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Abstract

Human video segmentation and matting are challeng-
ing computer vision tasks, with many applications such as
background replacement or background editing. Numerous
methods have been proposed for human segmentation and
matting in either portrait or first-person view videos. In
this paper, we propose a real-time network that performs
first-person view hand and manipulated object segmenta-
tion as well as second-person view human video matting.
We introduce a global reception inductive bias block in
the network’s encoder that aggregates the pixel features at
short, medium, and long ranges. Furthermore, we propose
a multi-target optimization method that fully leverages seg-
mentation and matting labels to accelerate training. Our
model outperforms existing real-time methods by achieving
93.9% mIoU on HP-Portrait, 95.1% mIoU on VideoMatte
as well as 72.7% mIoU on EgoHOS datasets and achieves
faster runtime.

1. Introduction

Human segmentation and matting techniques are crucial
in applications involving video background blurring and
replacement, facilitating the separation of individuals and
their surroundings. Portrait image segmentation approaches
such as SINet [14] and PortraitNet [31] focus on images
with human heads and shoulders exclusively by designing
efficient encoders and decoders. While excelling in accu-
racy for simple portrait images, these methods experience
a notable decline in accuracy when confronted with com-
plex images featuring humans with extended limbs and in-
tricate backgrounds. PHOS [20] maximizes the global re-
ception field offered by the vision transformer architecture
and introduces a specialized encoder designed for the seg-
mentation of humans and interacting objects, yet only runs
real-time on low-resolution images.

Real-time human matting models such as MODNet [8]
and RobustVideoMatting (RVM) [11] facilitate general im-
age encoders as their backbones with self-designed de-
coders. MODNet ensures the alignment between the mat-
ting mask and the segmentation mask with the imposition
of a consistency loss between its low-resolution segmenta-
tion mask and the downsampled matte, but faces limitations
in handling videos with pronounced motion blurs due to the
absence of temporal information. RVM enhances temporal
coherence by integrating gated recurrent unit (GRU) into
its decoder modules and introduces an innovative training
method that involves utilizing foreground human images
combined with indoor background videos.

Existing segmentation and matting methods have pre-
dominantly shown promising results on second-person view
videos and images, where the entire human contour is cap-
tured [26]. This aligns with conventional video composi-
tion, where subjects are usually framed within the entirety
of the scene, which led to a significant oversight that the
first-person perspective has not been adequately addressed.
First-person view content, often characterized by partial
views of the body, such as hands or objects being manip-
ulated, traditional methods struggle due to the lack of full-
contour visibility and the complex interaction of foreground
elements with the camera. This has resulted in subpar accu-
racy levels in human segmentation and matting tasks from
a first-person viewpoint, posing a challenge for applications
requiring a high degree of immersion and interaction, such
as augmented reality (AR) and virtual reality (VR).

In this paper, we aim to bridge the gap by enhancing the
segmentation and matting capabilities from the first-person
perspective without compromising the quality in second-
person view videos. Specifically, we propose an end-to-end
model that is capable of performing first and second-person
view human and interacting object mask prediction in real-
time. To achieve complete segmentation with fine details,
we design an efficient encoder block with a wide receptive
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Figure 1. Overview of proposed network architecture, which consists of a hybrid feature extraction encoder, a recurrent decoder, and two
output layers for segmentation and depth estimation. Normalization and activation layers are omitted.

field and strong inductive bias using CNN-ViT hybrid archi-
tecture. Our model combines the segmentation and matting
branches to better leverage the knowledge from all datasets,
and distill background knowledge from a pretrained depth
estimation model to accelerate the convergence during pre-
training. By jointly training our model end-to-end using
segmentation, matting, and depth prediction datasets, the
model converges faster and achieves better accuracy. Our
method can be applied to mixed reality applications to per-
form passthrough function for humans in the surroundings.
To summarize, our contributions are as follows:
• We design a lightweight global reception inductive bias

block for the encoder, which leverages features from
short, medium, and long ranges.

• We propose to combine the segmentation and matting
branches for more efficient training.

• We develop a novel network architecture that efficiently
decodes extracted features for foreground mask predic-
tion on both first-person and second-person perspective
videos.

2. Related Works
Portrait Segmentation Portrait segmentation methods

[14, 29, 31] favors simple input images where human occu-
pies over 50% of the entire image. These methods feature
meticulously crafted lightweight encoders aimed at drasti-
cally reducing parameters while maintaining the desired ac-
curacy in image portrait segmentation. However, they tend
to yield subpar results when applied to images with intricate
backgrounds or when dealing with elongated human limbs.
PHOS [20], a recent segmentation approach designed for
video segmentation of human upper body, adopts a larger
encoder based on vision transformers along with a recurrent
decoder.

Human Matting Methods for human matting [8, 10, 11,

13, 17] produce nuanced labels for human foregrounds to
enhance video background replacement and editing. These
techniques typically employ standard image encoders as
their backbones, which are comparatively sluggish and less
effective than purpose-built encoders. Notably, recent ad-
vancements such as MODNet [8] and RVM [11] offer end-
to-end training for human matting tailored to video applica-
tions, eliminating the need for supplementary inputs. How-
ever, it is important to note that MODNet and RVM are not
capable of processing first-person-view videos.

Egocentric Hand Segmentation Hand segmentation
methods from egocentric perspectives [5, 9, 30] extract
hand regions from first-person view videos, serving multi-
ple purposes such as human activity categorization and hand
gesture recognition. Among them, fine-grained EgoHOS
[30] stands out as the sole method capable of accurately
segmenting both hands and manipulated objects. However,
its reliance on a multi-stage segmentation process renders it
unsuitable for real-time applications.

3. Method
We propose a novel network that is capable of perform-

ing human segmentation and matting mask prediction for
first-person and second-person view videos. GRIB, a novel
feature extractor block is designed to efficiently explore
spatial information at all distances to achieve complete and
accurate mask prediction. As shown in Figure 1, our model
has a shared encoder-decoder with two output heads to map
the output features to a foreground mask and a depth map.
We pair our model with a guided filter [22] to perform in-
ference on images with resolutions higher than 256× 256.

3.1. Encoder Architecture

Global Reception Inductive Bias (GRIB) Block: The
relationship between the person’s belongings and the hu-
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man is important information that needs to be extracted to
ensure correct segmentation. Our feature extraction encoder
is designed to achieve a global receptive field, while still
maintaining profound capability of local feature extraction.

Figure 2. Architecture of our Global Reception Inductive Bias
(GRIB) block, consisting of local feature extractors, global feature
extractors, and midium range feature extractors.

We design the Global Reception Inductive Bias (GRIB)
block, shown in Figure 2, which aims to provide our model
with balanced global reception and inductive bias [1, 27]
while maintaining reasonable scalability. GRIB enjoys a
CNN-ViT hybrid design with sequentially connected Trans-
former layers to obtain a global receptive field, large ker-
nel convolution layers to exploit mid-range inductive bias,
and Inverted Residual blocks[7] to efficiently extract details
from local features.

The GRIB block leverages local features to predict the
mask for the finest details including hair, fingers, and small
objects. A 3× 3 convolution layer in the Inverted Residual
block performs feature extraction in the local regions. In-
verted Residual block features the squeeze and excite (SE)
design, which captures channel-wise dependencies in fea-
ture maps. By recalibrating the contribution of feature map
channels through the SE layer, Inverted Residual blocks
become more effective at learning discriminative features
within the data. As a result, the manipulated objects are
better separated from similar objects in the background.

The global feature extractor starts with a 3× 3 convolu-
tion layer to distribute the extracted local information. The
following M Mobile Vision Transformer (MViT) [12] lay-
ers are responsible for extracting global features by per-
forming patch-wise attention. The global representation
transformer module is capable of encoding long-range in-

formation across the entire input, which helps to associate
the manipulated objects with the human. The vision trans-
former with global reception provides us the privilege of
only using 4-layer encoders without the need to apply ad-
ditional bottleneck blocks after the last layer of the feature
encoder. Even though MViT is a lightweight neural net-
work designed for mobile applications, as a global attention
Transformer, the MViT layer still suffers from limited scal-
ability of depth M due to the time complexity of H2W 2,
where H and W denotes the height and width of inputs re-
spectively.

The GRIB block uses the design of N convolution
groups consisting of a large kernel convolution, two point-
wise convolutions (pwConv), and an activation function to
extract medium-range features. The 7× 7 convolution pro-
vides the model with a reception field of 10% on feature
maps of resolution 64×64 and 20% on resolution 32×32. In
human segmentation and matting tasks, medium-range re-
ception corresponds to an understanding of individual body
parts including head, shoulders, arms, and legs. Having
medium-range reception provides stable segmentation re-
sults when limbs not connected to the torso appear in video
frames.

Encoder: Each layer of the encoder is constructed us-
ing a GRIB block after the initial 3 × 3 convolution layer
used for down-samplings. Inspired by lightweight mobile
encoders, we create two variants of our network: Ours-
Small (Ours-s), and Ours-Extra Small (Ours-xs) for differ-
ent resource use cases with differently configured encoding
channel sizes.

3.2. Decoder and Output Heads

Decoder: Our decoder features a two-layer design with
skip connections from the encoder and input, which reduces
the number of parameters yet is still able to maintain pre-
cision during decoding. Our decoder block design is in-
spired by RVM [11] and Xu et al. [25], where the authors
propose using ConvGRU, which is a gated recurrent unit
(GRU) paired with 2D convolution layers. Each decoder
stage is constructed using a combination of two layers of
convolutional layers with ReLu activation function, a Con-
vGRU layer, and a bilinear upsampling layer. Our decoder
retains the advantage of pure CNN decoders including the
ability of spatial information decoding and efficient feature
fusing, yet captures the temporal information from video se-
quences. To compensate for the loss of details due to skip-
ping the 1

2 ,
1
8 layer, our 1

4 layer fuses feature map from the
first layer downsampled using average pooling in addition
to the skip connection from the encoder side.

Output Head: Our network architecture comprises two
distinct output heads: one is dedicated to generating mask
predictions and the other focuses on producing depth pre-
dictions. Both output heads utilize the fused feature map
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from the original image and the decoder output as their in-
put. Sequential combinations of convolution, normaliza-
tion, and activation layers are employed within the output
heads to project the decoded features into the final output
predictions.

4. Experiment
4.1. Datasets

Six image portrait segmentation datasets, one video hu-
man foreground dataset, one video segmentation dataset,
and one hand-object video segmentation dataset are used
in our experiments.

Image datasets: The image datasets BaiduV1 [23],
BaiduV2 [23], EG1800 [18], Supervisely [3], and HP-
Multi-Person [24] are cropped to contain upper body only.
Depth maps of the above portrait image segmentation
datasets are generated using MiDaS V3.0 [15] DPT-L [16]
model. These datasets are used during the pertaining stage
to accelerate the convergence of our network and avoid
overfitting. We use the HP-Portrait[19] image dataset,
which contains images of the upper body of humans with
manipulated objects, for both training and testing. We
divide the HP-Portrait image segmentation datasets in an
8:1:1 ratio for training, validation, and testing as described
in PHOS[20].

Video dataset: Since there are no publicly available por-
trait video segmentation datasets, we follow PHOS [20] to
use VideoMatte240K (VideoMatte) [11] as our foreground
video dataset. The HP-Portrait is also used as an image
segmentation foreground dataset. We prepare a background
dataset consisting of 17,000 self-collected background im-
ages and 3,000 background videos. The frames used for
training, validation, and testing are generated at runtime
by compositing the selected foreground image or video se-
quences with the selected background image or video se-
quences. The 484 clips in VideoMatte are divided following
the original paper [11] into 474:4:5 for training, validation,
and testing, and all frames are used. When VideoMatte la-
bels are used for segmentation evaluation, a sigmoid func-
tion is applied to all masks.

The combination of all clips in YoutubeVis [28] contain-
ing humans is used as a human video segmentation dataset
during the pre-training stage. In addition, we filter the Ego-
HOS [30] hand and object video segmentation dataset so
that all arms and interacting objects share the same fore-
ground label. The training, validation, and testing subsets
are kept as provided with an approximate 8:1:1 ratio.

4.2. Experiment Setup

Training loss: We impose different loss functions dur-
ing the model training with different selections of datasets.
We train our mask prediction branch with binary cross-

entropy (BCE) loss defined in Equation 1 on the human
segmentation datasets, where y is the prediction and y′ is
the label.

ys = sigmoid(y) (1)
Lbce = y′(−log(ys)) + (1− y′)(−log(1− ys)) (2)

During training with the VideoMatte dataset, we gener-
ate our pseudo-segmentation label by applying the sigmoid
function to the matting label and apply the BCE loss. To
fully leverage the temporal information and matting label
introduced by the VideoMatte datasets, we apply the addi-
tional L1 loss and the laplacian pyramid loss reported by
[4, 6] and a coherent loss from [21], where y is the predic-
tion and y′ is the label.

Ll1 = |y − y′| (3)

Llap =

5∑
s=1

2s−1

5
|Ls

pyry − Ls
pyry

′| (4)

Lcoh = |dy
dt

− dy′

dt
|2 (5)

We apply the L1 loss to the depth estimation branch during
pre-training.

Table 1. Model configuration

Model Encoder-Ch Decoder-Ch
Ours-xs [16, 24, 48, 64] [64, 32]
Ours-s [32, 48, 64, 80] [80, 32]

Training strategy:
Our model training is pipelined into three stages. They

are designed so that our network progressively learns from
image segmentation tasks jointly with video matting tasks
to accelerate training. Our models are trained on two
NVIDIA RTX 3090 GPUs parallel using Adam optimizer
with the encoder and decoder channels listed in Table 1.
We configure our models with L = [2, 1, 1, 1], M = [0, 1,
2, 0], and N = [0, 1, 2, 2] as in Figure 2 for each encoder
layer.

Stage 0: Our model uses this pre-training stage since it
leverages a self-designed feature extraction encoder, which
lacks pre-trained weights. The model is trained for 10
epochs on the resolution of 256 × 256. All the image
datasets are used for training the mask prediction branch
and depth estimation branch with a learning rate of 1e−4.
The video human segmentation dataset YoutubeVis is only
used for training the mask prediction branch.

Stage 1: The model is trained for 15 epochs on the res-
olution of 256× 256. The HP-portrait image segmentation
dataset, EgoHOS hand object segmentation video dataset,
and VideoMatte video matting dataset are used for training
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Table 2. Segmentation and Matting Results evaluated on HP-Portrait, VideoMatte and EgoHOS datasets

Method/Datasets HP-Portrait (mIoU) ↑ VideoMatte-Seg (mIoU) ↑ VideoMatte (MAD) ↓ EgoHOS (mIoU) ↑
MODNet [8] 88.16% 92.20% 9.12 48.34%

RVM [11] 89.36% 94.56% 6.04 53.40%
PHOS [20] 91.85% 93.71% / 58.26%

Ours-xs 92.37% 94.08% 7.78 66.83%
Ours-s 93.89% 95.14% 5.51 72.65%

the mask prediction branch, and videos with a length of 15
are sampled. Training stage 1 uses a fixed learning rate of
5e−5.

Stage 2: The model is trained for another 10 epochs on
the resolution of 1920 × 1080. The datasets used are con-
sistent with the previous training stage, but videos with a
length of 35 are sampled. Training stage 2 uses a fixed
learning rate of 2e−5.

4.3. Experimental Results and Discussion

In our evaluation, we measure the performance of our
approach against contemporary real-time portrait video seg-
mentation and matting techniques such as MODNet [8],
RVM [11], and PHOS[20]. We assess the networks’ seg-
mentation and matting accuracy, temporal consistency, and
visual quality. To ensure a fair comparison, we retrain all
the compared methods using the datasets outlined in sec-
tion 4.1 with their provided training methods. Notably, for
MODNet and RVM, which leverage pre-trained backbones
on ImageNet-1K, pre-training stage is excluded during their
training process.

Segmentation and Matting Accuracy: We conduct a
thorough assessment of segmentation accuracy by compar-
ing it to existing methods at a resolution of 256 × 256 on
the HP-Portrait and VideoMatte datasets, as detailed in Sec-
tion 4.1. The evaluation is based on mean intersection over
union (mIoU), defined in Equation 6, where y represents
the predicted mask and y′ is the label. Additionally, we
scrutinize the accuracy of first-person view hand object seg-
mentation, comparing it to all methods at a resolution of
256 × 256 on the EgoHOS dataset, measured in terms of
mIoU.

IoU =
y ∩ y′

y ∪ y′
(6)

To gauge the segmentation accuracy of matting methods
on the VideoMatte-Seg dataset, we apply a sigmoid func-
tion to all matting predictions and labels. Furthermore,
we assess the matting accuracy at full HD resolution on
the VideoMatte dataset, comparing it to the matting out-
put of MODNet and RVM, using Mean Absolute Difference
(MAD) as the metric.

(a) MODNet (b) RVM (c) PHOS (d) Ours

Figure 3. The Effective Receptive Field (ERF) of MODNet, RVM,
PHOS and Ours respectively. A more widely distributed area in-
dicates a larger ERF, while a darker area indicates more attention.
The ERF of our method shows a good combination of global re-
ceptive field, uniform mid-range reception and strong inductive
bias.

Results are reported in Table 2, as well as in Figure 5 and
6 , demonstrating that our method excels in both segmenta-
tion and matting tasks. Our model outperforms others quan-
titatively across all comparisons, showcasing commendable
scalability. Figure 3 plots the effective reception field (ERF)
using the method in [2], showing that our method achieves
a good combination of the global receptive field, uniform
medium-range reception, and strong inductive bias. The
experiment results and plotted ERF further illustrate the di-
rect correlation between limb segmentation accuracy (Ego-
HOS dataset) and medium-range feature extraction capabil-
ity, while matting accuracy is directly linked to the model’s
proficiency in local feature extraction.

Temporal consistency: The temporal consistency of
all the compared methods is assessed using the proposed
technique [20] by PHOS on ten videos, each consisting
of 900 frames. The evaluation focused on interframe (IF)
mean Intersection over Union (mIoU) and interframe pixel
accuracy. As outlined in Table 4, our method, labeled
as ”Ours-s,” attains the highest IF mIoU and the second-
highest IF pixel accuracy. The performance differentials be-
tween RVM, PHOS, and our approach are minimal, primar-
ily attributed to the presence of limited motion in our daily
scenario test videos and the advantageous integration of the
Gated Recurrent Unit (GRU) in the decoder for all methods.
Visual examples in Figure 7 show that our method produces
consistent and accurate mask predictions for human videos

Model Size and Runtime: Table 5 presents a compre-
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Table 3. Segmentation Results evaluated in mIoU on different datasets

Method/Datasets HP-Portrait (mIoU) ↑ VideoMatte-Seg (mIoU) ↑ EgoHOS (mIoU) ↑
(a) Ours-s 93.89% 95.14% 72.65%

(b) w/o global feature extractor 86.96% 92.08% 54.23%
(c) w/o medium range feature extractor 88.27% 89.75% 61.36%

Table 4. Temporal Consistency Evaluation

Method IF mIoU ↑ IF Pixel Accuracy ↑
MODNet [8] 93.79% 97.21%

RVM [11] 96.37% 98.55%
PHOS [20] 96.55% 98.48%

Ours-xs 96.40% 98.34%
Ours-s 96.69% 98.61%

hensive evaluation of our proposed approach alongside ex-
isting methods, focusing on parameters, floating-point op-
erations (FLOPs), and frames per second (fps) at FHD res-
olution with a down-sample ratio of 0.25. The speed as-
sessment is conducted using an NVIDIA T1000 GPU with
2.5 TFLOPs computation power, known for its performance
comparable to the Qualcomm Snapdragon 8 Gen1 mobile
SoC. The results reveal that our method boasts the fewest
parameters and demonstrates the capability to achieve real-
time performance, even on mobile devices.

Table 5. Model Size and Runtime Evaluation

Model Parameters ↓ FLOPs ↓ FPS ↑
MODNet [8] 6.49M 9.69G 23.07

RVM [11] 3.75M 3.08G 35.81
PHOS [20] 1.23M 6.64G 18.39

Ours-xs 0.65M 4.45G 30.52
Ours-s 1.27M 6.57G 25.65

5. Ablation Study
We evaluate the effectiveness of our designed encoder

and decoder through ablation studies on HP-Portrait, Video-
Matte, and EgoHOS datasets. We create three sub-variants
of Ours-s model by (a) removing the global feature extrac-
tors in the GRIB blocks, (b) removing the medium range
feature extractors in the GRIB blocks, and (c) removing
both the global and medium range feature extractors in the
GRIB blocks.

Figure 4 shows the effective receptive field of our model
and its sub-variants respectively. Our local feature extrac-
tor within the GRIB block adeptly captures dense local fea-
tures, while our medium-range feature extractor harnesses

(a) (b) (c) (d)

Figure 4. The Effective Receptive Field of (a) our full model, (b)
our model without (w/o) global feature extractor, (c) our model
without medium range feature extractor, and (d) our model without
both global and medium range extractor respectively.

features spanning the medium range, and our global feature
extractor integrates information across the entirety of the
image. Table 3 demonstrates that the global feature extrac-
tor exhibits significant importance in the HP-portrait and
EgoHOS datasets, characterized by expansive human up-
per body and arm presence spanning large image areas re-
spectively. Conversely, the medium-range feature extractor
showcases its efficacy in the VideoMatte dataset, notable for
numerous frames featuring complete human figures and ex-
tended limb coverage occupying approximately half of the
image.

6. Conclusion
This paper introduces a novel approach for predicting

human and manipulating object masks in both first and
second-person view videos. To capture relationships be-
tween pixels at global, medium-range, and short-range
scales, we devise a global reception inductive bias block
that combines vision transformer and convolution layers. To
enhance model convergence and address the absence of pre-
trained weights, we conduct pretraining on human segmen-
tation videos and distilled knowledge from depth estimation
models. Through extensive experiments, we demonstrate
the high accuracy and temporal consistency of our method
on segmentation and matting datasets for both first-person
and second-person view videos. Our approach surpasses
existing real-time human segmentation and matting meth-
ods in terms of both accuracy and efficiency.
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Figure 5. Visual examples of the human foregrounds extracted using predicted masks from MODNet, RVM, PHOS, Ours-s, and ground
truth (GT). The frames are sampled from the EgoHOS video segmentation dataset as a representation of first-person view videos. Ground
truth
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Figure 6. Visual examples of the human foregrounds extracted using predicted masks from MODNet, RVM, PHOS, and Ours-s. Ground
truth are not presented as the YoutubeVis label does not contain manipulated objects. The frames are sampled from the YoutubeVis video
segmentation dataset as a representation of second-person view videos.

(a) A portrait video example from the VideoMatte test set without object manipulation.

(b) A full body video example from the VideoMatte test set with object manipulation.

Figure 7. Visual examples of consistent and accurate mask results of sample videos from VideoMatte test set. The predicted mask is
overlayed in green on the video frames extracted.
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