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Abstract

Capturing the 3D human body is one of the important
tasks in computer vision with a wide range of applica-
tions such as virtual reality and sports analysis. However,
conventional frame cameras are limited by their temporal
resolution and dynamic range, which imposes constraints
in real-world application setups. Event cameras have the
advantages of high temporal resolution and high dynamic
range (HDR), but the development of event-based methods
is necessary to handle data with different characteristics.
This paper proposes a novel event-based method for 3D
pose estimation and human mesh recovery. Prior work on
event-based human mesh recovery require frames (images)
as well as event data. The proposed method solely relies
on events; it carves 3D voxels by moving the event cam-
era around a stationary body, reconstructs the human pose
and mesh by attenuated rays, and fit statistical body models,
preserving high-frequency details. The experimental results
show that the proposed method outperforms conventional
frame-based methods in the estimation accuracy of both
pose and body mesh. We also demonstrate results in chal-
lenging situations where other frame-based methods suffer
from motion blur. This is the first-of-its-kind to demonstrate
event-only human mesh recovery, and we hope that it is the
first step toward achieving robust and accurate 3D human
body scanning from vision sensors.

1. Introduction
Estimating human pose from cameras is one of the key com-
puter vision challenges with a wide range of applications
such as virtual reality (VR), sports analysis, and abnormal
behavior detection. Recently, many pose estimation meth-
ods using deep neural networks (DNNs) have been pro-
posed and developed for images from conventional frame
cameras. However, such methods have limitations in the
applicable scenes that inherits the constraints of frame cam-
eras by nature: the temporal resolution is insufficient for
intense motion such as during sports (i.e., motion blur), and
the shutter speed must be adjusted to obtain data in dark
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Figure 1. Summary of the proposed method. Our method recon-
structs the human body mesh and estimates the pose only from an
event camera that moves around the body.

scenes (i.e., limited dynamic range). To address these chal-
lenges, event cameras have recently gained attention from
both research and industry. Unlike conventional frame cam-
eras where all pixels record data synchronously, event cam-
eras asynchronously respond only to brightness changes, re-
sulting in high temporal resolution (µ sec order) and high
dynamic range (HDR). However, since event cameras pro-
duce different data from frames [10, 21], it is paramount to
develop event-based methods for pose estimation and mesh
recovery using event cameras. Previous research on hu-
man body mesh reconstruction using event cameras [51, 55]
require frame images as complementary information, and
could not achieve reconstruction from events alone. This
is because event cameras do not generate data for station-
ary parts of the body if the camera is static (i.e., no event
data observed). Frame cameras are better for capturing
such static scene information, however, using frame images
is problematic since it imposes the limitations of frames
(e.g., dynamic range, motion blur). We summarize exist-
ing frame-based and event-based methods in Tab. 1.

In this work, we propose a 3D human body scanning
method capable of estimating the 3D voxel representation,
mesh, joints, and body model parameters of a stationary
human body using only event data (Fig. 1). Our proposed
method enables data acquisition from static bodies by mov-
ing the camera itself. Furthermore, we propose a ray atten-
uation to better preserve high-frequency detail information,
by extending the existing event-based voxel carving method
[50]. Finally, by fitting the statistical human body models,
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Figure 2. Overview of the proposed method.

Table 1. Comparison of (some) existing methods for frame-based
and event-based human mesh reconstruction. Scene and Camera
can be either dynamic (“D”) or static (“S”). Existing event-based
methods require images (“I”) as well as events (“E”), resulting in
mitigating motion blur to some extent (denoted with †).

Scene Camera Data Motion blur
PyMAF [53] D S I Yes

PyMAF-X [54] D S I Yes
EasyMoCap [53] D S I Yes

EventCap [51] D S E + I No†
EventHPE [55] D S E + I No†

Ours S D E No

such as SMPL [27] and SKEL [15], we demonstrate accu-
rate estimation of the human body mesh, body parameters,
and joint positions from the voxels.

To summarize, our contributions are as follows:

• The first-of-its-kind method to estimate human pose and
body mesh from only events.

• A ray attenuation for preserving details better, compared
with existing event-based carving.

• A thorough benchmarking with frame-based methods
and ablation studies on different illuminations, camera
speeds, hyper-parameters, and statistic body models.

The experimental results indicate that the proposed method
achieves accurate human body mesh reconstruction and 3D
pose estimation from events alone, without the need for ad-
ditional frames. Leveraging the high temporal resolution
of event cameras, our method achieves precise carving sur-
passing frame-based pose estimation methods.

2. Related Work
2.1. Frame-based Human Pose and Mesh Estima-

tion

3D human pose estimation from frame-based cameras,
which involves inferring the positions of human joints, is
one of the popular tasks in computer vision. Most of the re-
cent work utilize deep learning in various manners, such as
direct regression of 3D joints from images [24, 35, 46], tri-
angulating two-dimensional pose estimation results into the
3D space [5, 23, 48], and estimating joint positions using
heatmaps after converting the human body into a 3D repre-
sentation [32, 36, 47]. These approaches also consist of a
wide range of problem settings, from using a single camera
[5, 35, 36] to employing multiple cameras [1, 7, 44, 47], and
utilizing depth sensors as additional information [32, 52].

While traditional pose estimation focuses solely on the
joint positions, recent work have addressed human body
mesh reconstruction [14, 20, 53, 54]. In the mesh recon-
struction, not only the pose parameters but also the ones
related to the body shape are estimated simultaneously to
obtain the body mesh corresponding to the input image.
Meshes are generated by parametric statistical human body
models, such as SMPL [27], SMPL-X that extends SMPL
for hands and faces [37], SKEL that considers anatomical
structures [15], and CAPE that includes clothes [29].

2.2. Event-based Human Pose and Mesh Estimation

Human pose and mesh estimation using event cameras are
relatively recent research fields due to the novelty of event
cameras [10]. Common approaches accumulate events over
a certain time interval, convert them into images, and feed
them into convolutional neural networks (CNNs) to obtain
the joint heatmaps [4, 39, 55]. Also, Chen et al. [6] utilize
point-cloud neural networks to directly process events, re-
ducing memory consumption and computational complex-
ity.
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Event-based human mesh reconstruction methods have
also been studied, such as the approach by Xu et al. [51]
that achieves 1000 fps human body capture in low-light
conditions. However, it requires inputs from both events
and frames, as well as prior scanning of the subject to real-
ize accurate reconstruction. Zou et al. [55] propose an ap-
proach using optical flow from events to estimate both pose
and body mesh, yet rely on frames for initialization. Event-
based hand mesh reconstruction method [13] also uses the
complementary frame data, and to the best of the authors’
knowledge, no work has shown the mesh recovery solely
from events. Our proposed method utilizes only event
data (see Tab. 1) to simultaneously estimate the 3D joint
positions and reconstruct parametric human body models,
achieving precise estimation.

2.3. Visual Hull

Visual Hull, or carving, is a technique to reconstruct three-
dimensional shapes by finely divided voxels, which are
cubes carved from various angles based on the contours of
objects extracted from images [22]. In carving, a smoother
reconstruction is achieved by increasing viewpoints. In-
creasing the number of voxel subdivisions allows for finer
detail representation, however, it requires more rays for suf-
ficient carving, leading to larger data size for the three-
dimensional representation. Moreover, due to its principle,
high-frequency detailed information is difficult to extract
contours, and concave surfaces cannot be reconstructed.
Event cameras, due to their higher temporal resolution com-
pared to traditional frame cameras, enable smoother voxel
carving with more continuous viewpoint changes [50]. It
demonstrates reconstructing smooth voxels for 3D recon-
struction of simple objects like cans using an event camera.

3. Method
In this section, we propose a method to estimate the 3D
voxel representation, mesh, and parameters of joints (pose)
and body shape for a stationary human body from a moving
event camera. Figure 2 shows the overview of the proposed
method. It consists of three steps: (i) classifying “contour”
events among the raw events (Sec. 3.2), (ii) carving voxels
based on the contour events (Sec. 3.3), and (iii) fitting sta-
tistical body models on the carved voxels (Sec. 3.4). Our
proposed pipeline is model-agnostic, as shown in Sec. 4.3,
and achieves accurate estimation thanks to the high tempo-
ral resolution.

3.1. Event Cameras

Event cameras (e.g., the Dynamic Vision Sensor (DVS)
[8, 25, 45]) are novel vision sensors that respond to in-
tensity changes. There have been emerging computer vi-
sion research for event cameras, such as object detection
[11, 31, 33], ego-motion estimation [9, 40], optical flow
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Figure 3. Contour classification network.

[3, 41, 42], SLAM [12, 17, 18], and many applications
[2, 26, 34, 43]. They have independent pixels that operate
continuously and generate “events” ek

.
= (xk, yk, tk, pk)

whenever the logarithmic brightness at the pixel increases
or decreases by a predefined sensitivity C:

L (xk, yk, tk)− L (xk, yk, tk −∆tk) = pkC. (1)

Each event contains the space-time coordinates (xk, yk, tk)
of the brightness change and its polarity pk = {+1,−1},
with the elapsed time ∆tk since the previous event.

3.2. Contour Classification

Since events occur due to brightness changes, they do so not
only at object contours but at any edges in the image plane,
such as textures, assuming the scene brightness is constant.
Hence, it is necessary to classify events derived from con-
tours rather than other events for carving objects. For the
contour classification, we utilize a convolutional neural net-
work (CNN) encoder-decoder model (Fig. 3) [49]. As the
model input, we collect the most recent 10, 000 events and
use a voxel representation (three-dimensional tensor) by
discretizing position and time.

Ci(x, y, t) = pikb(x− xi)kb(y − yi)kb(t− ti), (2)

where kb is a bilinear kernel, allocating event coordinates
(x, y, t) to each bin (xi, yi, ti). The bilinear voting enables
the model to learn based on the temporal and spatial rela-
tionships between events.

The model is trained in a supervised manner, mini-
mizing binary cross-entropy loss between the ground truth
(GT) labels q̂i from mask and the contour inference result
fθ(ei, Ci) for the i-th event:

Lc =
1

N

N∑
i=1

Lbce(fθ(ei, Ci), q̂i). (3)

As results of the training, as shown in Fig. 3, we can ex-
tract human body contours from the original event data (i.e.,
event stream).
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3.3. Voxel Carving

We carve voxels using the contour events extracted in the
previous step (Fig. 4). First, we convert the image co-
ordinates (x, y) of individual events to the world coordi-
nates (XW , YW , ZW ) via the camera coordinate system
(XC , YC , ZC), using the camera intrinsic parameters K,
the rotation matrix R, and the translation T obtained from
the input camera trajectory.XW

YW

ZW

 = R−1

XC

YC

ZC

− T = sR−1K−1

xy
1

− T. (4)

The conversion from the two-dimensional coordinates
(x, y) to the three-dimensional coordinates (XW , YW , ZW )
is a back-projection, and the contours in the world coordi-
nates are represented as rays that contain an unknown scale
variable s (4), i.e., lines from the camera origin.

Furthermore, we propose a ray attenuation that is in-
versely proportional to the distance from the camera to mit-
igate pixel quantization errors. The accuracy of the contour
rays depends on the pixel pitch, and the error is proportional
to the distance of the camera rays (the error increases by n
when the distance from the camera is increased by n). We
find that attenuating the rays inversely proportional to the
distance enables preserving the details of the carved voxels.
Now the rays’ influence r′ during carving becomes

r′ =
r

d+ 1
, (5)

with the distance from the camera d and the original influ-
ence r. The number of rays (intensity) passing through each
voxel is weighted using r′, and voxels above a threshold are
pruned. We find that event-based carving leverages the high
temporal resolution of event data, enabling smooth 3D re-
construction.

3.4. SMPL Fitting

The voxels obtained through carving do not reproduce fine
structures, such as fingertips or concave surfaces like faces
or navels. Therefore, we perform mesh reconstruction by
fitting statistical body models, SMPL [27]. Notice that the
proposed framework can also be used for different models,
such as SKEL [15] as shown in Sec. 5.2.

Initial mesh

Target 
Voxel

iteration

Converged
Mesh

Figure 5. SMPL fitting.

The SMPL model defines a function W that outputs a
human body mesh M(β, θ) with 6890 vertices:

M(β, θ) = W (TP (β, θ), J(β), θ,W),

TP (β, θ) = T̄ +BS(β) +BP (θ).
(6)

The inputs of the model are the body shape parameter
β ∈ R10 (v1.0) or β ∈ R300 (v1.1) and the pose param-
eters θ ∈ R72 that consists of 3 degrees of freedom (rota-
tional angles) for 24 joints. Here, J(β) represents the joint
positions considering the body shape parameters, and W
represents the correspondence between vertices and joints.
Additionally, TP (β, θ) is a human body mesh that incorpo-
rates variations in body shape and deformation of the flesh
according to posture, created from the template mesh T̄ .

We fit the SMPL parameters θ and β to the mesh that is
obtained by applying the marching cubes method [28] on
the carved voxels. The fitting becomes a process of mini-
mizing the Chamfer loss, i.e.,

θ̂, β̂ = arg min
θ,β

(Lc),

Lc =
∑
p

min
q

||p− q||22 +
∑
q

min
p

||p− q||22.
(7)

Here, p and q are 50, 000 points randomly sampled from the
surfaces of the SMPL model and the carving result mesh,
respectively, and we calculate the sum of squared Euclidean
distances between the nearest q and p for all pairs. We use
the Adam optimizer [19] with a learning rate of 0.01 and
1000 iterations, and finally obtain the estimation of the body
parameters (θ̂, β̂).

4. Experiments

In this section, we first present the dataset used in the exper-
iments in Sec. 4.1, explain the evaluation metrics and the
frame-based methods used to benchmark in Sec. 4.2, and
discuss the results in Sec. 4.3 comparing other baselines.
Finally, we discuss the advantages of the proposed method
under motion blur in Sec. 4.4.
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4.1. Dataset

The proposed problem setting of moving event cameras
for human body mesh reconstruction is, to the best of our
knowledge, the first attempt. As there are no datasets avail-
able for such problem settings, we create a new dataset us-
ing the event camera simulator (ESIM) [38]. ESIM gener-
ates raw event stream from object 3D model, camera intrin-
sic parameters, and camera trajectory. In our case, the hu-
man mesh is represented by a .obj file with the joint ground
truth (GT) data created beforehand from the SMPL model,
and the camera trajectory follows a path circling the subject
twice at a radius of 1 m. The camera is modeled as a pinhole
camera, with parameters of (width, height, fx, fy, cx, cy) =
(640, 480, 250, 250, 320, 240) . We also generate 2082 con-
tour GT data with timestamps for training the contour clas-
sification network, by binarizing the depth GT from ESIM.
Additionally, we save frame images at 30 fps for the base-
lines. Example data in the dataset are shown in Fig. 6. In
total, we prepare 27 sequences that consist of three condi-
tions (two different poses and one motion-blur sequence)
with nine illumination settings. Each sequence contains ap-
proximately 20 million events and 518 frame images.

4.2. Evaluation Metrics and Baselines

PEL-MPJPE. As quantitative evaluation metrics for joints,
we use the Pelvis-Aligned Mean Per Joint Position Error
(PEL-MPJPE), used in human pose estimation work [20,
55]. MPJPE represents the average 3D Euclidean distance
between the estimated joint positions and the ground truth
joint positions, such as

MPJPE(x, x̂) =
1

N

N∑
i=1

∥px̂(i)− px(i)∥, (8)

where N denotes the total number of joints, px is the joint
position of the GT mesh, and px̂ is the estimated joint
positions. PEL-MPJPE evaluates the accuracy of relative
joint positions with respect to the root (pelvis) position af-
ter aligning them.

Chamfer Distance. For the evaluation of body meshes,
we use the Chamfer Distance (CD):

CD(X, X̂) =
1

|X|
∑
x∈X

min
x̂∈X̂

∥x− x̂∥22

+
1

X̂

∑
x̂∈X̂

min
x∈X

∥x− x̂∥22.
(9)

Similar to the Chamfer Loss used in Sec. 3.4 (7), CD mea-
sures the similarity of meshes based on the 3D Euclidean
distance of sampled points from the mesh surfaces. Here,
X is the point cloud sampled from the GT mesh, and X̂ is
the point cloud sampled from the estimated mesh. While in
Chamfer Loss (Sec. 3.4) during fitting the body model we
sample 50k points, here we sample 1M points from the GT
mesh and the recovered mesh surface for evaluation. Both
MPJPE and CD are averaged over the results from the 9
sequences with different lighting conditions in the dataset.

Baselines. Existing methods of event-based human body
mesh reconstruction track moving humans with stationary
event cameras and require additional frame images. Hence,
it is challenging to directly compare them with the proposed
method, where the camera moves around stationary human
bodies, and which does not rely on frames. Therefore, as
baselines, we use three frame-based methods: PyMAF [53],
its extension PyMAF-X [54], and another state-of-the-art
EasyMoCap [1]. PyMAF and PyMAF-X regress the SMPL
parameters that fit a single RGB image, and EasyMoCap
fits the SMPL model from multiple cameras (viewpoints).
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Table 2. Quantitative evaluation results.

PEL-MPJPE [mm] ↓ CD [mm] ↓
Pose1 Pose2 Pose1 Pose2

Ours (Event-based) 58.11 65.64 7.589 13.36

EasyMocap [1] 59.54 97.29 36.18 30.09

PyMAF [53]
single 78.40 234.1 49.83 239.8
multi 63.90 185.4 30.19 193.6

all 64.09 195.2 29.82 203.5

PyMAF-X [54]
single 92.10 182.9 48.68 199.1
multi 82.49 109.1 22.54 61.49

all 81.95 108.6 22.16 60.12

Figure 7. Qualitative results of the pose estimation for GT (top)
and the proposed method (bottom).

For PyMAF and PyMAF-X, to fairly compare with the pro-
posed method using multi-view events, we compare the av-
eraged outputs when using 8 frames with viewpoints chang-
ing at 45◦ intervals (multi-image) and when using all 518
frame images output at 30 fps from ESIM (all-image).

4.3. Comparison with Frame-based Methods

Table 2 shows the quantitative results compared with the
frame-based baselines. Our proposed method achieves the
smallest errors in MPJPE and CD for both “Pose1” (A-
pose), and “Pose2” (T-like pose). In particular, we ob-
serve significant improvements compared with PyMAF and
PyMAF-X. Although these baselines are proposed as a
single-view–estimation method, it is remarkable that the
proposed event-based approach realizes 30–60% improve-
ment in MPJPE and 80–90% improvement in CD. On the
other hand, EasyMoCap results in competitive accuracy for
“Pose1”, while its results for “Pose2” are not as good. Nev-
ertheless, our proposed method consistently achieves low
errors (55–65 mm for MPJPE and 5–15 mm for CD) for

GT Ours PyMAF-X(single) PyMAF-X(multi) PyMAF-X(all) PyMAF(single) PyMAF(multi) PyMAF(all)

GT Ours EasyMocap
PyMAF-X
(Single)

PyMAF-X
(Multi)

PyMAF-X
(All)

PyMAF
(Single)

PyMAF
(Multi)

PyMAF
(All)

Pose1

Pose2

Figure 8. Qualitative comparison of the mesh reconstruction, from
the front (top) and side (bottom).

both poses. These results demonstrate the effectiveness of
the proposed carving and SMPL fitting combination for dif-
ferent poses and different illumination conditions.

The qualitative results are shown in Fig. 7 (poses) and
in Fig. 8 (meshes). The proposed method can estimate 3D
poses without major discrepancies, compared with the GT
skeleton (Fig. 7). Furthermore, the reconstructed meshes
(Fig. 8) have significantly better lateral views, compared to
frame-based methods. However, the reconstructed meshes
of the proposed method exhibit minor structural distor-
tions in fingertips and toes, and the overall mesh is slightly
smaller. This is attributed to missing detailed information
during carving due to sampling errors and event noises. We
discuss in detail the effect of such missing structure, to-
gether with the effect of ray attenuation in Sec. 5.

4.4. Results on Motion-Blur Sequences

One remarkable advantage of event cameras is their mini-
mal motion blur. Therefore, we evaluate the accuracy by
moving the camera at ten times faster, where the frames
suffer from blurry images (Fig. 9). Table 3 reports the quan-
titative results. Compared with the results without any blur
(Tab. 2), existing frame-based methods have worse results
in both pose and mesh accuracy due to the blur. In contrast,
the proposed method manages to mitigate the blur effect,
which clearly shows the efficacy of event cameras for such
rapid motion sequences.
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Table 3. Results on the motion-blur sequence. The frame-based
methods suffer from motion blur, resulting in the accuracy drop
from Tab. 2.

PEL-MPJPE [mm] ↓ CD [mm] ↓
Ours 69.68 14.33

EasyMocap [1] 223.6 121.0
PyMAF [53] 216.3 223.3

PyMAF-X [54] 148.6 109.2

Figure 9. Visualization of the motion-blur sequence. (left) frames
suffer from blur, while (right) events do not.

(a) (b) (c)

Figure 10. Effect of the ray attenuation. (a) No attenuation. (b)
Linear attenuation. (c) Inverse attenuation (5).

Table 4. Effect of the ray attenuation.

PEL-MPJPE [mm] ↓ CD [mm] ↓
No attenuation 56.90 144.6

Linear 38.75 7.601
Inverse (5) 38.24 6.692

5. Ablation

5.1. Effect of Ray Attenuation

To validate the effectiveness of the proposed ray attenua-
tion (5), we compare the voxels of carving results with (a)
no attenuation: r′ = r, (b) linear: r′ = max (r− d), and
(c) inverse (5). Figure 10 shows the qualitative compari-

GT mesh (SKEL) Carved voxel Output mesh (SKEL)

Figure 11. Qualitative results on the SKEL[15] model.

son among the three. In cases with ray attenuation (b),(c),
carving loss of details in fingertips and toes is mitigated as
expected. Quantitative evaluations of SMPL fitting on these
voxels are presented in Tab. 4, demonstrating the efficacy
of the proposed decay for both pose estimation and mesh
reconstruction accuracies.

5.2. Results on Other Parametric Model

The proposed method is not limited to fitting the SMPL
model. To this end, we conduct experiments using SKEL
[15] for ground truth mesh and fitting. As shown in Fig. 11,
the estimated meshes look reasonably similar to the GT,
with the low error of MPJPE: 54.80 and CD: 7.943.

5.3. Comparison with GT masks

In addition to the frame-based baselines, we conduct an-
other experiment that confirms the advantage of high tem-
poral resolution of event cameras. To this end, we use the
GT contour (Figs. 3 and 6) at 30 fps, replacing the contour
classification network in the proposed pipeline. The con-
tour edges obtained from GT are used for the same carv-
ing and SMPL fitting steps. As results, the mesh estimated
from the GT contour achieves slightly better pose estima-
tion (MPJPE: 40.54), while the proposed method achieves
better mesh reconstruction (CD: 14.74). The quality of the
carved voxel is also confirmed in Fig. 12.

6. Sensitivity Study
Finally, we conduct sensitivity studies for the proposed
method. Here, we compare the results when (i) changing
the dimensions of body shape parameters β in SMPL (300,
10), and (ii) changing the voxel size (i.e., the numbers of
voxel divisions) during carving (512, 256, 128). Larger val-
ues of β can fit finer details, however, they are prone to over-
fitting on excessively carved voxels. Increasing the number
of voxels allows for better representation of detailed shapes,
while it requires more rays, which can result in uncarved
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GT mesh Carved voxel

Figure 12. Qualitative results of carving with GT masks, from the
front and side.

Table 5. Sensitivity study on the dimension of β and the voxel size.
∗ denotes the average without outliers (when the reconstruction
fails), and † denotes the average with such outliers.

β dim Voxel size PEL-MPJPE [mm] ↓ CD [mm] ↓

300

512∗ 61.80 7.894
512† 114.4 81.83
256 71.90 10.38
128 142.0 36.97

10

512∗ 55.42 6.800
512† 111.1 80.93
256 58.11 7.589
128 151.3 36.38

voxels remaining. The quantitative results in Tab. 5 show
that both joint estimation accuracy and mesh reconstruction
accuracy surpass when β ∈ R10 compared to β ∈ R300. Be-
ing consistent with the qualitative results (Fig. 13), it sug-
gests that expressive β ∈ R300 fits meshes to excessively
trimmed terminal parts such as wrists, leading to increased
deviation from GT (i.e., overfitting). Moreover, increasing
the number of voxels improves estimation accuracy. How-
ever, mesh reconstruction tends to fail (voxel size = 512 in
Tab. 5) due to insufficient rays. Hence, in the experimental
setup tested, β ∈ R10, voxel size = 256 is validated as the
optimal hyperparameters.

7. Limitations

In this work, we propose the first-of-its-kind method to es-
timate static human pose and mesh from only event stream,
using a moving event camera. The proposed method com-
bines the classical idea of carving and fitting statistical mod-
els of the human body with the ray attenuation to preserve
fine structures of the subject, and utilizes the high temporal
information of event data. The experimental results show
that (i) the proposed event-based method achieves better ac-

(c)

51
2

25
6

12
8

ℝ10 ℝ300

Vo
xe

ls
ize

Figure 13. Qualitative result of sensitivity study.

curacy than frame-based baselines both in pose and mesh
estimation, (ii) the ray attenuation is effective for mesh re-
covery with high-frequency details, (iii) the high temporal
resolution contributes to the precise carving, and (iv) the
proposed method is robust against motion-blur scenes. We
hope this work will serve as a baseline to be extended to
various interesting directions in the future as followings.

The proposed method needs the camera trajectory,
necessitating ego-motion estimation for the real-world
applications. Since the scene (body) is static, one inter-
esting direction could be the combination with SLAM
(simultaneous localization and mapping) methods. Also,
the contour classification utilizes supervised learning, while
the other steps (carving and SMPL fitting) are optimization
method. Thus, the contour classification performance may
degrade for textures (e.g., clothes) or different poses that
are not included in the training data. Creating a large-scale
human body dataset with diverse textures and poses could
be another important direction. Finally, the proposed
method still may miss some fine structures as discussed
in Sec. 6, which can be attributed to the limitation of the
carving. Recently there have been many work for spatial
understanding, such as Neural Radiance Field (NeRF)
[30] and Gaussian Splatting [16], including dynamic
scenes. Combining these ideas into the human scan-
ning system could be a unique contribution in the future.
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