Modeling Detailed Human Geometry with Adaptive Local Refinement

Supplementary Material

1. Modified Sliced Wasserstein Distance

We adopt the sliced Wasserstein distance (SW) [1] to train
the refinement module to avoid the local minimum issue
from Chamfer distance. For better efficiency, we find a
newer variant of SW that further improves the performance
of SW on 3D point cloud learning [2, 4]. The computation
details of the distance we used are shown in 1. In our appli-
cation, we choose sample size N = 150 and start from 50%
of the portfolio size to incrementally reach 100%.

Algorithm 1 Computation of the Distance
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2. Implementation Details

Coarse Prediction Module Architecture: Following the
naming convention of Pix2PixHD [5]: Let c7s1-k denotes
a 7 x 7 Convolution-BatchNorm-ReLU layer with £ filters
and stride 1. dk denotes a 3 x 3 Convolution-BatchNorm-
ReLU layer with k filters, and stride 2. We use reflection
padding in the network. Rk represents a residual block that
contains two 3 x 3 convolutional layers with k filters on
both layers. uk denotes a 3 x 3 TransposeConvolution-

BatchNorm-ReLU layer with k£ filters and stride 2. Our
image-to-image translation module is:
c7s1-64,d128,d256,d512,d1024,R1024,
R1024,R1024,R1024,R1024,R1024,R1024,
R1024,R1024,u512,u256,ul28,u64,c7sl-6

Attention-head Architecture: We denote Uk a resize-
convolution layer that contains a bilinear upsampling op-
eration with the factor of 2 and a 3 x 3 Convolution-
BatchNorm-ReLU layer with k filters, and stride 1. Our
attention-head Gy is:

U512,U0256,U128,U064,c7sl1-1

We train all methods on THUman2.0 dataset except PI-
FuHD and Tex2Shape, whose training codes are not avail-
able. We randomly split 80 % of the data to train and the
rest to test. It is augmented by rendering images from 36
views, the same as ICON/ECON.

Checkerboard Artifacts in the Attention Head: In
Section 3.3, we mention that we implement resize-
convolution layers to reduce the checkerboard artifacts,
which is caused by the transpose convolution layers in the
traditional upsampling structures. Within the layer, we first
upsample the feature map through bilinear interpolation and
apply a convolution with padding that retains the map di-
mension. It successfully eliminates the uneven overlap of
the reception field of the transpose convolution operation
that spawns the checkerboard artifacts. The comparison of
the attention maps is demonstrated in Figure 1.

Refinement Module Architecture: For the refinement
module, we use a convolutional encoder and a MLP-based
decoder. Denote Ek a 4 x 4 Convolution-BatchNorm-
LeakyReLU layer with k filters and stride 2. We choose
0.2 for the negative slope. The refinement encoder is:

E32,E64,E128,E256,E256,E256

With N refinement points, the refinement decoder is:

fc-512, fc-512, fc-512, fc-512, fc-512,
fc-512, fc-512, fc—-Nx6

Each fc layer is followed by batch normalization and
ReLU activation except the last layer.

For the human model reconstruction experiment, we ren-
der texture and positional maps with resolution 256 x 256
for the model input, which yields 50669 points. The input
RGB image is first transformed into an IUV image through
DensePose, which contains UV coordinates per part. Then
we utilize a preset mapping to map the IUV to the partial
UV on the right. Moreover, we choose | X,.| = 10000 for
the refinement module, making the final point cloud with
a size of 60669 points. Note that all UV positional maps
are stacked with corresponding normal maps within the en-
tire framework, as shown in Figure 2. The resultant mesh
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Figure 2. UV maps mentioned and drawn are the concatenation of
a positional map and a normal map.

is computed via point set normal computation and Poisson
Surface Reconstruction [3]. Each module is trained with
the Adam optimizer with a learning rate of 10~ for 300
epochs. The models are trained and inferred on a single
NVIDIA RTX3090 GPU. We will open-source our project
after publication.

3. Additional Results

Presented in Figure 4 and Figure 5 are further comparative
results visualized under the input image view. Our model
consistently exhibits the highest degree of detail, match-
ing or even surpassing the quality demonstrated by the best
benchmark models, such as PIFuHD and ECON. Note that
although promising in visible areas, we’ve demonstrated
that PIFuHD and ECON tend to falter when confronted
with occluded views, often yielding unrealistic body shapes.
We illustrate the per-vertex Chamfer distance in Figure 3.
It provides a visual comparison of our method with the
aforementioned state-of-the-art methods. Our model cre-
ates a similar level of visual appearance compared with
more complex methods, such as ICON and ECON, and due
to the 2D UV learning, the overall shape is closer to the
ground truth as shown in the per-vertex error visualization,
which therefore, quantitatively illustrates other methods’
lack of shape accuracy from non-input views. Note that due
to the potential of loss of certain details during poisson re-
construction, the per-vertex error is computed using the raw
point cloud input. We present videos of panoramic views of
generated models in the package as well.
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Figure 3. Ground-truth mesh (left) and result-error pairs from seven comparison methods: (a) PIFu, (b) PIFuHD, (c) Tex2Shape, (d)
PaMIR, (e) ICON, (f) ECON, and (g) Ours.
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Figure 4. (a) PIFu, (b) PIFuHD, (c) Tex2Shape, (d) PaMIR, (e) ICON, (f) ECON, and (g) Ours. Our model presents the finest class of
details on visible regions.
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