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Abstract
We present the evaluation methodology, datasets and results

of the BOP Challenge 2023, the fifth in a series of public com-
petitions organized to capture the state of the art in model-based
6D object pose estimation from an RGB/RGB-D image and
related tasks. Besides the three tasks from 2022 (2D detection, 2D
segmentation, and 6D localization of objects seen during training),
the 2023 challenge introduced new variants of these tasks focused
on objects unseen during training. In the new tasks, methods were
required to learn new objects during a short onboarding stage
(max 5 minutes, 1 GPU) from provided 3D object models. The
best 2023 method for 6D localization of unseen objects (GenFlow)
notably reached the accuracy of the best 2020 method for seen
objects (CosyPose), although being noticeably slower. The best
2023 method for seen objects (GPose) achieved a moderate ac-
curacy improvement but a significant 43% run time improvement
compared to the best 2022 counterpart (GDRNPP). Since 2017,
the accuracy of 6D localization of seen objects has improved by
more than 50% (from 56.9 to 85.6 ARC). The online evaluation
system stays open and is available at: bop.felk.cvut.cz.

1. Introduction
The BOP Challenge 2023 was the fifth in a series of public

challenges that are part of the BOP1 project, which aims to
continuously record and report the state of the art in estimating
the 6D object pose (3D translation and 3D rotation) and related
tasks such as 2D object detection and segmentation. Results of
the previous editions of the challenge from 2017, 2019, 2020,
and 2022 were published in [21,24,25,55].

Participants of the 2023 challenge were competing on six
tasks. Besides the three tasks from 2022 (model-based 2D object
detection, 2D object segmentation and 6D object localization
of objects seen during training), the 2023 challenge introduced
new variants of these tasks focused on objects unseen during
training. In the new tasks, methods were required to adapt to
novel 3D object models during a short object onboarding stage
(max 5 min per object, 1 GPU), and then recognize the objects
in images from diverse environments. Such methods are of
high practical relevance as they do not require expensive data
generation and training for every new object, which is typically

1BOP stands for Benchmark for 6D Object Pose Estimation [24].

0 10 20 30 40 50

55

65

75

85

95

GPose (2023)

GDRNPP (2022)

CosyPose (2020)

Vidal et al. (2017)

GenFlow (2023)

Run time per image (s)

A
cc

ur
ac

y
(A

R
C

)
Seen objects
Unseen objects

Figure 1. Progress in model-based 6D object localization (2017–2023).
Shown is the accuracy and run time of the top performing RGB-D meth-
ods on the seven core BOP datasets. The dominance of methods based
on point-pair features [10], represented by Vidal et al. [60] in 2017, was
ended by the learning-based CosyPose [32] in 2020 for the price of a
significantly higher run time. In 2022, GDRNPP [39,61] dramatically im-
proved both accuracy and run time. Finally, in 2023, GPose [67] brought
the run time back to the 2017 level while further improving the accuracy.
The field has come a long way since 2017 – the accuracy has improved by
more than 50% (from 56.9 to 85.6 ARC). GenFlow [40], the best method
for the newly introduced task of 6D localization of unseen objects (ob-
jects not seen during training), reaches the accuracy of CosyPose, the best
2020 method for seen objects, while its run time awaits improvements.

required by most existing methods for seen objects and severely
limits their scalability. The introduction of the new tasks was
encouraged by the recent breakthroughs in foundation models
and their impressive few-shot learning capabilities.

The challenge primarily focuses on the practical scenario
where no real images are available at training/onboarding time,
only the 3D object models and images synthesized using the
models. While capturing real images of objects under various
conditions and annotating the images with 6D object poses
requires a significant human effort [22], the 3D models are either
available before the physical objects, which is often the case for
manufactured objects, or can be reconstructed at an admissible
cost. Approaches for reconstructing 3D models of opaque, matte
and moderately specular objects are established [42, 49] and
promising approaches for transparent and highly specular objects
are emerging [14,41,59,62].

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In the 2019 challenge, methods using the depth image channel
were mostly based on point pair features (PPF’s) [10] and clearly
outperformed methods relying only on the RGB channels, all of
which were based on deep neural networks (DNN’s). DNN-based
methods need large amounts of annotated training images,
which had been typically obtained by OpenGL rendering of the
3D object models on random backgrounds [18, 30]. However,
as suggested in [26], the evident domain gap between these
“render & paste” training images and real test images limits the
potential of the DNN-based methods. To reduce the gap between
the synthetic and real domains and thus to bring fresh air to the
DNN world, we joined the development of BlenderProc2 [4,5],
an open-source, physically-based renderer (PBR). For the 2020
challenge, we then provided participants with 350K PBR training
images (see [25] for examples), which helped the DNN-based
methods to achieve noticeably higher accuracy and to finally
catch up with the PPF-based methods. In the 2022 challenge,
DNN-based methods for 6D object localization already clearly
outperformed PPF-based methods in both accuracy and speed,
with the performance gains coming mostly from advances in
network architectures and training schemes.

Remarkably, RGB methods from 2022 surpassed RGB-D
methods from 2020, the performance gap between methods
trained only on PBR images and methods trained also on real
images noticeably shrank, and some methods started training
on the depth image channel in addition to the RGB channels.
In 2022, we started evaluating also the tasks of 2D object
detection and 2D object segmentation, to address the design of
the majority of recent object pose estimation methods, which
start by detecting/segmenting objects and then estimate their
poses from the predicted image regions. Evaluating the detec-
tion/segmentation and pose estimation stages separately enabled
a better understanding of the progress in object pose estimation.

In 2023, we introduced three more practical tasks focused on
unseen objects, i.e. the target objects are not seen during training
and need to be onboarded with limited resources (max 5 minutes
on 1 GPU). While similar tasks have been considered in the liter-
ature [33,44,52], direct comparison of methods has been difficult
due to variations in the detection stage and the used training data.
To address this situation, we proposed a unified evaluation frame-
work utilizing an open-source detection method and a large-scale
training dataset. Specifically, CNOS [43], a model-based method
for detecting/segmenting unseen objects that outperforms Mask-
RCNN [16], was employed as the default method for 2D detection
and segmentation. As the training dataset, we used synthetic train-
ing data from MegaPose [33]. Methods were not required but
encouraged (via dedicated awards) to use these unified solutions.

The best 2023 method for 6D localization of unseen objects
(GenFlow [40]) reached the accuracy of the best 2020 method
for seen objects (CosyPose [32]). Despite being noticeably
slower, this is an impressive result considering that the target
objects are onboarded in a short time, which is several orders
of magnitude shorter than a typical training process of methods
trained for specific objects. The best 2023 method for seen

2github.com/DLR-RM/BlenderProc

objects (GPose [67]) achieves a moderate accuracy improvement
and a significant 42.6% run time improvement compared to the
best 2022 counterpart (GDRNPP [39,61]).

Sec. 2 of this report defines the evaluation methodology, Sec. 3
introduces datasets, Sec. 4 describes the experimental setup
and analyzes the results, Sec. 5 presents the awards of the BOP
Challenge 2023, and Sec. 6 concludes the report.

2. Challenge tasks
Methods are evaluated on the task of model-based 6D

localization on seen objects (as in 2019, 2020 and 2022 [55]),
on the tasks of model-based 2D detection and 2D segmentation
of seen objects (as in 2022 [55]), and on variants of these tasks
focused on objects unseen during training, which were introduced
in 2023. All six tasks are defined below, together with accuracy
scores that are used to compare methods. Participants could
submit their results to any of the six tasks. Note that although
all BOP datasets currently include RGB-D images (Sec. 3), a
method may have used any of the image channels.

2.1. Task 1: 6D localization of seen objects

The definition of this task is the same since 2019, which
enables direct comparison across the years3.

Training input: At training time, a method is provided a set of
RGB-D training images showing objects annotated with ground-
truth 6D poses, and 3D mesh models of the objects (typically
with a color texture). A 6D pose is defined by a matrix P=[R|t],
where R is a 3D rotation matrix, and t is a 3D translation vector.
The matrix P defines a rigid transformation from the 3D space
of the object model to the 3D space of the camera.

Test input: At test time, the method is given an RGB-D image
unseen during training and a list L= [(o1,n1), ..., (om,nm)],
where ni is the number of instances of object oi visible in the
image. In 2023, methods could use provided default detections
(results of GDRNPPDet PBRReal, the best 2D detection method
from 2022 for Task 2).

Test output: The method produces a list E=[E1,...,Em], where
Ei is a list of ni pose estimates with confidences for instances
of object oi.

Evaluation methodology: The error of an estimated pose
w.r.t. the ground-truth pose is calculated by three pose-error
functions (see Sec. 2.2 of [25] for details): (1) VSD (Visible
Surface Discrepancy) which treats indistinguishable poses as
equivalent by considering only the visible object part, (2) MSSD
(Maximum Symmetry-Aware Surface Distance) which considers
a set of pre-identified global object symmetries and measures the
surface deviation in 3D, (3) MSPD (Maximum Symmetry-Aware
Projection Distance) which considers the object symmetries and
measures the perceivable deviation.

3See Sec. A.1 in [25] for a discussion on why the methods are evaluated on
6D object localization instead of 6D object detection, where no prior information
about the visible object instances is provided [23].
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An estimated pose is considered correct w.r.t. a pose-error
function e, if e<θe, where e∈{VSD,MSSD,MSPD} and θe
is the threshold of correctness. The fraction of annotated object
instances for which a correct pose is estimated is referred to
as Recall. The Average Recall w.r.t. a function e, denoted as
ARe, is defined as the average of the Recall rates calculated
for multiple settings of the threshold θe and also for multiple
settings of a misalignment tolerance τ in the case of VSD.
The accuracy of a method on a dataset D is measured by:
ARD=(ARVSD+ARMSSD+ARMSPD)/3, which is calculated
over estimated poses of all objects from D. The overall accuracy
on the core datasets is measured by ARC defined as the average
of the per-dataset ARD scores (see Sec. 2.4 of [25] for details)4.

2.2. Task 2: 2D detection of seen objects
Training input: At training time, a method is provided a set
of RGB-D training images showing objects annotated with
ground-truth 2D bounding boxes. The boxes are amodal, i.e.,
covering the whole object silhouette, including the occluded parts.
The method can use the 3D mesh models that are available for
the objects (e.g., to synthesize extra training images).

Test input: At test time, the method is given an RGB-D image
unseen during training that shows an arbitrary number of
instances of an arbitrary number of objects, with all objects
being from one specified dataset (e.g. YCB-V [64]). No prior
information about the visible object instances is provided.

Test output: The method produces a list of object detections
with confidences, with each detection defined by an amodal 2D
bounding box.

Evaluation methodology: Following the evaluation methodology
from the COCO 2020 Object Detection Challenge [36], the
detection accuracy is measured by the Average Precision (AP).
Specifically, a per-object APO score is calculated by averaging
the precision at multiple Intersection over Union (IoU) thresholds:
[0.5,0.55,...,0.95]. The accuracy of a method on a dataset D
is measured by APD calculated by averaging per-object APO

scores, and the overall accuracy on the core datasets (Sec. 3) is
measured by APC defined as the average of the per-dataset APD

scores. Analogous to the 6D localization task, only annotated
object instances for which at least 10% of the projected surface
area is visible need to be detected. Correct predictions for
instances that are visible from less than 10% are filtered out and
not counted as false positives. Up to 100 predictions per image
with the highest confidences are considered.

2.3. Task 3: 2D segmentation of seen objects
Training input: At training time, a method is provided a set
of RGB-D training images showing objects that are annotated
with ground-truth 2D binary masks. The masks are modal, i.e.,
covering only the visible object parts. The method can also use
3D mesh models that are available for the objects.

4When calculating ARC , scores are not averaged over objects before
averaging over datasets, which is done when calculating APC (Sec. 2.2) to
comply with the original COCO evaluation methodology [36].

Test input: At test time, the method is given an RGB-D image
unseen during training that shows an arbitrary number of
instances of an arbitrary number of objects, with all objects being
from one specified dataset (e.g. YCB-V). No prior information
about the visible object instances is provided.

Test output: The method produces a list of object segmentations
with confidences, with each segmentation defined by a modal
2D binary mask.

Evaluation methodology: As in Task 2, with the only difference
being that IoU is calculated on masks instead of bounding boxes.

2.4. Task 4: 6D localization of unseen objects
Training input: At training time, a method is provided a set
of RGB-D training images showing training objects annotated
with ground-truth 6D poses, and 3D mesh models of the objects
(typically with a color texture). The 6D object pose is defined as
in Task 1. The method can use 3D mesh models that are available
for the training objects.

Object-onboarding input: The method is provided 3D mesh
models of test objects that were not seen during training. To
onboard each object (e.g. to render images/templates or fine-tune
a neural network), the method can spend up to 5 minutes of the
wall-clock time on a computer with a single GPU. The time is
measured from the point right after the raw data (e.g. 3D mesh
models) is loaded to the point when the object is onboarded. The
method can render images of the 3D object models but cannot
use any real images of the objects for onboarding. The object
representation (which may be given by a set of templates, a
machine-learning model, etc.) needs to be fixed after onboarding
(it cannot be updated on test images).

Test input: At test time, the method is given an RGB-D image
unseen during training and a list L= [(o1,n1), ..., (om,nm)],
where ni is the number of instances of object oi visible in
the image. In 2023, the method can use provided default
detections/segmentations produced by CNOS [43].

Test output: As in Task 1.

Evaluation methodology: As in Task 1.

2.5. Task 5: 2D detection of unseen objects
Training input: At training time, a method is provided a set
of RGB-D training images showing training objects that are
annotated with ground-truth 2D bounding boxes. The boxes are
amodal, i.e., covering the whole object silhouette including the
occluded parts. The method can also use 3D mesh models that
are available for the training objects.

Object-onboarding input: As in Task 4.

Test input: At test time, the method is given an RGB-D
image unseen during training that shows an arbitrary number
of instances of an arbitrary number of test objects, with all
objects being from one specified dataset (e.g. YCB-V). No prior
information about the visible object instances is provided.
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Test output: As in Task 2.

Evaluation methodology: As in Task 2.

2.6. Task 6: 2D segmentation of unseen objects
Training input: At training time, a method is provided a set
of RGB-D training images showing training objects that are
annotated with ground-truth 2D binary masks. The masks are
modal, i.e., covering only the visible object parts. The method can
also use 3D mesh models that are available for the training objects.

Object-onboarding input: As in Task 4.

Test input: As in Task 5.

Test output: As in Task 3.

Evaluation methodology: As in Task 3.

3. Datasets
3.1. Core datasets

BOP currently includes twelve datasets in a unified format.
Sample test images are in Fig. 2 and dataset parameters in Tab. 1.
Seven from the twelve were selected as core datasets: LM-O,
T-LESS, ITODD, HB, YCB-V, TUD-L, and IC-BIN. Since 2019,
methods must be evaluated on all of these core datasets to be
considered for the main challenge awards (Sec. 5).

Each dataset includes 3D object models and training and test
RGB-D images annotated with ground-truth 6D object poses.
The object models are provided in the form of 3D meshes (in
most cases with a color texture) which were created manually
or using KinectFusion-like systems for 3D reconstruction [42].
While all test images are real, training images may be real
and/or synthetic. The seven core datasets include a total of 350K
photorealistic PBR (physically-based rendered) training images
generated and automatically annotated with BlenderProc [4–6].
Example images, a description of the generation process and an
analysis of the importance of PBR training images are in Sec.
3.2 and 4.3 of the 2020 challenge paper [25]. Datasets T-LESS,
TUD-L and YCB-V include also real training images, and most
datasets additionally include training images obtained by OpenGL
rendering of the 3D object models on a black background. Test
images were captured in scenes with graded complexity, often
with clutter and occlusion. Datasets HB and ITODD include
also real validation images – in this case, the ground-truth poses
are publicly available only for the validation and not for the test
images. The datasets can be downloaded from the BOP website
and more details can be found in Chapter 7 of [19].

3.2. Training dataset for tasks on unseen objects
In 2023, as a training dataset for Tasks 4–6 (Sec. 2), we pro-

vided over 2M images in the BOP format showing more than 50K
diverse objects (Fig. 2). The images were originally synthesized
for MegaPose [33] using BlenderProc [4–6]. The objects are from
the Google Scanned Objects [8] and ShapeNetCore [2] datasets.
Note that symmetry transformations are not available for these
objects, but could be identified as described in Sec. 2.3 of [25].

LM [17] LM-O* [1] T-LESS* [22] ITODD* [9]

HB* [29] YCB-V* [64] RU-APC [50] IC-BIN* [7]

IC-MI [57] TUD-L* [24] TYO-L [24] HOPE [58]

Figure 2. An overview of the BOP datasets. The seven core datasets
are marked with a star. Shown are RGB channels of sample test images
which were darkened and overlaid with colored 3D object models in
the ground-truth 6D poses.

Train. im. Val im. Test im. Test inst.

Dataset Obj. Real PBR Real All Used All Used

LM-O [1] 8 – 50K – 1214 200 9038 1445
T-LESS [22] 30 37584 50K – 10080 1000 67308 6423
ITODD [9] 28 – 50K 54 721 721 3041 3041
HB [29] 33 – 50K 4420 13000 300 67542 1630
YCB-V [64] 21 113198 50K – 20738 900 98547 4123
TUD-L [24] 3 38288 50K – 23914 600 23914 600
IC-BIN [7] 2 – 50K – 177 150 2176 1786

LM [17] 15 – 50K – 18273 3000 18273 3000
RU-APC [50] 14 – – – 5964 1380 5964 1380
IC-MI [57] 6 – – – 2067 300 5318 800
TYO-L [24] 21 – – – 1670 1670 1670 1670
HOPE [58] 28 – – 50 188 188 3472 2898

Table 1. Parameters of the BOP datasets. The core datasets are listed
in the upper part. PBR training images rendered by BlenderProc [4,5]
are provided for all core datasets. If a dataset includes both validation and
test images, ground-truth annotations are public only for the validation
images. All test images are real. Column “Test inst./All” shows the
number of annotated object instances for which at least 10% of the
projected surface area is visible in the test image. Columns “Used” show
the number of used test images and object instances.

Table 2. Example training images from the MegaPose dataset [33].
This dataset includes 2M images showing annotated instances of more
than 50K diverse objects and is meant for training methods for tasks
on unseen objects (Tasks 4–6). The objects are not present in any other
BOP dataset and their 3D models are available.
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Ground-truth GPose [67] GenFlow [40] Ground-truth GPose [67] GenFlow [40]

Figure 3. Qualitative comparison of the state-of-the-art methods for 6D localization of seen (GPose) and unseen objects (GenFlow) on sample
images from LM-O [1] and YCB-V [64]. The bottom row shows the depth error map of each estimated pose w.r.t. the ground-truth pose. The map
shows the distance between each 3D point in the ground-truth depth map and its position in the estimated pose (darker red indicates higher error:
0 cm 10 cm). While GenFlow demonstrates strong performance on unseen objects, it tends to fail on challenging cases with heavy
object occlusion (e.g., the drill in the sample LM-O image or the meat can in the YCB-V image).

4. Results and discussion
This section presents results of the BOP Challenge 2023, com-

pares them with results from earlier challenge editions, and sum-
marizes the main messages for our field. In total, 65 methods were
fully evaluated (on all seven core datasets) on Task 1; 9 methods
on Task 2; 11 methods on Task 3; 14 methods on Task 4; 3 meth-
ods on Task 5 and 4 methods on Task 6. Note that some of the
results on Tasks 1–3 are from previous editions of the challenge.

4.1. Experimental setup

Participants of the 2023 challenge were submitting results to
the online evaluation system at bop.felk.cvut.cz from
June 7, 2023 until the deadline on September 28, 2023. The
evaluation scripts are publicly available in the BOP toolkit5.

A method had to use a fixed set of hyper-parameters across
all objects and datasets. For the tasks on seen objects (Tasks 1–3),
a method could use the provided 3D object models and training
images as well as render extra unlimited training images. For
the tasks on unseen objects (Tasks 4–6), a method had to onboard
new objects from their 3D models in a limited onboarding
stage of 5 minutes on a PC with a single GPU. The method
could render images of the 3D models or use a subset of the
BlenderProc images originally provided for BOP 2020 [25] –
the method could use as many images from this set as could be
rendered within the limited onboarding time (rendering and any
additional processing had to fit within 5 minutes, considering
that rendering of one BlenderProc image takes 2 seconds).

Not a single pixel of test images may have been used
for training and onboarding, nor the individual ground-truth
annotations that are publicly available for test images of some
datasets. Ranges of the azimuth and elevation camera angles,
and a range of the camera-object distances determined by the
ground-truth poses from test images are the only information

5github.com/thodan/bop toolkit

about the test set that may have been used during training and
onboarding. Only subsets of test images were used (see Tab. 1)
to remove redundancies and speed up the evaluation, and only
object instances for which at least 10% of the projected surface
area is visible were considered in the evaluation.

4.2. Results on Task 1
Results on the task of 6D object localization of seen objects

and properties of the evaluated methods are in Tab. 3. Among the
16 new entries in 2023, three outperform GDRNPP [39,61], the
best method from the 2022 challenge. The best pose estimation
pipeline from 2023, GPose2023 [61,67], is purely learning-based
and achieves 85.6 ARC , outperforming GDRNPP by 1.9 ARC

(#1−#4 in Tab. 3) with less than half the inference time (2.67 s vs.
6.26 s). GPose2023 deploys the same pose estimation method as
GDRNPP but combines it with a more efficient coordinate-guided
pose refinement strategy [67] and an improved 2D object detector
based on YOLOv8 (see #1−#2 in Tab. 5). Without any pose
refinement, the RGB-only variants GPose2023-RGB (#21,
72.9 ARC) or ZebraPoseSAT-EffnetB4 [53] (#17, 74.9 ARC)
reach an average inference time of ∼0.25 seconds per image
which are closer to the demands of mobile vision applications.
Gains in accuracy are most notable on the industrial ITODD,
T-LESS, and HB datasets, whereas on TUD-L and YCB-V we
can observe that metrics start to saturate.

4.3. Results on Tasks 2 and 3
As shown in Tab. 5, GDet2023 [67] based on YOLOv8 [28]

achieves 79.8 APC , a moderate +2.5 APC gain over YOLOX [11],
the best detector in 2022. YOLOv8 is even less sensitive to
the training image domain than YOLOX, achieving 76.9 APC

when trained only on synthetic PBR images and neglecting the
real training data. In the 2D segmentation of seen objects task
(Tab. 6), we see a similar incremental improvement of +3.2 APC

achieved by ZebraPoseSAT [53], which predicts object masks
from the provided default detections of GDRNPP Det.
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# Method Year Type DNN per Det./seg. Refinement Train im. ...type Test im. LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V ARC Time

1 GPose2023 [39,61] 2023 DNN Object Custom ∼Coord-guided RGB-D PBR+real RGB-D 79.4 91.4 96.4 73.7 70.4 95.0 92.8 85.6 2.67
2 GPose2023-OfficialDet [39,61] 2023 DNN Object Default GDRNPPDet ∼Coord-guided RGB-D PBR+real RGB-D 80.5 89.5 96.6 73.4 68.7 94.4 92.9 85.1 4.57
3 GPose2023-PBR [39,61] 2023 DNN Object Custom ∼Coord-guided RGB-D PBR+real RGB-D 79.4 89.0 93.1 73.7 70.4 95.0 90.1 84.4 2.86
4 GDRNPP-PBRReal-RGBD-MModel [39,61] 2022 DNN Object YOLOX ∼CIR RGB-D PBR+real RGB-D 77.5 87.4 96.6 72.2 67.9 92.6 92.1 83.7 6.26
5 GDRNPP-PBR-RGBD-MModel [39,61] 2022 DNN Object YOLOX ∼CIR RGB-D PBR RGB-D 77.5 85.2 92.9 72.2 67.9 92.6 90.6 82.7 6.26
6 ZebraPoseSAT-EffnetB4-refined [53] 2023 DNN Object Default GDRNPPDet ∼CIR RGB-D PBR+real RGB-D 78.0 86.2 95.6 65.4 61.8 92.1 89.9 81.3 2.57
7 GDRNPP-PBRReal-RGBD-MModel-Fast [39,61] 2022 DNN Object YOLOX Depth adjust. RGB PBR+real RGB-D 79.2 87.2 93.6 70.2 58.8 90.9 83.4 80.5 0.23
8 OfficialDet-PFA-Mixpbr-RGB-D [27] 2023 DNN Dataset Default GDRNPPDet PFA RGB PBR+real RGB-D 79.2 84.9 96.3 70.6 52.6 86.7 89.9 80.0 1.19
9 GDRNPP-PBRReal-RGBD-MModel-Offi. [39,61] 2022 DNN Object Default (synt+real) ∼CIR RGB-D PBR+real RGB-D 75.8 82.4 96.6 70.8 54.3 89.0 89.6 79.8 6.41

10 GDRNPPDet-PBRReal+GenFlow-MultiHypo [39] 2023 DNN Dataset Default (synt+real) Recurrent Flow RGB-D PBR+real RGB-D 74.4 78.0 92.4 65.1 64.7 91.6 88.4 79.2 36.01
11 Extended FCOS+PFA-MixPBR-RGBD [27] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D 79.7 85.0 96.0 67.6 46.9 86.9 88.8 78.7 2.32
12 Extended FCOS+PFA-MixPBR-RGBD-Fast [27] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D 79.2 77.9 95.8 67.1 46.0 86.0 88.0 77.1 0.64
13 RCVPose3D-SingleModel-VIVO-PBR [63] 2022 DNN Dataset RCVPose3D ICP RGB-D PBR+real RGB-D 72.9 70.8 96.6 73.3 53.6 86.3 84.3 76.8 1.34
14 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [53] 2022 DNN Object Default (synt+real) ICP RGB PBR+real RGB-D 75.2 72.7 94.8 65.2 52.7 88.3 86.6 76.5 0.50
15 Extended FCOS+PFA-PBR-RGBD [27] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB-D 79.7 80.2 89.3 67.6 46.9 86.9 82.6 76.2 2.63
16 SurfEmb-PBR-RGBD [15] 2022 DNN Dataset Default (PBR) Custom RGB-D PBR RGB-D 76.0 82.8 85.4 65.9 53.8 86.6 79.9 75.8 9.05
17 ZebraPoseSAT-EffnetB4 [53] 2023 DNN Object Default GDRNPPDet – RGB PBR+real RGB 72.9 82.1 85.0 59.2 50.4 92.2 82.8 74.9 2.50
18 GDRNPP-PBRReal-RGBD-SModel [39,61] 2022 DNN Dataset YOLOX Depth adjust. RGB PBR+real RGB-D 75.7 85.6 90.6 68.0 35.6 86.4 81.7 74.8 0.56
19 Megapose-GDRNPPDet-PBRReal+Multi [33,39] 2023 DNN Dataset Default GDRNPPDet Teaser++ RGB PBR RGB-D 70.4 71.8 91.6 59.2 55.3 87.2 85.5 74.4 93.26
20 Coupled Iterative Refinement (CIR) [37] 2022 DNN Dataset Default (synt+real) CIR RGB-D PBR+real RGB-D 73.4 77.6 96.8 67.6 38.1 75.7 89.3 74.1 –
21 GPose2023-RGB [39,61] 2023 DNN Object GDet2023 CIR RGB PBR RGB 69.9 79.9 83.1 62.6 46.0 87.6 80.9 72.9 0.24
22 GDRNPP-PBRReal-RGB-MModel [39,61] 2022 DNN Object YOLOX – RGB PBR+real RGB 71.3 78.6 83.1 62.3 44.8 86.9 82.5 72.8 0.23
23 ZebraPoseSAT-EffnetB4 [53] 2022 DNN Object FCOS – RGB PBR+real RGB 72.1 80.6 85.0 54.5 41.0 88.2 83.0 72.0 0.25
24 ZebraPoseSAT-EffnetB4(DefaultDet) [53] 2022 DNN Object Default (synt+real) – RGB PBR+real RGB 70.7 76.8 84.9 59.7 41.7 88.7 81.6 72.0 0.25
25 ZebraPoseSAT-EffnetB4(PBR-DefaultDet) [53] 2023 DNN Object Default GDRNPPDet – RGB PBR+real RGB 72.9 81.1 75.6 59.2 50.4 92.1 72.9 72.0 0.25
26 ZebraPose-SAT [53] 2022 DNN Object FCOS – RGB PBR+real RGB 72.1 78.7 86.1 54.9 37.9 84.7 82.8 71.0 –
27 Extended FCOS+PFA-MixPBR-RGB [27] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB 74.5 77.8 83.9 60.0 35.3 84.1 80.6 70.9 3.02
28 GDRNPP-PBR-RGB-MModel [39,61] 2022 DNN Object YOLOX – RGB PBR RGB 71.3 79.6 75.2 62.3 44.8 86.9 71.3 70.2 0.28
29 GDRNPPDet-PBRReal+GenFlow-Multi [39,61] 2023 DNN Dataset Default GDRNPPDet – RGB PBR+real RGB 66.8 82.3 76.0 58.1 48.6 89.3 69.8 70.1 35.36
30 CosyPose-ECCV20-SYNT+REAL-ICP [32] 2020 DNN Dataset Default (synt+real) DeepIM+ICP RGB PBR+real RGB-D 71.4 70.1 93.9 64.7 31.3 71.2 86.1 69.8 13.74
31 MRPE-PBRReal-RGB-SModel 2023 DNN Dataset Default GDRNPPDet Render & com. RGB PBR+real RGB-D 74.4 75.8 82.4 55.0 36.8 77.0 84.3 69.4 0.10
32 GDRNPP-PBRReal-RGB-SModel 2022 DNN Dataset YOLOX CIR RGB PBR+real RGB 68.6 77.6 82.7 61.7 26.0 80.9 76.8 67.8 0.46
33 Megapose-GDRNPPDet-PBRReal+MultiHyp [33,39] 2023 DNN Dataset Default GDRNPPDet – RGB PBR RGB 64.8 78.1 74.1 56.9 42.2 86.3 70.2 67.5 36.28
34 ZebraPoseSAT-EffnetB4 (PBR Only) [53] 2022 DNN Object FCOS – RGB PBR RGB 72.1 72.3 71.7 54.5 41.0 88.2 69.1 67.0 –
35 Extended FCOS+PFA-PBR-RGB [27] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB 74.5 71.9 73.2 60.0 35.3 84.1 64.8 66.3 3.50
36 PFA-cosypose [27,32] 2022 DNN Dataset MaskRCNN PFA RGB-D PBR+real RGB 67.4 73.8 83.7 59.6 24.6 71.2 80.7 65.9 –
37 Megapose-GDRNPPDet PBRReal [33] 2022 DNN Dataset Default GDRNPPDet DeepIM RGB – RGB 61.2 76.6 72.3 55.5 40.2 85.1 69.2 65.7 32.35
38 SurfEmb-PBR-RGB [15] 2022 DNN Dataset Default (PBR) Custom RGB PBR RGB 66.3 73.5 71.5 58.8 41.3 79.1 64.7 65.0 8.89
39 Koenig-Hybrid-DL-PointPairs [31] 2020 DNN/PPF Dataset Retina/MaskRCNN ICP RGB Synt+real RGB-D 63.1 65.5 92.0 43.0 48.3 65.1 70.1 63.9 0.63
40 CosyPose-ECCV20-SYNT+REAL-1VIEW [32] 2020 DNN Dataset Default (synt+real) ∼DeepIM RGB PBR+real RGB 63.3 72.8 82.3 58.3 21.6 65.6 82.1 63.7 0.45
41 CRT-6D 2022 DNN Dataset Default (synt+real) Custom RGB PBR+real RGB 66.0 64.4 78.9 53.7 20.8 60.3 75.2 59.9 0.06
42 Pix2Pose-BOP20 w/ICP-ICCV19 [46] 2020 DNN Object MaskRCNN ICP RGB PBR+real RGB-D 58.8 51.2 82.0 39.0 35.1 69.5 78.0 59.1 4.84
43 ZTE PPF 2022 DNN/PPF Dataset Default (synt+real) ICP RGB PBR+real RGB-D 66.3 37.4 90.4 39.6 47.0 73.5 50.2 57.8 0.90
44 CosyPose-ECCV20-PBR-1VIEW [32] 2020 DNN Dataset Default (PBR) ∼DeepIM RGB PBR RGB 63.3 64.0 68.5 58.3 21.6 65.6 57.4 57.0 0.48
45 Vidal-Sensors18 [60] 2019 PPF – – ICP – – D 58.2 53.8 87.6 39.3 43.5 70.6 45.0 56.9 3.22
46 CDPNv2 BOP20 (RGB-only & ICP) [34] 2020 DNN Object FCOS ICP RGB Synt+real RGB-D 63.0 46.4 91.3 45.0 18.6 71.2 61.9 56.8 1.46
47 Drost-CVPR10-Edges [10] 2019 PPF – – ICP – – RGB-D 51.5 50.0 85.1 36.8 57.0 67.1 37.5 55.0 87.57
48 MRPE-PBR-RGB-SModel 2023 DNN Dataset Default GDRNPPDet – RGB PBR RGB 71.5 72.9 20.6 46.2 35.3 76.5 55.2 54.0 0.10
49 CDPNv2 BOP20 (PBR-only & ICP) [34] 2020 DNN Object FCOS ICP RGB PBR RGB-D 63.0 43.5 79.1 45.0 18.6 71.2 53.2 53.4 1.49
50 CDPNv2 BOP20 (RGB-only) [34] 2020 DNN Object FCOS – RGB Synt+real RGB 62.4 47.8 77.2 47.3 10.2 72.2 53.2 52.9 0.94
51 Drost-CVPR10-3D-Edges [10] 2019 PPF – – ICP – – D 46.9 40.4 85.2 37.3 46.2 62.3 31.6 50.0 80.06
52 Drost-CVPR10-3D-Only [10] 2019 PPF – – ICP – – D 52.7 44.4 77.5 38.8 31.6 61.5 34.4 48.7 7.70
53 CDPN BOP19 (RGB-only) [34] 2020 DNN Object RetinaNet – RGB Synt+real RGB 56.9 49.0 76.9 32.7 6.7 67.2 45.7 47.9 0.48
54 CDPNv2 BOP20 (PBR-only & RGB-only) [34] 2020 DNN Object FCOS – RGB PBR RGB 62.4 40.7 58.8 47.3 10.2 72.2 39.0 47.2 0.98
55 leaping from 2D to 6D [38] 2020 DNN Object Unknown – RGB Synt+real RGB 52.5 40.3 75.1 34.2 7.7 65.8 54.3 47.1 0.43
56 EPOS-BOP20-PBR [20] 2020 DNN Dataset – – RGB PBR RGB 54.7 46.7 55.8 36.3 18.6 58.0 49.9 45.7 1.87
57 Drost-CVPR10-3D-Only-Faster [10] 2019 PPF – – ICP – – D 49.2 40.5 69.6 37.7 27.4 60.3 33.0 45.4 1.38
58 Félix&Neves-ICRA2017-IET2019 [48,51] 2019 DNN/PPF Dataset MaskRCNN ICP RGB-D Synt+real RGB-D 39.4 21.2 85.1 32.3 6.9 52.9 51.0 41.2 55.78
59 Sundermeyer-IJCV19+ICP [56] 2019 DNN Object RetinaNet ICP RGB Synt+real RGB-D 23.7 48.7 61.4 28.1 15.8 50.6 50.5 39.8 0.86
60 Zhigang-CDPN-ICCV19 [34] 2019 DNN Object RetinaNet – RGB Synt+real RGB 37.4 12.4 75.7 25.7 7.0 47.0 42.2 35.3 0.51
61 PointVoteNet2 [12] 2020 DNN Object – ICP RGB-D PBR RGB-D 65.3 0.4 67.3 26.4 0.1 55.6 30.8 35.1 –
62 Pix2Pose-BOP20-ICCV19 [46] 2020 DNN Object MaskRCNN – RGB PBR+real RGB 36.3 34.4 42.0 22.6 13.4 44.6 45.7 34.2 1.22
63 Sundermeyer-IJCV19 [56] 2019 DNN Object RetinaNet – RGB Synt+real RGB 14.6 30.4 40.1 21.7 10.1 34.6 44.6 28.0 0.20
64 SingleMultiPathEncoder-CVPR20 [54] 2020 DNN All MaskRCNN – RGB Synt+real RGB 21.7 31.0 33.4 17.5 6.7 29.3 28.9 24.1 0.19
65 DPOD (synthetic) [66] 2019 DNN Dataset – – RGB Synt RGB 16.9 8.1 24.2 13.0 0.0 28.6 22.2 16.1 0.23

Table 3. 6D localization of seen objects (Task 1) on the seven core datasets. The methods are ranked by the ARC score which is the average
of the per-dataset ARD scores defined in Sec. 2.1. The last column shows the average image processing time in seconds, i.e., the average time to
localize all objects in an image (measured on different computers by the participants). Column Year is the year of submission, Type indicates whether
the method relies on deep neural networks (DNN’s) or point pair features (PPF’s), DNN per... shows how many DNN models were trained, Det./seg. is
the object detection or segmentation method, Refinement is the pose refinement method, Train im. and Test im. show image channels used at training
and test time respectively, and Train im. type is the domain of training images. All test images are real.

# Method Year Type DNN per Det./seg. Refinement Train im. ...type Test im. LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V ARC Time

1 GenFlow-MultiHypo16 [40] 2023 DNN All CNOS-fastSAM Recurrent Flow RGB-D PBR RGB-D 63.5 52.1 86.2 53.4 55.4 77.9 83.3 67.4 34.58
2 GenFlow-MultiHypo [40] 2023 DNN All CNOS-fastSAM Recurrent Flow RGB-D PBR RGB-D 62.2 50.9 84.9 52.4 54.4 77.0 81.8 66.2 21.46
3 Megapose-CNOS+Multih Teaserpp-10 [33,43] 2023 DNN All CNOS-fastSAM MegaPose+Teaser++ RGB PBR RGB-D 62.6 48.7 85.1 46.7 46.8 73.0 76.4 62.8 141.97
4 Megapose-CNOS+Multih Teaserpp-10 [33,43] 2023 DNN All CNOS-fastSAM MegaPose+Teaser++ RGB PBR RGB-D 62.0 48.5 84.6 46.2 46.0 72.5 76.4 62.3 116.56
5 SAM6D-CNOSmask [35,43] 2023 DNN All CNOS-fastSAM Cross-attention RGB-D PBR RGB-D 64.8 48.3 79.4 50.4 35.1 72.7 80.4 61.6 3.87
6 PoZe (CNOS) 2023 DNN All CNOS-fastSAM ICP RGB-D Custom RGB-D 64.4 49.4 92.4 40.9 51.6 71.2 61.1 61.6 159.43
7 ZeroPose-Multi-Hypo-Refinement [3,43] 2023 DNN All CNOS-fastSAM MegaPose RGB-D PBR+real RGB-D 53.8 40.0 83.5 39.2 52.1 65.3 65.3 57.0 16.17
8 GenFlow-MultiHypo-RGB 2023 DNN All CNOS-fastSAM Recurrent Flow RGB-D PBR RGB 56.3 52.3 68.4 45.3 39.5 73.9 63.3 57.0 20.89
9 Megapose-CNOS fastSAM+Multih-10 [33,43] 2023 DNN All CNOS-fastSAM MegaPose RGB PBR RGB 56.0 50.8 68.7 41.9 34.6 70.6 62.0 54.9 53.88

10 Megapose-CNOS fastSAM+Multih [33,43] 2023 DNN All CNOS-fastSAM MegaPose RGB PBR RGB 56.0 50.7 68.4 41.4 33.8 70.4 62.1 54.7 47.39
11 ZeroPose-Multi-Hypo-Refinement [3,43] 2023 DNN All SAM + ImageBind MegaPose RGB-D PBR+real RGB-D 49.3 34.2 79.0 39.6 46.5 62.9 62.3 53.4 18.97
12 MegaPose-CNOS fastSAM [33,43] 2023 DNN All CNOS-fastSAM MegaPose RGB PBR RGB 49.9 47.7 65.3 36.7 31.5 65.4 60.1 50.9 31.72
13 ZeroPose-One-Hypo [3] 2023 DNN All SAM + ImageBind MegaPose RGB-D PBR+real RGB-D 27.2 15.6 53.6 30.7 36.2 46.2 34.1 34.8 9.76
14 GenFlow-coarse 2023 DNN All CNOS-fastSAM – RGB PBR RGB 25.0 21.5 30.0 16.8 15.4 28.3 27.7 23.5 3.84

Table 4. 6D localization of unseen objects (Task 4) on the seven core datasets. The methods are ranked by the ARC score which is the average
of the per-dataset ARD scores defined in Sec. 2.4. The last column shows the average image processing time (in seconds). Other columns as in Tab. 3.
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# Method ...based on Year Data ...type APC Time

1 GDet2023 YOLOv8 2023 RGB PBR+real 79.8 .204
2 GDRNPPDet YOLOX 2022 RGB PBR+real 77.3 .081
3 GDet2023-PBR YOLOv8 2023 RGB PBR 76.9 .204
4 GDRNPPDet YOLOX 2022 RGB PBR 73.8 .081
5 Extended FCOS FCOS 2022 RGB PBR+real 72.1 .030
6 Extended FCOS FCOS 2022 RGB PBR 66.7 .030
7 DLZDet DLZDet 2022 RGB PBR 65.6 -
8 CosyPose Mask R-CNN 2020 RGB PBR+real 60.5 .054
9 CosyPose Mask R-CNN 2020 RGB PBR 55.7 .055
10 FCOS-CDPN FCOS 2022 RGB PBR 50.7 .047

Table 5. 2D detection of seen objects (Task 2). The methods are
ranked by the APC score defined in Sec. 2.2. The last column shows
the average image processing time (in seconds).

# Method ...based on Year Data ...type APC Time

1 ZebraPoseSAT GDRNPP+Zebra 2023 RGB PBR+real 61.9 .080
2 ZebraPoseSAT GDRNPP+Zebra 2022 RGB PBR+real 58.7 .080
3 ZebraPoseSAT CDPNv2+Zebra 2023 RGB PBR+real 57.9 .080
4 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR+real 57.8 .080
5 ZebraPoseSAT CosyPose+Zebra 2022 RGB PBR 53.8 .080
6 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR 52.3 .080
7 DLZDet DLZDet 2022 RGB PBR+real 49.6 -
8 DLZDet DLZDet 2022 RGB PBR 42.9 -
9 CosyPose Mask R-CNN 2020 RGB PBR+real 40.5 .054
10 CosyPose Mask R-CNN 2020 RGB PBR 36.2 .055

Table 6. 2D segmentation of seen objects (Task 3). Details as in Tab. 5.

# Method Year Train. im. ...type Test. im. APC Time

1 CNOS FastSAM [43] 2023 RGB PBR RGB 42.8 0.221
2 CNOS SAM [43] 2023 RGB PBR RGB 36.1 1.847
3 ZeroPose [3] 2023 RGB PBR RGB 34.1 3.821

Table 7. 2D detection of unseen objects (Task 5). The methods are
ranked by the APC score defined in Sec. 2.5. The last column shows
the average image processing time (in seconds).

# Method Year Train. im. ...type Test. im. APC Time

1 CNOS FastSAM [43] 2023 RGB PBR RGB 41.2 0.221
2 CNOS SAM [43] 2023 RGB PBR RGB 40.3 1.847
3 ZeroPose [3] 2023 RGB PBR RGB 37.2 3.821
4 lcc-fastsam 2023 RGB PBR RGB 14.9 1.182

Table 8. 2D segment. of unseen objects (Task 6). Details as in Tab. 7.

4.4. Results on Task 4
The new task of 6D localization of unseen objects received

14 entries, as presented in Tab. 4. MegaPose [33], a method
from 2022, was considered as the baseline and consists of two
stages: (1) coarse object pose estimation by finding the rendered
template image that is closest to the test image crop, and (2) pose
refinement via a render-and-compare strategy. The RGB-only
entry Megapose-CNOS fastSAM+Multih-10 (#9) achieves
54.9 ARC and further improves to 62.8 ARC by using RGB-D
images and an additional refinement with Teaser++ [65], see
Megapose-CNOS+Multih Teaserpp-10 (#3).

GenFlow-MultiHypo16 (#1), the best method for 6D localiza-
tion of unseen objects, reaches 67.4 ARC . This is a remarkable
result since the performance is comparable to CosyPose [32],
the best method in 6D localization of seen objects from 2020.
GenFlow improves the coarse pose estimation stage of MegaPose
by running the coarse network in a GMM-based hierarchical
manner. For pose refinement, GenFlow adapts the recurrent flow
network [13] to also estimate a visibility mask and replaces the
pose regression network with a differentiable PnP solver.

Results in Tab. 4 highlight that the run time is a significant
challenge for solving unseen object pose localization. While

GenFlow-MultiHypo16 improved the run time by 4x compared
to MegaPose, it still takes 34.58 s per image. SAM6D (#5) [35]
based on GeoTransformer [47] is the fastest method by a signif-
icant margin with 3.87 s per image while still reaching 61.6 ARC

(-5.8 ARC compared to Genflow-MultiHypo16 #1). Figure 3
shows qualitative comparison of the best method for unseen
objects, GenFlow, with the best method for seen objects, GPose.

4.5. Results on Tasks 5 and 6

2D detection and segmentation of unseen objects in cluttered,
occluded environments is a challenging task. Still, as shown
in Tab. 7 and Tab. 8, the best method CNOS-FastSAM [43]
reaches accuracy of 42.8 mAPC in detection and 41.2 mAP in
segmentation of unseen objects. For comparison, the instance
segmentation accuracy is comparable to Mask R-CNN [16] that
reached 40.5 mAPC in the BOP challenge 2020 [25] while being
trained on more than 1M synthetic and real images of the target
objects. CNOS-FastSAM [43] instead relies on DINOv2 [45]
features extracted from only 200 rendered reference views per
object. All submitted detection and segmentation approaches
are RGB-based and rely on SAM-like (Segment Anything) [35]
methods to segment object instances in the image.

Despite the substantial progress in unseen object detection
and segmentation driven by foundation models, there is still a
relatively large gap to methods trained to detect and segment
specific objects (compare Tab. 5 and 6). Especially, the amodal
detection of occluded instances, i.e., including occluded parts,
is a clear challenge for approaches focusing on unseen objects,
leading to a gap of 37 mAPC between CNOS and GDet2023.

To what extent is this gap in 2D detection performance
responsible for the gap in 6D localization of seen and unseen
objects? When combined with the default GDRNPPDet
detections from Task 2, the best method for 6D localization
of unseen objects (GenFlow-MultiHypo16) achieves the pose
accuracy of 79.2 ARC (#10 Tab. 3). Since this is only 5.9 ARC

behind GDRNPPDet + GPose2023 (#2), we conclude that better
methods for unseen object detection would provide great potential
for improving methods for unseen object localization.

5. Awards

The BOP Challenge 2023 awards were presented at the 8th
Workshop on Recovering 6D Object Pose6 at the ICCV 2023
conference. The awards are based on the results analyzed in
Sec. 4. The submissions were prepared by the following authors:

• GPose2023 and GDet2023 [67] by Ruida Zhang, Ziqin Huang,
Gu Wang, Xingyu Liu, Chenyangguang Zhang, Xiangyang Ji

• GDRNPP [39, 61] by Xingyu Liu, Ruida Zhang, Chenyang-
guang Zhang, Bowen Fu, Jiwen Tang, Xiquan Liang, Jingyi
Tang, Xiaotian Cheng, Yukang Zhang, Gu Wang, Xiangyang Ji

• OfficialDet-PFA [27] by Xinyao Fan, Fengda Hao, Yang Hai,
Jiaojiao Li, Rui Song, Haixin Shi, Mathieu Salzmann, David
Ferstl, Yinlin Hu

6cmp.felk.cvut.cz/sixd/workshop 2023
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• ZebraPoseSAT [53] by Praveen Annamalai Nathan, Sandeep
Prudhvi Krishna Inuganti, Yongliang Lin, Yongzhi Su,Yu
Zhang, Didier Stricker, Jason Rambach

• Coupled Iterative Refinement [37] by Lahav Lipson, Zachary
Teed, Ankit Goyal, Jia Deng

• GenFlow [40] by Sungphill Moon, Hyeontae Son.
• SAM6D [35] by Jiehong Lin, Lihua Liu, Dekun Lu, Kui Jia
• MegaPose [33] by Elliot Maitre, Mederic Fourmy, Lucas

Manuelli, Yann Labbé
• PoZe by Andrea Caraffa, Davide Boscaini, Fabio Poiesi
• CNOS [43] by Van Nguyen Nguyen, Thibault Groueix, Georgy

Ponimatkin, Vincent Lepetit, Tomas Hodan

Awards for 6D localization of seen objects (Task 1):

• The Overall Best Method:
GPose2023

• The Best RGB-Only Method:
ZebraPoseSAT-EffnetB4

• The Best Fast Method (less than 1s per image):
GDRNPP-PBRReal-RGBD-MModel-Fast

• The Best BlenderProc-Trained Method:
GPose2023-PBR

• The Best Single-Model Method (trained per dataset):
OfficialDet-PFA-Mixpbr-RGB-D

• The Best Open-Source Method:
GDRNPP-PBRReal-RGBD-MModel

• The Best Method Using Default Detections:
GPose2023-OfficialDet

• The Best Method on T-LESS, ITODD, HB, IC-BIN:
GPose2023

• The Best Method on LM-O, YCB-V:
GPose2023-OfficialDet

• The Best Method on TUD-L:
Coupled Iterative Refinement (CIR)

Awards for 2D detect./segment. of seen objects (Tasks 2 and 3):

• The Overall Best Detection Method:
GDet2023

• The Best BlenderProc-Trained Detection Method:
GDet2023-PBR

• The Overall Best Segmentation Method:
ZebraPoseSAT-EffnetB4 (DefaultDetection)

• The Best BlenderProc-Trained Segment. Method:
ZebraPoseSAT-EffnetB4 (DefaultDet+PBR Only)

Awards for 6D localization of unseen objects (Task 4):

• The Overall Best Method:
GenFlow-MultiHypo16

• The Best RGB-Only Method:
GenFlow-MultiHypo-RGB

• The Best Fast Method (less than 1s per image):
SAM6D-CNOSmask

• The Best BlenderProc-Trained Method:
GenFlow-MultiHypo16

• The Best Single-Model Method (one for all core datasets) :
GenFlow-MultiHypo16

• The Best Open-Source Method:
Megapose-CNOS fastSAM+Multih Teaserpp-10

• The Best Method Using Default Detections/Segmentations:
GenFlow-MultiHypo16

• The Best Method on ITODD, IC-BIN, HB, YCB-V:
GenFlow-MultiHypo16

• The Best Method on T-LESS:
GenFlow-MultiHypo-RGB

• The Best Method on LM-O:
SAM6D-CNOSmask

• The Best Method on TUD-L:
PoZe (CNOS)

Awards for 2D detect./segment. of unseen objects (Tasks 5 and 6):

• The Overall Best Detection Method:
CNOS (FastSAM)

• The Best BlenderProc-Trained Detection Method:
CNOS (FastSAM)

• The Overall Best Segmentation Method:
CNOS (FastSAM)

• The Best BlenderProc-Trained Segment. Method:
CNOS (FastSAM)

6. Conclusions
Although the accuracy scores start saturating on the seen-object

tasks (Tasks 1–3), the top-performing methods still need to
improve efficiency in order to support real-time applications.
2023 was a strong first year for the new unseen-object tasks
(Tasks 4–6), with the top performing method for 6D localization
of unseen objects reaching the accuracy of the top 2020 method
for 6D localization of seen objects. However, we identified a
great potential in improving detection of occluded objects and
making unseen object pose estimation more efficient. In 2023,
methods for unseen objects were provided 3D mesh models
to onboard the target objects. Next years, we are planning to
introduce an even more challenging variant where only reference
images of each object are provided for the onboarding. The
evaluation system at bop.felk.cvut.cz stays open and
raw results of all methods are publicly available.
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5617

http://bop.felk.cvut.cz/


Elbadrawy, Markus Knauer, Harinandan Katam, and Ahsan
Lodhi. BlenderProc: Reducing the reality gap with photorealistic
rendering. RSS Workshops, 2020. 2, 4

[5] Maximilian Denninger, Martin Sundermeyer, Dominik Winkel-
bauer, Youssef Zidan, Dmitry Olefir, Mohamad Elbadrawy, Ahsan
Lodhi, and Harinandan Katam. Blenderproc. arXiv preprint
arXiv:1911.01911, 2019. 2, 4

[6] Maximilian Denninger, Dominik Winkelbauer, Martin Sunder-
meyer, Wout Boerdijk, Markus Wendelin Knauer, Klaus H Strobl,
Matthias Humt, and Rudolph Triebel. Blenderproc2: A procedural
pipeline for photorealistic rendering. Journal of Open Source
Software, 8(82):4901, 2023. 4

[7] Andreas Doumanoglou, Rigas Kouskouridas, Sotiris Malassiotis,
and Tae-Kyun Kim. Recovering 6D object pose and predicting
next-best-view in the crowd. In CVPR, 2016. 4

[8] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman,
Ryan Hickman, Krista Reymann, Thomas B McHugh, and Vincent
Vanhoucke. Google scanned objects: A high-quality dataset of
3D scanned household items. ICRA, 2022. 4

[9] Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp Hartinger,
and Carsten Steger. Introducing MVTec ITODD – A dataset for
3D object recognition in industry. In ICCVW, 2017. 4

[10] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic.
Model globally, match locally: Efficient and robust 3D object
recognition. CVPR, 2010. 1, 2, 6

[11] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun.
YOLOX: Exceeding YOLO series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 5

[12] Frederik Hagelskjær and Anders Glent Buch. PointPoseNet:
Accurate object detection and 6 DoF pose estimation in point
clouds. arXiv preprint arXiv:1912.09057, 2019. 6

[13] Yang Hai, Rui Song, Jiaojiao Li, and Yinlin Hu. Shape-constraint
recurrent flow for 6d object pose estimation. In CVPR, pages
4831–4840, 2023. 7

[14] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. Shape,
light & material decomposition from images using monte carlo
rendering and denoising. NeurIPS, 2022. 1

[15] Rasmus Laurvig Haugaard and Anders Glent Buch. SurfEmb:
Dense and continuous correspondence distributions for object pose
estimation with learnt surface embeddings. CVPR, 2022. 6

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask R-CNN. ICCV, 2017. 2, 7

[17] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K.
Konolige, and N. Navab. Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes.
ACCV, 2012. 4

[18] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt
Konolige. On pre-trained image features and synthetic images
for deep learning. ECCVW, 2018. 2
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