed method through exten-
sive experiments and show that our framework outperforms
state-of-the-art methods in both qualitative and quantitative
respects.

2. Related Works
Learning-based Human Reconstruction: A line of meth-
ods [5, 34] utilizes parametric models to explicitly model
the human body shape. To regress these model parameters,
bodies are fitted to the 2D poses [7]. The maturity of de-
tecting accurate human pose on RGB images automates the
fitting process [11, 19]. However, such approaches usually
produce models “minimally clothed”, since the topological
changes on the surface are difficult to model. [2, 3] alle-
viate the problem through learning vertex displacement on
top of the model. However, it fails to generalize to surfaces
with arbitrary topology. Neural implicit surface representa-
tion [40, 41] leverages its powerful expressiveness to sup-
port various topologies [6], where [40] shows that the repre-
sentation can also be learned from incomplete data. Recent
works [20, 42, 43] successfully regress an implicit function
to recover clothed human shapes using a single RGB im-
age. [52] proposes a voxel-based method, which is hard to
generate high-resolution shape due to memory restrictions.
[4, 31] address the problem by employing UV parameteri-
zation to transform shape modeling into 2D image-to-image
translation.

Another line of works make efforts to combine the
benefits of the simplicity of the parametric model and the
expressive capabilities of neural implicit surface repre-
sentation. Works such as [25] and [24] reconstruct 3D
human shapes in a canonical space by warping query points
from the canonical to parametric model’s posed space and
projecting them onto the 2D image space. [53] conditions
the implicit function on the SMPL template for robustness
to pose variation and reconstruct local details from the
image pixels. [48] regresses shapes from inferred normals
and SDF features. [49] utilizes templates and predicted
front-back normals to explicitly generate detailed surfaces.
The occlusions are inpainted by implicit function networks.

Point Set Similarities: Methods to quantify the similarities
between point sets are widely used in point cloud-related
tasks. Chamfer distance is one of the most widely-used
metrics. Many works [12, 18, 50] adopt it as the evaluation
metric or as the loss to be optimized. However, Chamfer
distance only considers the nearest neighbor of the point,
making it highly dependent on the initialization. Therefore,

Figure 3. SMPL-registered meshes and Ground-truth meshes in
two view angles

Wasserstein distance, as the solution to the optimal transport
problem, is adopted by recent studies [1, 18]. However, cal-
culating the Wasserstein distance for high dimensional dis-
tributions is non-trivial. Even with 3D point clouds, it is ex-
pensive to compute. [9] designs sliced Wasserstein distance
to reduce the dimension favoring the computation. [30] uti-
lizes it for auto-encoders and [17, 39] introduces it to point
cloud learning tasks.

3. Proposed Method

To better leverage the power of the 2D neural network in
3D model reconstruction, we propose a framework, as il-
lustrated in Figure 2, that employs both 2D UV-based and
3D point-based representations. Specifically, we adopt the
coarse-to-fine strategy. To create a coarse model, we first
parameterize both the color texture and an unclothed para-
metric template and render them into a uniform UV space.
It is worth mentioning that this pre-processing step estab-
lishes pixel-aligned correspondences, thus enabling the net-
work to generalize across various models. The aligned UV
maps are then fed into an efficient 2D image-to-image trans-
lation module, which predicts the offsets of points and nor-
mals on the template UV map. For the purpose of clarity,
all referenced 3D points in the following sections inherently
include accompanying normals. Moreover, unlike previous
work [4] we compute the loss directly in the 3D space, fa-
cilitating network training without necessitating strict data
registration.

To enhance local expressiveness, we apply a 3D point-
based refinement module, which predicts point sets corre-
sponding to regions on the ground truth model that exhibit
the most significant discrepancies from the coarse predic-
tion. An attention map decoded from the UV image features
is used to predict regions of interest. We generate additional
point sets through a series of encoder-decoder layers with
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Figure 4. Visualization of the learned attention map and ground-truth refinement points in UV and 3D space. The attention values are
normalized to [0, 1], with the dark blue for 0 and the dark red for 1. GT refinement points are illustrated as white pixels on the UV map.

the input of the predicted UV map multiplied by the atten-
tion map. These points are then added to the coarse predic-
tion to yield the final result with adaptive local resolution.
To ensure optimal performance, we split the training of the
coarse prediction and the refinement module into two stages
and subsequently train both modules in an end-to-end man-
ner. In the following sections, we describe each component
in detail.

3.1. Preliminaries

UV Parameterization: Unlike images, 3D models are
not typically represented in a well-structured and ordered
format, which disrupts the spatial locality assumptions,
making the direct application of standard convolutional
neural network (CNN) architectures challenging. Utilizing
graph-based convolution on 3D data, however, intro-
duces higher complexity. To overcome this limitation,
we leverage the UV parameterization technique, which
unwraps the surface of the 3D model onto a 2D plane
with less projection distortion. After parameterization,
each vertex in 3D is mapped to a position (u, v) in 2D.
The designated normal and positional maps are generated
through barycentric interpolation on the related vertices’
value, which can be formulated as S(u, v) =

∑3
i=1 ωiPi,

where S(u, v) denotes the value corresponding to the pixel
(u, v), Pi represents the vertex positions or normals of a
vertex, and ωi are the barycentric coordinates satisfying∑3

i=1 ωi = 1.

Unclothed Parametric Template: We apply SMPL as the
unclothed parametric template to serve as a base model and
to unify the UV space. In SMPL, body shapes are driven by
low-dimensional vectors, with β ∈ R10 representing shape
parameters as weights for vertex offsets and θ ∈ R72 de-
noting poses of 24 joints (including the pelvis as the root
and 23 additional body joints). Each joint’s pose is defined
as the axis-angle rotation R ∈ SO(3) relative to its parent
in the kinematic tree. The SMPL model is accompanied by

a pre-defined UV map that remains invariant to both β and
θ. To ensure a consistent representation across all models,
we employ a state-of-the-art algorithm [48] to estimate the
unclothed SMPL fitting given an input RGB image. This fit-
ting is then applied to generate both positional and normal
maps.

3.2. Coarse Model Reconstruction

In this section, we intend to translate the parameterized im-
ages into XYZ position domain. We apply an approach sim-
ilar to Tex2Shape [4], with alterations tailored to our opti-
mization objective. In Tex2Shape, a pure 2D supervision
and a PatchGAN discriminator [26] are used in loss calcu-
lation. However, generating 2D supervision in UV space
requires registering the SMPL model to ground truth scan
data, which is a challenging problem by itself. To demon-
strate this point, we perform such registration using a state-
of-the-art algorithm for human-body deformation [13] and
report the registered meshes in Figure 3. As observed, the
results are far from accurate, either over-smoothed or too
noisy on resultant surfaces, implying that 2D supervision
could limit the performance upper-bound and may not be
optimal in practice.

Contrary to Tex2Shape, our framework adopts genera-
tive networks exclusively and innovatively supervises the
output image in 3D by leveraging pixels sampled via the
known UV mask. This design is amenable to registration-
free data, thus enabling the network to fully harness the
information offered by the raw models. Additionally, we
parameterize the minimally-clothed SMPL model and con-
catenate it with the RGB texture map as the input together.
It affords a reference to the result, thereby resolving the ori-
entation and posing ambiguity. Hence, the network’s focus
is predominantly directed towards the reconstruction of the
surface, as opposed to the learning of global absolute posi-
tions.

Our generator G is built upon the architecture pro-
posed by [28]. It consists of a convolutional downsam-
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pling front-end GF , a set of residual blocks GR, and an
upsampling back-end GB . The objective function is simply
minLc(G(s), Y ), where G(s) is sampled into 3D using the
SMPL UV mask and Y is the ground truth pointcloud. We
choose bidirectional Chamfer distance as the loss Lc, which
is defined as

d(S1, S2) =
1

|S1|
∑
x∈S1

(min
y∈S2

∥x− y∥)

+
1

|S2|
∑
y∈S2

(min
x∈S1

∥x− y∥)
(1)

for two point sets S1 and S2.

3.3. Adaptive Refinement

After training a coarse prediction with the image-to-image
translation network, in this section, we introduce our re-
finement module which adaptively enhances the local ex-
pressiveness. We define a resize-convolutional attention-
head Gatt that decodes the regions of interest from global
features c, where c = GR(GF (s)). Replacing the trans-
pose convolutional upsample layers in GB with the resize-
convolution significantly reduces the checkerboard artifacts
in the attention generation. Please refer to the supplemen-
tary for more details.

We explicitly apply attention to the inferred maps to ob-
tain an image with information from the interested area
only. We use a 5-layer convolutional encoder to learn the
local features and an 8-layer MLP-based decoder to pre-
dict the refinement point set Xr. As each element in Xr

is an independent point, they support arbitrary topology
and can be freely organized to refine surfaces regardless of
size and location. The introduction of the attention-based
strategy allows the following encoder-decoder network to
achieve the “adaptive local resolution”. We elaborate on
this point in Section 4.4. We adopt a simple-yet-effective
way to partition regions with finer details from the ground-
truth model. Given the coarse prediction Xc and the high-
resolution model Y , we measure the local error of each
point p ∈ Y as the average of Chamfer distances to its M
neighboring points. From there, we sort the top K points
with the largest errors as the point set to be refined, denoted
as Yr.

The refinement points are trained with sliced Wasser-
stein distance (SW) [8]. Sliced Wasserstein distance is a
point similarity measure with lower computational cost than
EMD. Sliced-p-Wasserstein distance between distribution µ
and ν is defined as

SW (µ, ν) =

(∫
Sd−1

W p
p (RIµ(·, θ),RIν(·, θ))dθ

) 1
p

(2)

where Iµ and Iν are the probability density functions of
measurements µ and ν. This strategy facilitates the learning

Figure 5. An example of the process to create an SMPL partial UV
map. The input RGB image is first transformed into an IUV im-
age through DensePose, which contains UV coordinates per part.
Then we utilize a preset mapping to map the IUV to the partial UV
on the right.

of effective features for the refinement module, overcoming
the limitations of traditional Chamfer distance, which of-
ten fails to adequately guide the learning process. In prac-
tice, SW (µ, ν) is usually computed through Monte-Carlo
approximation:

SW (µ, ν) ≈

(
1

L

L∑
l=1

W p
p (RIµ(·, θl),RIν(·, θl))

) 1
p

(3)

where θl is uniformly sampled on hypersphere Sd−1. There-
fore, the loss of the refinement module is formulated as

Lr = SW (Xr, Yr;L) (4)

where L is the size of the slice portfolio of Monte-Carlo es-
timation. Within the proposed framework, we adopt a mod-
ified version of Sliced Wasserstein distance, which further
improves its performance. We present the content in the
supplementary material.

4. Experiments
4.1. Experimental Settings

We utilize THuman2.0 dataset [51] for training and evalu-
ation. It contains 526 high-fidelity human scans in various
poses with 8K resolution textures as well as ground-truth
SMPL fittings. The positional map input is created by ren-
dering minimally-clothed SMPL fitting into the UV space.
During the inference, SMPL’s pose parameters θ and shape
parameters β are estimated with loop optimization follow-
ing [48]. The unwrapped partial texture is created through
DensePose [22]. DensePose predicts UV coordinates of
24 body parts separately based on the SMPL body model.
We manually design an arrangement and synthesize the 24
patches into a whole UV map, illustrated in Figure 5.
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Figure 6. (a) PIFu, (b) PIFuHD, (c) Tex2Shape, (d) PaMIR, (e) ICON, (f) ECON, and (g) Ours. Our model presents the class with the
finest class of details on visible regions.

To evaluate the effectiveness of the proposed two-step
framework, we conduct a thorough comparison, both quan-
titatively and qualitatively, between the results of our
method and several state-of-the-art methods, including PIFu
[42], PIFuHD [43], Tex2Shape [4], PaMIR [53], ICON
[48], and ECON [49]. To maintain a standard of compari-
son, all models are normalized to a uniform height of 1.8m.
The same set of SMPL parameters is shared across all pose-
aware methods. As Tex2Shape and PIFuHD do not have
training details revealed, the pre-trained models provided
by the authors are used in the evaluation. More implemen-
tation details are described in the supplementary material.

4.2. Metrics

Chamfer and Point-to-Surface distance: To identify sig-
nificant geometric errors, such as occlusions or misposi-
tioned limbs, we use the widely accepted Chamfer distance
(CD) and Point-to-Surface distance (PSD) for comparing
reconstructed meshes to the ground truth. The PSD mea-
sures from the generated results to the GT.
Normal Consistency: To evaluate the accuracy of local
detail reconstructions, we include the Normal Consistency
(NC), a scale-invariant metric that complements CD and
PSD. NC is calculated by the cosine distance between nor-
mals of the nearest faces in the reconstructed models and
the ground truth.

4.3. Evaluation

Qualitative Results: Given that our method outputs in the
form of 3D point clouds, to compare with other works,
we employ classic Poisson Surface Reconstruction (PSR)
[29] to generate the equivalent mesh results. Figure 6 pro-
vides a visual comparison of our method with the afore-
mentioned state-of-the-art methods from the input viewan-
gle. Tex2Shape’s outcome is bounded by the topology of
the SMPL model, making it unrealistic to the input. Our
model creates the same class of visual appearance compared
with much heavier methods, such as PIFuHD and ECON.

Nevertheless, in Figure 7, we compare the results from
the input view angles with those from rotated view angles
to illustrate the difference in reconstruction quality between
visible and occluded regions. It can be observed that many
methods, although with fine surface details, fail to preserve
reasonable human body shape for occluded regions, even
though some of them are conditioned with parametric mod-
els. Our method outperforms competing methods: con-
sistently delivers superior body shape reconstruction accu-
racy in such challenging circumstances while achieving sur-
face detail recovery commensurate with SOTA methods. It
can be attributed to our innovative use of UV space learn-
ing, which ensures the preservation of accurate body shape
from SMPL during the learning, regardless of visibility con-
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Figure 7. Reconstructed models when the visualized areas are visible (upper) and occluded (lower). (a) PIFu, (b) PIFuHD, (c) Tex2Shape,
(d) PaMIR, (e) ICON, (f) ECON, and (g) Ours. Our method preserves the most of shape in occluded regions compared to pose-agnostic
methods, such as PIFu and PIFuHD. Models from ECON also exhibit significant shape distortion on side views as well. Moreover, our
results present the most detailed surfaces in comparison with all other competing approaches.

straints.

To highlight the improvement brought about by the
refinement module, we offer a visual comparison in Figure
8. The difference between the surfaces reconstructed with
and without the refinement module is clearly evident. With
the addition of refinement points, our method successfully
reproduces intricate details such as the deep wrinkles of

trousers, which are loosely learned by the coarse prediction
due to the efficiency concern. For additional comparisons,
we refer readers to the supplementary material where we
have included extended samples and viewpoints.

Quantitative Evaluation: The precise numerical results
are tabulated in Table 1. Note that the raw point cloud
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Table 1. Performance comparison with state-of-the-art methods.
The best results are bolded.

CD (cm) PSD (cm) NC

PIFu [42] 1.5443 1.3746 0.1095

PIFuHD [43] 1.4928 0.9586 0.1063

Tex2Shape [4] 5.0125 4.9463 0.2200

PaMIR [53] 1.5355 1.0187 0.1079

ICON [48] 1.1151 1.1884 0.0885

ECON [49] 1.2494 1.2931 0.0642

Ours, w/o refine 0.8597 0.8654 0.0876

Ours, with refine 0.8169 0.8412 0.0621

output is used instead of the mesh after PSR. Our method
without refinement outperforms others in CD and PSD, as
the metrics focus more on the general shape correctness.
It is coherent with the visualization of models in rotated
views. The introduction of our refinement module con-
tributes high-frequency details to the output, resulting in
much lower NC than competing methods and achieving the
SOTA performance. Thanks to the high-level shape preser-
vation, our NC is even lower than those from PIFuHD and
ECON, although the local details are not visually superior
in well-reconstructed regions.

4.4. Attention v.s. Global Input

In Section 3.3, we highlight the significance of our atten-
tion strategy to the refinement module. To quantify its effi-
cacy, we execute an ablation experiment, wherein the atten-
tion map is eliminated, leaving only the predicted positional
map as the input. Figure 9 exhibits the comparison of av-
erage losses per epoch with and without the attention map.
The results clearly indicate that in the absence of the at-
tention head Gatt and with exclusive reliance on the coarse
UV positional map, the learning process fails to produce
meaningful features that are conducive to the prediction of
3D refining points. This observation underscores the pivotal
role the attention strategy serves in directing the locales of
3D point regression.

To further illustrate the significance of the attention mod-
ule, we visualize the correlation between our learned atten-
tion map and the refinement points in Figure 4. By project-
ing the 3D refinement points onto the SMPL template, we
are able to delineate their approximate locations on the UV
map. We notice that regions of interest, such as the bottom
of the torso and the two legs, corresponded with highlighted
areas on the attention map. This correlation not only vali-
dates our attention-based strategy but also underscores its
semantic significance.

Figure 8. Surface reconstruction difference with and without re-
finement module. The wrinkles induced by the bending leg are
more obvious with the refinement points.

Figure 9. Per-epoch SW curves with and without attention head.

5. Conclusion
In summary, we present a novel framework that integrates
2D UV space training and 3D point cloud-based regression
to generate fine-grained human geometry. We propose an
attention-based strategy that pinpoints areas necessitating
enhanced detail. The evaluations demonstrate that the pro-
posed framework achieves state-of-the-art performance in
single-view clothed human reconstruction tasks.

Despite the promising results, improvements are envis-
aged: On seen areas, surfaces generated by the PSR may not
fully exploit information from the raw output and display
less detail than those produced by implicit function-based
methods. Moreover, similar to most methods that take a
parametric model as input, our method relies on SMPL fit-
ting for pose accuracy, which is a problem not fully solved.
While we adopt the optimization pipeline from [48, 49] for
modeling, there are still instances of reported failures.
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